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Abstract. Using control of the growth of the transfer matrices, we discuss the spectral

analysis of continuum and discrete half-line Schrödinger operators with slowly decaying

potentials. Among our results we show if V (x) =
∑∞

n=1 anW (x−xn) where W has compact

support and xn/xn+1 → 0, then H has purely a.c. (resp. purely s.c.) spectrum on (0,∞)

if
∑

a2
n < ∞ (resp.

∑
a2

n = ∞). For λn−1/2an potentials where an are independent,

identically distributed random variables with E(an) = 0, E(a2
n) = 1, and λ < 2, we find

singular continuous spectrum with explicitly computable fractional Hausdorff dimension.

§1. Introduction

In this paper, we will study continuum and discrete Schrödinger operators on the
half-line (while we don’t always make them explicit, given theory in [10, 26, 32], many of
our results extend to suitable whole-line problems). Explicitly, we are interested in the
spectral analysis of operators H on L2(0,∞; dx) and on `2([1,∞)) given by

(Hu)(x) = − d2

dx2
+ V (x) (1.1)

in the continuum case and

(Hu)(n) = u(n + 1) + u(n − 1) + V (n)u(n) (1.2)
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in the discrete case.
Suitable boundary conditions are set at x (or n) = 0 so that H is self-adjoint (since

in all our examples V is limit point at infinity, a boundary condition is not needed
there). We are interested in the spectral properties of such operators in situations where
|V (n)| → 0 as n → ∞, but so slowly that the usual scattering theory will not apply. Our
main theme in this paper is that there are perturbation techniques of remarkable power
for such operators based on two ideas.

The first is that one can use the transfer matrix to analyze spectral properties. The
transfer or fundamental matrix is a 2 × 2 unimodular matrix defined in the continuum
case for any E by

TE(x, 0)
(

a

b

)
=

(
u′(x)
u(x)

)
(1.3)

where −u′′ + V u = Eu, u′(0) = a, u(0) = b. In the discrete case

TE(n, 0)
(

a

b

)
=

(
u(n + 1)

u(n)

)
(1.4)

where u(1) = a, u(0) = b, and u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n).
The second idea is that one can control the transfer matrix by controlling the norms

of two solutions of −u′′ + V u = Eu and that the critical equations are ones that involve
those norms.

Two of us [22] have recently found several new criteria for singular or absolutely
continuous spectra in terms of transfer matrices, and these criteria will make some of our
results here possible. The perturbation equations we will use have not been systematically
used in this context except in the paper of Kotani-Ushiroya [21] whose techniques have
some overlap with this paper. But they didn’t control the discrete case and their method
is so entwined with certain Martingale inequalities that it is unclear how to use them in
other contexts.

While we were writing up the work for this paper, we received a preprint from Remling
[29] that uses this two-pronged approach and has considerable overlap with our Sections 5
and 6. We will discuss the connection shortly.

Here are some of the theorems that we will use that relate spectral properties to
behavior of T (n). The first is from [22]:

Theorem 1.1. Suppose that there is a fixed sequence ni → ∞ and S is a subset of R
so that for a.e. E ∈ S, limi→∞ ‖TE(ni, 0)‖ = ∞. Then µac(S) = 0, where µac is the
absolutely continuous part of the spectral measure for H.

Remarks. 1. The interesting aspect of this theorem is that ni is arbitrary. The result
actually allows a more general sequence ‖TE(ni,mi)‖.

2. In typical applications, S is an interval in the essential spectrum.

In the other direction, one has the following pair of results:
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Theorem 1.2. Suppose S is a set so that for a.e. E ∈ S, limx→∞ ‖TE(x, 0)‖ < ∞.
Then µac(Q) > 0 for any Q ⊂ S with |Q| > 0 where | · | = Lebesgue measure.

Theorem 1.3. Suppose there is a sequence ni → ∞ so that
∫ b

a
‖TE(ni, 0)‖4 dE < ∞.

Then (a, b) ⊂ spec(H) and the spectral measure is purely absolutely continuous on (a, b)
and µac(Q) > 0 for any Q with |Q ∩ (a, b)| > 0.

Remarks. 1. That Theorem 1.2 is implied by the Gilbert-Pearson [11] theory was noted
by Stolz [36]. A simple proof can be found in [33]. Last-Simon [22] prove a stronger
variant in which ‖TE(x, 0)‖ is replaced by

∫ 1

−1
‖TE(x + y, 0)‖ dy and lim by lim (The

discrete analog holds with lim and without any local integration).
2. Theorem 1.3 is from Last-Simon [22] although the method used there is not much

more than what is in Carmona [1].

As to distinguishing dense pure point from singular continuous spectrum, in one di-
rection we have the following elementary result from Simon-Stolz [35].

Theorem 1.4. If
∑

n ‖TE(n, 0)‖−2 = ∞ in the discrete case or
∫ ∞
0

‖TE(x, 0)‖−2 dx =
∞ in the continuum case, then Hu = Eu has no solution which is L2 at infinity.

The paradigm of results that guarantees a solution L2 at ∞ is Ruelle’s proof [30] of
Osceledec’s theorem. His argument is abstracted in [22]. We will need the following in
Section 8:

Theorem 1.5. If limn→∞[log ‖TE(n, 0)‖/nα] exists and lies in (0,∞) for some α > 0,
then Hu = Eu has an L2 solution.

[22] also has a general abstract result on power decay which, to get an L2 solution,
requires

lim
n→∞

log ‖TE(n, 0)‖
logn

>
3
2

.

[22] also has an example where the limit is 3
2 and there is no `2 solution. But there are

stronger results that hold a.e. in certain probabilistic situations, so we won’t discuss the
power decay result here. In Section 8, we will discuss the probabilistic result.

As for the technique to control the growth of solutions, in the continuum case we will
use modified Prüfer variables defined for E > 0 by

u′(x) =
√

E R(x) cos(θ(x)) (1.5a)

u(x) = R(x) sin(θ(x)). (1.5b)

One finds these obey the differential equations (with k =
√

E)

dθ

dx
= k − V (x)

k
sin2(θ(x)) (1.6)

d logR(x)
dx

=
1
2k

V (x) sin(2θ(x)). (1.7)
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Two features of these equations are immediately noteworthy:
(a) They separate in the sense that (1.6) does not involve R and after solving it, one

obtains R by integration. That R drops out of (1.6) and the right side of (1.7) is
an expression of the linearity of the initial equations.

(b) If V = 0 in some region (a, b), then in that region R is constant and θ(x) = θ(a)+
k(x−a). It is this fact that leads one to take the factor

√
E in (1.5a). The addition

of this
√

E is what distinguishes this from ordinary Prüfer transformations.
There is a third significant feature which we will turn to momentarily.
Given how common these continuum equations are, we would have expected their

discrete analogs would have been rediscovered and used many times, but even after some
efforts at tracking various literature, we’ve found them in a single chain of four papers
(and we are a fifth in this chain, since we learned of them from the fourth paper!).

The original discoverer of the correct equation was Thomas Eggarter [9] in 1971.
He was not looking at an explicit difference equation but rather a continuum equation
with V (x) = V0

∑n
i=1 δ(x − xi). By integrating modified Prüfer variables across the

δ-functions, he was led to the transforms (E = 2cos(k)),

u(n) − cos(k)u(n − 1) = R(n) cos(θ(n)) (1.8a)

sin(k)u(n − 1) = R(n) sin(θ(n)) (1.8b)

in which case we have, after some calculation (see Section 2),

cot(θ(n + 1)) = cot(k + θ(n)) − (sin(k))−1V (n) (1.9)

R(n + 1)2

R(n)2
= 1 − V (n)

sin(k)
sin(2θ(n) + 2k) +

V (n)2

sin2(k)
sin2(θ(n) + k). (1.10)

Actually, he had only an equation of the form (1.9). The definition of θ(n) and precise
(1.9) is in a 1975 paper of Gredeskul-Pastur [13] who followed up on Eggarter’s work.

[9, 13] focus on (1.9) because they use the transform to study the integrated density
of states. Pastur-Figotin [26] defined R and exploited (1.10) to study the Lyapunov
exponent. In recognition of these seminal works, we call (1.8) the EFGP transform.
Their approach was further exploited in Chulaevsky-Spencer [2]. It will often be useful
to use an equivalent form of (1.9) that appears as (2.14).

Notice that (1.9), (1.10) have the two critical properties (a), (b) mentioned for (1.6),
(1.7) in the continuum case. In particular, if V (n) = 0 for n in some interval [n0, n1],
then in that region R(n) is constant and

θ(n) = θ(n0) + k(n − n0).

While the EFGP transform was obtained by integrating a continuum δ-function model,
it could also be found by looking for a transform with property (b). We will explain this
in Section 2.
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[9, 13, 26, 2] all consider V ’s with no decay as n → ∞ but with a small coupling so
that any calculations are only asymptotic in coupling constant. It turns out that the
methods are especially well suited when V (n) → 0 at infinity and one obtains results
that are exact for a fixed V. For example, in Section 8, we will find exact formulas for
the local Hausdorff dimensions of certain singular continuous spectral measures.

The third critical factor of the modified Prüfer and EFGP transforms is a major theme
of this paper, namely, that first-order terms in V are oscillatory while the second-order
term has a strong tendency to be strictly positive. This idea is already seen in [26, 2]
where γ(E) is O(g2) with g a coupling constant because the first-order terms drop out.

Let us be explicit about this idea. In (1.6), one might think the positivity comes via
the square in sin2(θ(x)) but that is wrong! Indeed, in writing sin2(θ) = 1

2 − 1
2 cos(2θ), it

is the cos(2θ) that is critical! Formally, (1.6) says

θ(x) = kx + θ0 − V (x)
k

sin2(kx + θ0) + O(V 2) ≡ kx + θ0 + δθ + O(V 2)

and then using

sin(2θ) = sin(2kx + 2θ0) + 2 cos(2kx + 2θ0)δθ + O(V 2),

we get
d log R

dx
= t1 + t2 + O(V 3),

where

t1 =
1
2k

V (x) sin(2(kx + θ0)) − 1
2k2

(
V (x)

∫ x

x0

V (y)dy

)
cos(2(kx + θ0))

is the oscillatory term that is often unimportant, while

t2 =
1

4k2

d

dx

[∫ x

x0

V (y) cos(2ky + 2θ0)dy

]2

has a positive integral, second order in V.
In explicit cases, it is more subtle to prove the second order is strictly positive and,

indeed, for examples like V (x) = x−α, α < 1
2 where the spectrum is absolutely continuous

(by Weidmann [37]), the second-order terms do not cause divergences. This means that
results that depend on a finite second-order term should hold more generally than those
that depend on an infinite second-order term. Indeed, we

Conjecture. If V is bounded and in L2(R, dx) (or `2(Z+)), then the essential support
of the a.c. part of the spectrum is all of (0,∞) (or (−2, 2) in the discrete case).

Our idea is that for almost all (but not all; see, e.g., [24, 25, 34]) k, the oscillations
should kill the first-order term, and so the L2 condition should suffice to give a bounded
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transfer matrix for a.e. k and so the stated conclusion about the a.c. spectrum by Theo-
rem 1.2.

After discussing the modified Prüfer and EFGP transforms and their relation to the
growth of the transfer matrix in Section 2, we turn to two warm-up problems in Sections 3
and 4. In Section 3, we show these transforms can replace the Harris-Lutz [15] method
in many cases where that method is applicable. In Section 4, we look at potentials V
with lim x|V (x)| finite and show that for such potentials their positive eigenvalues can
only coalesce at E = 0. Since examples are known with countable many eigenvalues
embedded in (0,∞), this result is interesting.

In Sections 5–7, we study sparse potentials.

Definition. A Pearson potential is one of the form

V (x) =
∞∑

n=1

anW (x − xn), (1.11)

where W is a bounded, non-negative function of compact support, an → 0, and 1 ≤ x1 <
x2 < x3 < · · · ,

xn

xn+1
→ 0. (1.12)

The name is in honor of David Pearson who considered potentials of the form (1.11)
where

∑∞
n=1 a2

n = ∞ and xn went to infinity sufficiently fast. To make things precise,
think of the example xn = n!.

Our major goal in Sections 5–6 is to prove the following:

Theorem 1.6. Let V be a Pearson potential. Then

(1) If
∑∞

n=1 a2
n < ∞, the spectrum of − d2

dx2 + V (x) is purely absolutely continuous
on (0,∞) for any boundary condition at 0.

(2) If
∑∞

n=1 a2
n = ∞, the spectrum of − d2

dx2 + V (x) is purely singular continuous on
(0,∞) for any boundary condition at 0.

In Section 5, we will actually prove a stronger version of (1):

Theorem 1.6′. Let V have the form (1.11) where

lim
xn

xn+1
< 1. (1.13)

Then (1) holds.

Pearson [27, 28] proved a weak version of (2) in that if
∑∞

n=1 a2
n = ∞, there exists

some set of xn’s so that the spectrum is purely singular continuous. In [27], there are
hints that a result of type (1) (again with xn sufficiently large) should hold, but nothing
explicit.

As noted at the end of Section 5, for (1) the bumps W (x − xn) can be n-dependent.
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At the end of Section 6, for [a, b] ≡ S ⊂ (0,∞), we construct Pearson-like potentials
(bumps whose width grows with n) so that there is purely a.c. spectrum on S and purely
s.c. spectrum on (0,∞)\S.

In a recent paper, coincident with our work, Remling [29] obtained results related
to Theorem 1.6(1) using similar methods. He only obtains the existence of absolutely
continuous spectrum (his results are consistent with simultaneous singular continuous
spectrum while we prove there is none), and he needs at least exp( 3

2
n log n) growth on

the xn (whereas, if f(n) is a monotone function with f(m) → ∞ no matter how slowly,
then xn = exp(nf(n)) obeys (1.12) and xn = exp(an) obeys (1.13)).

After this manuscript was completed, we obtained a preliminary version of a preprint
of Molchanov [23] with considerable overlap with our results in Sections 5 and 6.

In Section 7, we will prove

Theorem 1.7. Let xn ∈ Z obey xn/xn+1 → 0. Let V be the potential with

V (xn) = an

V (x) = 0 x 6= xn for any n.

Then,

(1) If
∑

a2
n < ∞, the discrete Schrödinger operator with potential V has purely

a.c. spectrum for (−2, 2).
(2) If

∑
a2

n = ∞, the operator has purely singular continuous spectrum on (−2, 2).

In Sections 8 and 9, we discuss models with randomness and decay, first studied by
Simon [31] and then by Delyon, et al. [7], Delyon [6], and Kotani-Ushiroya [21]. Typical
of the models discussed in these sections is (g is positive constant)

V (n) = gn−αan

where the an are independent, identically distributed random variables, uniformly dis-
tributed in [−1, 1]. We prove

(i) If α > 1
2 , the spectrum is almost surely purely absolutely continuous in (−2, 2).

(ii) If 0 < α < 1
2
, the spectrum is almost surely dense pure point in (−2, 2).

(iii) If α = 1
2 , the spectrum is almost surely purely singular continuous in the region

|E| < (4 − 1
3g2)1/2 and dense pure point in the region (4 − 1

3g2)1/2 ≤ |E| < 2 (if
g2 > 12, interpret (4 − 1

3
g2)1/2 as 0).

(iv) In case α = 1
2 and g2 < 12, in the region |E| < (4 − 1

3g2)1/2, the spectrum has
fractional Hausdorff dimension with local dimension (4− E2 − g2

3
)/(4 − E2).

Section 8 handles the discrete case, and Section 9 the continuum case.
For sparse potentials, we give the details in the continuum case and sketch the discrete

case; while for random decaying potentials, we give details in the discrete case and sketch
the continuum case.
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§2. Modified Prüfer and EFGP Transforms

We will be interested in solutions of

−u′′(x) + V (x)u(x) = k2u(x). (2.1)

Change variables to

u′(x) = kR(x) cos(θ(x)) (2.2a)

u(x) = R(x) sin(θ(x)). (2.2b)

These are called modified Prüfer variables. The 2π ambiguity in θ is fixed by choosing
θ(0) ∈ [0, 2π) and demanding θ(x) be continuous in x.

Then a straightforward calculation shows (2.1) is equivalent to the pair of equations

dθ

dx
= k − V (x)

k
sin2(θ(x)) (2.3)

d(log R)(x)
dx

=
1
2k

V (x) sin(2θ(x)). (2.4)

This change of variables is so very useful because if V = 0, then θ(x) = θ0 + kx,
R(x) = R0. We will be able to study V as a perturbation about this solution.

As explained in the introduction, one needs to study the asymptotic behavior of the
norm of the transfer matrix T (x, 0). For any θ0 in [0, π), let θ(x, θ0) solve (2.3) with
initial condition θ(0) = θ0. Then let R(x, θ0) solve (2.4) with R(0, θ0) = 1. Then

Theorem 2.1. For any α, β ∈ (0,∞) and θ1 6= θ2, there exists non-zero, finite constants
C1 and C2 (independent of x and V ) so that

C1 max(R(x, θ1), R(x, θ2)) ≤ ‖T (x, 0)‖ ≤ C2 max(R(x, θ1), R(x, θ2)) (2.5)

for all k ∈ (α, β).

Proof. Define ‖(a, b)‖2
k = (ka)2 + b2. Then min(1, k)‖(a, b)‖ ≤ ‖(a, b)‖k ≤ max(1, k)

‖(a, b)‖. So defining operator norms in terms of ‖ · ‖k, we see min(k, k−1)‖T (x, 0)‖k ≤
‖T (x, 0)‖ ≤ max(k, k−1)‖T (x, 0)‖k , so it suffices to prove (2.5) with ‖ · ‖k rather than
‖ · ‖. But

‖T (x, 0)‖k ≥ max(R(x, θ1), R(x, θ2))

is trivial and

‖T (x, 0)‖k ≤ {min[sin(1
2 |θ1 − θ2|), cos(1

2 |θ1 − θ2|)]}−1 max(R(x, θ1), R(x, θ2))
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by the lemma below. �

If |θ1 − θ2| ≤ π
2 (which can be done by replacing θ1 by π + θ, if need be), then this

proof shows we can take

C1 = min(α, β−1)

C2 = max(β, α−1)[sin(1
2 |θ1 − θ2|)]−1.

Lemma 2.2. Let A be a unimodular matrix. Let uθ = (cos(θ), sin(θ)). Then if |θ1−θ2| ≤
π
2 , then

‖A‖ ≤ sin(1
2 |θ1 − θ2|)−1 max(‖Auθ1‖, ‖Auθ2‖).

Proof. There exists θ0 so that

‖Auθ‖2 ≥ ‖A‖2 sin2(θ − θ0).

If |θ1 − θ2| < π
2 , for any θ0 at least one of | sin(θ0 − θi)| is larger than or equal to

| sin(1
2(θ1 − θ2)|. �

Remark. One might worry that the lemma involves ‖ · ‖ and not ‖ · ‖k but ‖A‖k =∥∥∥∥(
k 0

0 1

)
A

(
k 0

0 1

)−1
∥∥∥∥ and this product is also unimodular.

For the discrete case, we are interested in solutions of (0 ≤ k ≤ π)

u(n + 1) + u(n − 1) + V (n)u(n) = 2 cos(k)u(n). (2.6)

EFGP variables R(n), θ(n) are defined by

R(n) cos(θ(n)) = u(n) − cos(k)u(n − 1) (2.7a)

R(n) sin(θ(n)) = sin(k)u(n − 1). (2.7b)

A priori θ(n) is only determined mod (2π). We will fix this ambiguity later. Noticing
that

R(n) sin(k + θ(n)) = sin(k)u(n) (2.8)

u(n)
u(n − 1)

=
sin(k + θ(n))

sin(θ(n))
. (2.9)

Similarly,
R(n) cos(k + θ(n)) = cos(k)u(n) − u(n − 1). (2.10)

Thus,

cot(k + θ(n)) =
cos(k)u(n) − u(n − 1)

sin(k)u(n)
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where by definition,

− cot(θ(n + 1)) =
cos(k)u(n) − u(n + 1)

sin(k)u(n)
.

Thus, (2.6) is equivalent to

cot(θ(n + 1)) = cot(k + θ(n)) − V (n)
sin(k)

. (2.11)

Writing θ̄(n) ≡ θ(n) + k, we see, using first (2.7) and then (2.8)/(2.9):

R(n + 1)2 = sin2(k)u(n)2 + (u(n + 1) − cos(k)u(n))2

= sin2(k)u(n)2 + (u(n − 1) − cos(k)u(n) + V (n)u(n))2

= R(n)2 sin2(θ̄(n)) + R(n)2
(

cos(θ̄(n)) − V (n)
sin(k)

sin(θ̄(n))
)2

= R(n)2
[
1 − V (n)

sin(k)
sin(2θ̄(n)) +

V (n)2

sin2(k)
sin2(θ̄(n))

]
.

We can summarize with the EFGP equations:

νk(n) ≡ − V (n)
sin(k)

; θ̄(n) = θ(n) + k (2.12a)

cot(θ(n + 1)) = cot(θ̄(n)) + νk(n) (2.12b)

R(n + 1)2

R(n)2
= 1 + νk(n) sin(2θ̄(n)) + νk(n)2 sin2(θ̄). (2.12c)

We will fix the ambiguity in θ by demanding θ(n + 1) − θ̄(n) ∈ [−π, π). (2.12) can be
regarded as analogs of modified Prüfer equations in that if V = 0, R(n) = constant, and
θ(n) = θ(0) + kn.

As noted in the introduction, Eggarter arrived at the first version of the EFGP trans-
form by looking at continuum models with δ-function potential ((2.12b) is especially
transparent in this mode). But, one could have arrived at it by noting that when
V (n) ≡ 0, the transfer matrix is powers of

(
2 cos(k) −1

1 0

)
. This matrix has eigenval-

ues e±ik and so it must be similar to
(

cos(k) sin(k)

− sin(k) cos(k)

)
. That similarity transformation

will make the powers simple. Indeed,(
0 sin(k)
1 − cos(k)

) (
2 cos(k) −1

1 0

)
=

(
cos(k) sin(k)

− sin(k) cos(k)

) (
0 sin(k)
1 − cos(k)

)

so the transform (2.7) precisely realizes the similarity.
There is an analog of Theorem 2.1. Define R(n, θ) by requiring R(1) = 1, θ(1) = θ in

[0, π). Then
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Theorem 2.3. For any α ∈ (0, π
2
) and θ1 6= θ2, there exists non-zero, finite constants

C1 and C2 (independent of x and V ) so that for all k ∈ (α, π − α),

C1 max(R(n, θ1), R(n, θ2)) ≤ ‖T (n − 1, 0)‖ ≤ C2 max(R(n, θ1), R(n, θ2)). (2.13)

Because of the arccot, (2.12b) is somewhat awkward to deal with. Pastur-Figotin [26]
have noted an equivalent form of (2.12b) which is straightforward from

e2iϕ = 1 +
1
2

1
1 + i cot(ϕ)

viz.,

e2iθ(n+1) = e2iθ̄(n) +
iνk(n)

2

(
(e2iθ̄(n) − 1)2

1 − iνk(n)
2 (e2iθ̄(n) − 1)

)
. (2.14)

As an application of (2.14) we have

Proposition 2.4. If |νk(n)| < 1
2 , then

|θ(n + 1) − θ̄(n)| ≤ π|νk(n)| (2.15)

Proof. If |νk(n)| < 1
2 , then (2.14) implies that

|e2iθ(n+1) − e2iθ̄(n)| ≤ |νk(n)|
2

4
1
2

= 4|νk(n)|.

Since |eiη − 1| ≥ 2|η|
π , we get

|θ(n + 1) − θ̄(n)| ≤ π

4
|e2iθ(n+1) − e2iθ̄(n)|

and so the claimed result. �

Note. Kiselev, Remling, and Simon [20] present a way of defining R, θ that makes the
analogy to the continuum case transparent, makes (2.14) transparent, improves (2.15),
and extends to more general h0.

§3. Conditional Integrals and A.C. Spectrum

It follows from [11, 16, 17] that for both continuum and discrete Schrödinger operators
on [0,∞), we have (see also [33] for a quick proof):
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Proposition 3.1. If S is a set of reals so that for each λ ∈ S, supx ‖Tλ(x, 0)‖ < ∞,
then H has purely a.c. spectrum on S in the sense that

(i) For any boundary condition θ and any T ⊂ S with |T | > 0, we have ρac
θ (T ) > 0.

(ii) For any boundary condition θ, ρsing
θ (S) = 0.

Thus, bounded transfer matrices have important spectral consequences. By Theo-
rems 2.1 and 2.3, if we can show R( · , θ) remains bounded for two initial θ’s, we have
boundedness of T . From this and (2.4), (2.12c), one easily obtains the well-known result
that if

∫ |V (x)| dx < ∞, (resp.
∑ |V (n)| < ∞), then the spectrum is purely a.c. in (0,∞)

(resp. (−2, 2)). Here is a result allowing more general decay, first in the continuum case.

Theorem 3.2. Fix k 6= 0. Suppose that limβ→∞
∫ β

x
V (y)e2iky dy exists and that

Wk(x) =
∫ ∞

x

V (y)e2iky dy (3.1)

obeys ∫
|V (x)Wk(x)| dx < ∞. (3.2)

Then
lim

x→∞‖T (x, 0)‖ < ∞. (3.3)

Remarks. 1. This result is not new; it is essentially due to Harris-Lutz [15]. This is a
new proof.

2. This result implies that if V (x) =
∑N

m=1 am sin(kmx)/xβ , β > 1
2 , and k 6= ± 1

2km

for any m, then (3.3) holds, and so by Proposition 3.1, the spectrum is purely a.c. except
for possible positive eigenvalues of { 1

4k2
m}.

3. In [19], Kiselev proved that if V (x) = O(x− 3
4−ε), then (3.2) holds off a set of

Lebesgue measure zero.

Proof. We will show for any θ0, R(x, θ0) is bounded, and then one can appeal to Theo-
rem 2.1 to complete the proof of (3.3). Write θ(x) = kx + ϕ(x), so by (2.3), ϕ obeys

dϕ

dx
= −V (x)

k
sin2(kx + ϕ). (3.4)

By (2.4) (and R(0) = 1),

log R(x) =
∫ x

0

1
2k

Im
[(

dWk

dx

)
e2iϕ

]
dx

= Im
[

1
2k

[Wk(x)e2iϕ(x) − Wk(0)e2iθ0 ] − 2i

2k

∫ x

0

Wk
dϕ

dx
e2iϕ

]
dx
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if we integrate by parts. By hypothesis, Wk(x) is bdd so using (3.4),

| log R(x)| ≤ bdd +
1
k

∫ x

0

|Wk(y)V (y)| dy

is bounded by (3.2). �
Remark. A similar argument proves that

lim
x→∞ θ − kx − 1

2k

∫ x

0

V (y)dy

exists. This in turn lets one prove there are complex solutions η±(k, x) with

η±(k, x) exp
(

(∓i

(
kx − 1

2k

∫ x

0

V (y)dy

))
→ 1

η′
±(k, x) exp

(
∓i

(
kx − 1

2k

∫ x

0

V (y)dy

))
→ ik.

Notice that if V ∈ L2,

kx − 1
2k

∫ x

0

V (y)dy =
∫ x

0

√
k2 − V (y) dy + Q(x)

where limx→∞ Q(x) exists. So if V ∈ L2, this says that WKB-type solutions exist. This
is also what the Harris-Lutz method gives [19].

We are heading toward a proof of

Theorem 3.3. Fix k 6= 0, π. Suppose V (n) is a discrete potential with

lim
B→∞

B∑
m=n

V (m)e2ikm = Wk(n)

exists and that ∞∑
n=1

|V (n)Wk(n)| + |V (n)Wk(n + 1)| < ∞. (3.5)

Then
lim

n→∞ ‖T (n, 0)‖ < ∞.

Given a function f on {1, 2, . . . }, define (δf)(n) = f(n + 1) − f(n) and note that
summation by parts takes the form

b∑
m=a

g(m)(δf)(m) = −
b∑

m=a

f(m + 1)(δg)(m) + (fg)(b + 1) − (fg)(a).
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Lemma 3.4. If (3.5) holds for some k, then
∑∞

n=1 |V (n)|2 < ∞.

Proof. Since W exists, V → 0 at ∞ and so V is bounded. Thus, writing V (n) =
−e−2ikn(δWk)(n), and summing by parts,

B∑
n=1

V (n)2 = bdd +
B+1∑
n=2

V (n)Wk(n)e−2ikn −
B∑

n=1

V (n)Wk(n + 1)e−2ikn

is bounded by (3.5). �

Lemma 3.5. Suppose that {an}∞n=1 is a real sequence so that

an → 0 as n → ∞ (3.6)

and
N∑

n=1

an is bounded. (3.7)

Then
∏N

n=1(1 + an) is bounded.

Proof. By (3.6), |an| → 0, so without loss we can suppose that |an| < 1. Then |1+an| ≤
1 + an ≤ ean and (3.7) implies the result. �

Proof of Theorem 3.3. By (2.12c), Lemma 3.4, and Lemma 3.5, it suffices to prove that

N∑
n=1

νk(n)e2iθ̄(n) ≡ G(N) (3.8)

is bounded. Define
ϕ(n) = θ(n) − k(n − 1) = θ̄(n) − kn.

Proposition 2.4 and Lemma 3.4 imply that for n large

|(δϕ)(n)| ≤ π|νk(n)|. (3.9)

By the definition (3.8),

G(N) = −
N∑

n=1

δWk(n)(sin k)−1e2iϕ(n)

= bdd + (sin k)−1
N∑

n=1

Wk(n + 1)δ(e2iϕ)(n).
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But |δ(e2iϕ)| ≤ 2|δϕ|, so by (3.9)

|G(N) − bdd| ≤ C1

N∑
n=1

|Wk(n + 1)νk(n)|

≤ C1

[ N∑
n=1

|Wk(n)νk(n)| + |νk(n)|2
]

< ∞. �

Sometimes it is better to use slightly different Prüfer variables. For example, if R, θ
are defined by

u′(x) =
√

E − V (x) R(x) cos(θ(x))

u(x) = R(x) sin(θ(x)),

then
d log(R)

dx
=

1
2

∂V

∂x
cos2(θ(x)),

from which we see if V (x) → 0 at infinity and ∂V
∂x

∈ L1, then solutions are bounded.
(This is essentially the proof of Weidmann’s theorem [37] in [33].) If one tries out an
integration by parts argument, one needs both ∂V

∂x
∈ L1 and V ∈ L2.

§4. Bound States for O(x−1) Potentials

If |V (x)| = o(x−1), Eastham-Kalf [8] show that − d2

dx2 + V (x) has no positive eigen-
values; more generally, if limx|V (x)| = C < ∞, they show any eigenvalue λ must obey
λ ≤ C2.

On the other hand, Naboko [24] and Simon [34] have constructed V (x) decaying arbi-
trarily slower than x−1 with eigenvalues dense in [0,∞). In fact, Simon [34] constructed
V (x) with V (x) = O(x−1) so that there are infinitely many eigenvalues with λi → 0 as
long as

∑√
λi < ∞. In this section, we will handle the borderline case and improve

Eastham-Kalf [8] by showing:

Theorem 4.1. Let V (x) obey C = limx→∞ x|V (x)| < ∞. Then there are at most
countably many positive eigenvalues λn for which there are solutions un of

−u′′
n + V (x)un = λnun

and un ∈ L2. Moreover, ∑
n

λn ≤ C2

2
. (4.1)

Remarks. 1. We do not specify boundary conditions on V, that is, (4.1) is a bound on
all possible boundary conditions at once.
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2. There are λn so that (4.1)holds, but
∑√

λn = ∞ (e.g., λn = 3C2

π2n2 ) so there is
a gap between Simon’s examples and what our bounds allow. We believe the optimal
result would be to prove that

∑
n

√
λn ≤ C .

Without loss of generality by slightly increasing C and looking at [x,∞), we can
suppose that

|V (x)| ≤ C(1 + |x|)−1 (4.2)

which we henceforth do.
The following is standard (see, e.g., Eastham-Kalf [8]):

Lemma 4.2. If V is bounded and u solves −u′′ + V u = λu and u ∈ L2, then u′ ∈ L2.
In particular, R(x, θ0) ∈ L2 for that θ0 with (u(0), u′(0)) = (R0 sin(θ0), kR0 cos(θ0)).

Proof. ∫ N

0

|u′|2 dx = u′u
∣∣∣∣N
0

−
∫ N

0

u′′u dx

= u′u
∣∣∣∣
N

0

+
∫ N

0

(λ − V )u2 dx

so if limN→∞
∫ N

0
|u′|2 dx = ∞, then limN→∞ u′u = ∞, but that implies u2(N) = u(0)2+

2
∫ N

0 u′u dx → ∞, contradicting the fact that u ∈ L2. �
Lemma 4.3. Let f and g be C1 functions on [1,∞) so that

|g′f | + |f ′| ∈ L1.

Then
∫ N

0
f(x)ei(kx+g(x)) dx is bounded as N → ∞ for any k 6= 0.

Proof. Write eikx = 1
ik

d
dxeikx and integrate by parts to see that∣∣∣∣

∫ N

1

f(x)ei(kx+g(x)) dx

∣∣∣∣ ≤ |f(N)|
|k| +

|f(1)|
|k| +

1
|k|

∫ N

1

(|f ′| + |fg′|)dx.

Noting that |f(N)| = |f(1)| + ∫ N

1
|f ′(y)| dy, we see that the integral is bounded. �

Remark. If f(x) → 0 at infinity, this argument shows that limN→∞
∫ N

1
f(x)ei(kx+g(x)) dx

exists.

Lemma 4.4. Let {ei}N
i=1 be a set of unit vectors in a Hilbert space H so that

α ≡ N sup
i6=k

〈ei, ej〉 < 1. (4.3)

Then
N∑

i=1

|〈g, ei〉|2 ≤ (1 + α)‖g‖2 (4.4)
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for any g ∈ H.

Proof. Let A be the n × n matrix with aij = 〈ei, ej〉. Note that the Hilbert-Schmidt
norm of A− 1 is bounded by (

∑
i6=j〈ei, ej〉2)1/2 ≤ α so (4.3) says that A is invertible. If

B is its inverse, then
fi =

∑
Bijej (4.5)

obeys 〈fi, ej〉 = δij , and thus

∑
〈g, ei〉fj ≡ Proj of g to the span of the e’s

and so

‖g‖2 ≥
∥∥∥∥∑

〈g, ei〉fi

∥∥∥∥2

.

By (4.5), 〈fi, fj〉 = Bij and since 〈h,A−1h〉Cn ≥ ‖A‖−1〈h, h〉Cn , we see that

n∑
i=1

|〈g, ei〉|2 ≤ ‖A‖
∑
i,j

〈g, ei〉 〈fi, fj〉〈g, ej〉

≤ ‖A‖ ‖g‖2

which is (4.4). �
Proof of Theorem 4.1. It obviously suffices to show for each fixed N < ∞ that

N∑
n=1

λn ≤ C2

2
.

Define Rn(x) to be the R corresponding to the L2 solution u(x, λn). Normalize u so
Rn(0) = 1. By Lemma 4.2,

N∑
n=1

|Rn(x)|2 ∈ L1

so

limx
N∑

n=1

|Rn(x)|2 = 0

(for if not, eventually
∑N

n=1 |Rn(x)|2 ≥ Cx−1 is not L1). Thus, we can find Bj → ∞ so
that for n = 1, . . . , N ,

Rn(Bj) ≤ B
−1/2
j

or ∫ Bj

0

d

dx
(log Rn(y))dy ≤ −1

2
ln Bj
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so by (2.4), ∫ Bj

0

V (x) sin(2θn(y))dy ≤ −
√

λn log Bj . (4.6)

Now consider the Hilbert spaces

Hj = L2((0, Bj), (1 + x)dx).

In Hj , we have

‖V ‖2
Hj

≤
∫ Bj

0

C2(1 + |x|)−2(1 + x)dx = C2 log(Bj) + O(1). (4.7)

Let

e(j)
n (y) =

sin(2θn(y))
(1 + |y|)

1√
N

(j)
n

χ[0,Bj ](y),

where

N (j)
n =

∫ Bj

0

sin2(2θn(y))
(1 + |y|) dy.

Notice that 4θn(y)− 4
√

λn and 2(θn ± θm)− 2(
√

λn ±√
λm) have derivatives that are

O(x−1) by (2.3). Thus by Lemma 4.3,

∫ Bj

0

sin(2θn(y)) sin(2θm(y)) − 1
2δnm

(1 + |y|) dy

are bounded. We conclude that

N
(j)
i = 1

2 log Bj + O(1) (4.8)

〈e(j)
i , e

(j)
k 〉 = O((log Bj)−1) i 6= k. (4.9)

(4.6) and (4.8) imply that

〈V, e(j)
n 〉Hj ≤ −

√
2λn (log Bj)1/2 + O(1). (4.10)

Since the number N of eigenfunctions is fixed, but Bj → ∞ for j large, Lemma 4.4
applies and

N∑
n=1

|〈V, e(j)
n 〉Hj |2 ≤ (1 + O((log Bj)−1)‖V ‖2

Hj
. (4.11)

But (4.10) and (4.7) then say that

2
( N∑

n=1

λn

)
log(Bj) ≤ C2 log(Bj) + O(1),
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so
N∑

n=1

λn ≤ C2

2
. �

§5. Sparse Potentials: The Continuum, Absolutely Continuous Case

Our goal in this section is to prove assertion (1) in Theorem 1.6 and Theorem 1.6′.
The idea will be to control ‖T (x)‖4 and then use Theorem 1.3. As explained in Section 1,
the key is oscillations in sin(2θ(x)) for θ(x) ∼ kxn+1 for x near xn+1. We will realize
this using an integration by parts so we need a priori control on objects like d‖T (xn)‖

dk .
Fix a Pearson potential; an is assumed to obey an → 0 and xn+1 > xn + 2∆. Fix

θ0 and solve the modified Prüfer equations for each k ∈ (0,∞) to get functions θ(x, k)
and R(x, k) (with initial conditions θ(x = 0, k) = θ0, R(x = 0, k) = 1). Fix ∆ so
supp(W ) ⊂ [−∆,∆].

We need two propositions to prepare for bounds in an integration by parts:

Proposition 5.1. Suppose that limxn+1/xn > 1. For each a, b > 0, there exists a
constant C so that for each k ∈ (a, b),∣∣∣∣∂θ

∂k
(xn + ∆)

∣∣∣∣ ≤ Cxn (5.1)

and ∣∣∣∣∂2θ

∂k2
(xn + ∆)

∣∣∣∣ ≤ Cx2
n. (5.2)

Moreover, uniformly for k ∈ (a, b),

lim
x→∞

1
x

∂θ

∂k
(x) = 1 (5.3)

lim
x→∞

1
x2

∂2θ

∂k2
(x) = 0. (5.4)

Proof. Let
β = inf

n

xn+1

xn
> 1 (5.5)

by hypothesis.
As a preliminary, note that if h, g, f are functions on [a, b], h is C1 and

h′(x) = f(x) + g(x)h(x). (5.6)

Then
|h(b)| ≤ (|h(a)| + (b − a)‖f‖∞)e(b−a)‖g‖∞ (5.7)
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as follows from the exact solution of (5.6):

h(x) = h(x)e
∫ x

a
g(y) dy +

∫ x

a

f(y)e
∫ x

y
g(z) dz dy.

Now let h(x) = ∂θ
∂k (x). From (2.3),

∂h

∂x
= 1 +

V (x)
k2

sin2(θ(x)) − V (x)
k

sin(2θ(x))h. (5.8)

This means for x ∈ (xn−1 + ∆, xn − ∆), we have that

∂h

∂x
= 1. (5.9)

By (5.7) and (5.8),

|h(xn + ∆)| ≤ e2C|an|∆[|h(xn − ∆)| + 2∆ + 2C |an|∆] (5.10)

≤ e2C|an|∆[|h(xn−1 + ∆)| + (xn − xn−1) + 2C |an|∆] (5.11)

where we used (5.9) to go from (5.10) to (5.11). In these equations, C is a constant only
depending on (a, b). Throughout this proof, C is such a constant whose value can vary
from one equation to the next.

Let β > 1 be given by (5.5). Pick n0 so large that for n ≥ n0:

β−1e2|an|C∆ ≤ 1
2 (1 + β−1) (5.12)

and (
1 +

2C |an|∆
xn

)
e2anC∆ ≤ 1 +

(
1 − β−1

2

)
. (5.13)

Since β > 1 and an → 0, such an n0 exists. Next, pick D ≥ 2 so∣∣h(xn0−1 + ∆)
∣∣ ≤ Dxn0−1. (5.14)

We claim inductively that for n ≥ n0 − 1, we have that

|h(xn + ∆)| ≤ Dxn (5.15)

for by (5.14), this holds for n = n0 − 1, and if it holds for n − 1, then by (5.11) and
xn−1 ≤ β−1xn,

|h(xn + ∆)| ≤ [Dxn−1 + xn − xn−1 + 2C |an|∆]e2C|an|∆

≤ xn

[
(D − 1)β−1 + 1 +

2C |an|∆
xn

]
e2C|an|∆

≤ xn

[
(D − 1)

(
1
2

)
(1 + β−1) + 1 +

(
1 − β−1

2

)]
(by (5.12)/(5.13))

= xn

[
D − (D − 2)

(
1 − β−1

2

)]
≤ Dxn
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since D ≥ 2. Thus, we’ve proven (5.15).
Next, let H(x) = h(x) − x, so (5.8) implies that∣∣∣∣∂H

∂x

∣∣∣∣ ≤ C |an|(1 + |H|) (5.16)

on (xn −∆, xn +∆). Using (5.7) and (5.15), we conclude (recall the constant C changes
from one equation to the next!)

|H(xn + ∆) − H(xn − ∆)| ≤ C |an|xn.

Since H(xn−1 + ∆) = H(xn − ∆), we have that for n ≥ n0,∣∣∣∣H(xn + ∆)
xn + ∆

∣∣∣∣ ≤ C

xn + ∆
+

n∑
m=n0

am
xm

(xn + ∆)

≤ C

xn + ∆
+

n∑
m=n0

amβ−(n−m) → 0

as n → ∞ since β > 1 and am → 0. From this and (5.16), we see that |H(x)
x

| → 0 as
x → ∞, which proves (5.1).

To prove (5.2), let g = ∂h
∂k = ∂2θ

∂k2 . Then differentiating (5.8) with respect to k, we see
that

∂g

∂x
= 0 on (xn−1 + ∆, xn − ∆)(5.17a)

∂g

∂x
= A(x) + B(x)h(x) + D(x)g(x) + E(x)h2(x) on (xn − ∆, xn + ∆) (5.17b)

where A,B,D,E are uniformly bounded by Can on this interval with C uniformly
bounded as k runs through (a, b).

Now use (5.7) and (5.1) to see that

|g(xn + ∆)| ≤ e2Can∆[g(xn−1 + ∆) + Canx2
n∆].

As above, if n is so large that

β−2e2Can∆ ≤ 1
2 (1 + β−1) and (Can∆)e2Can∆ ≤ 1

2 (1 − β−1)

then inductively,
g(xn + ∆) ≤ Cx2

n

for n large. This is (5.2). Plugging this into (5.17b), we see that

g(xn + ∆) ≤ C

(
1 +

n∑
m=1

amx2
m

)
, (5.17c)

which yields limn→∞ g(xn + ∆)/x2
n = 0 from which (5.4) is immediate. �
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Proposition 5.2. For any a, b > 0, there is a C so that for all k ∈ (a, b),

logR(xn + ∆) ≤ C
n∑

m=1

|am| (5.18)

∂ log R

∂k
(xn + ∆) ≤ C

n∑
m=1

|amxm|. (5.19)

Proof. By (2.4), logR(x) is constant for x ∈ (xn−1 + ∆, xn − ∆) and

| log R(xn + ∆) − log R(xn − ∆)| ≤ 2k−1|an|
∫

W (y)dy,

so (5.18) holds with C = 2min(k)−1
∫

W (y)dy.
¿From (2.4), we have

∂

∂x

∂

∂k
(k logR) = V (x) cos(2θ(x))

∂θ

∂k

so that the bound (5.1) implies (5.9). �
As a final preliminary, we note that

Lemma 5.3. Suppose that lim xn+1/xn > 1. Then for a constant C,

∞∑
n=1

∑
m≤n

|anam| xm

xn
≤ C

∞∑
n=1

a2
n.

Proof. Let β = lim xn+1/xn. Pick 1 < γ < β. Then for m ≤ n, xm/xn ≤ Cγ−|m−n|.
Thus, the lemma follows from Young’s inequality that

T (a)n ≡
∑
m

γ−|m−n|am

is bounded from `2 to `2 for any γ > 1. �
Proof of Theorem 1.6′. Let g be a non-negative C∞-function compactly supported on
(0,∞). We will prove that

sup
n

∫
g(k)R(k, xn + ∆)4 dk < ∞. (5.20)

Proving this for two values of θ0 and appealing to Theorem 2.1 gets a uniform bound
on

∫
g(k)‖T (0, xn + ∆)‖4 dk. Theorem 1.3 then proves pure absolute continuity of the

spectrum on (0,∞).



MODIFIED PRÜFER AND EFGP TRANSFORMS 23

Let Bn =
∫

g(k)R(xn + ∆)4 dk. Notice that by (2.4), R(xn−1 + ∆) = R(xn −∆) and

R(xn + ∆)4 = R(xn − ∆)4 exp(Qn), (5.21)

where

Qn =
2
k

∫ ∆

−∆

anW (y) sin(2θ(xn + y))dy.

Since k−1 and an are bounded, Qn is uniformly bounded in n, and so

exp(Qn) ≤ 1 + Qn + CQ2
n

≤ 1 + Qn + Ca2
n

(5.22)

(where again C is a constant that varies from formula to formula).
For y ∈ (−∆,∆), we have by (2.3)

|θ(xn + y) − θ̃n(y)| ≤ Can

where
θ̃n(y) = θ(xn−1 + ∆) + k(xn + y − xn−1 − ∆),

so ∣∣∣∣Qn − 2
k

∫ ∆

−∆

anW (y) sin(2θ̃n(y))dy

∣∣∣∣ ≤ Ca2
n. (5.23)

By (5.21)–(5.23),
Bn ≤ Bn−1(1 + Ca2

n) + En (5.24)

where

En = an

∫ ∆

−∆

dy

∫
2g(k)

k
R(xn−1 + ∆, k)4W (y) sin(θ̃n(y))dk.

Notice that we’re implementing our basic strategy: We separate out the second-order
terms (which will present no problem since

∏∞
n=1(1 + Ca2

n) < ∞) and need to control
the first-order terms where we have an explicit highly oscillatory factor since θn ∼ kxn.

Now
∂θ̃n

∂k
(y) = xn + y − xn−1 − ∆ +

∂θ(xn−1 + ∆)
∂k

>
1
2

xn (5.25)

for n large by the bound (5.3).
Thus, we can write

sin(θ̃n(y)) =
1

∂θ̃n

∂k

∂

∂k
(− cos(θ̃n(y)))

and integrate by parts.
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After integration by parts, we have three terms

E(1)
n coming from

∂[k−1g(k)]
∂k

E(2)
n coming from

∂R4

∂k

E(3)
n coming from

∂

∂k

(
1
∂θ̃
∂k

)
.

For the E
(1)
n term, we can bound R4 as follows using (5.18) and

xn ≥ Cβn. (5.26)

By (5.10), for n large,

R4 ≤ C exp
(

C

n∑
m=1

am

)

≤ C exp
(

n

2
ln(β)

)

since an → 0. Thus, by (5.19) and (5.26),

E(1)
n ≤ Cβn/2β−n = Cβ−n/2. (5.27)

For the E
(2)
n term, we use ∂R4

∂k = R4 ∂ log R
∂k , (5.19), and (5.25) to see that

E(2)
n ≤ CBn−1bn

where

bn =
n−1∑
m=1

anam
xm

xn
.

Note now that by
∑

a2
n < ∞ and Lemma 5.3, we have

∞∑
n=1

bn < ∞. (5.28)

For the E
(3)
n term, we use (5.25) and (5.17c) to see that

E(3)
n ≤ Bn−1cn
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where

cn = Can
(1 +

∑n−1
m=1 amx2

m)
x2

n

.

As in the proof of Lemma 5.3, ∑
cn < ∞. (5.29)

By (5.24) and the above estimates on E
(i)
n ,

max(Bn, 1) ≤ (1 + Ca2
n + Cbn + Ccn + Cβ−n/2)max(Bn−1, 1). (5.30)

By hypothesis,
∑

a2
n < ∞, and by (5.28–5.29),

∑
bn + cn < ∞. Thus

N∏
n=1

(1 + Ca2
n + Cbn + Ccn + Cβ−n/2)

is bounded and consequently, so is Bn. �
It is easy to see that the methods of this section extend to prove:

Theorem 5.4. Suppose V (x) =
∑

Wn(x − xn) where

(i) limxn/xn+1 < 1
(ii) suppWn ⊂ [−∆,∆] for some fixed ∆
(iii)

∑
n

∫ |Wn(y)|2 dy < ∞.

Then − d2

dx2 + V (x) has purely a.c. spectrum on (0,∞).

§6. Sparse Potentials: The Continuum, Singular Continuous Case

In this section, we will prove assertion (2) in Theorem 1.6. The idea will be to force
‖T (k2, xn)‖ to infinity for almost all k and suitable xn. To do this, we will need to
isolate a strictly positive second-order term and show that these second-order terms then
dominate the first-order terms because of oscillations.

Here is a warm-up problem to show this cancellation mechanism. Let Xn be indepen-
dent, identically distributed random variables taking the values ±1 with probability 1

2 .
Let ε > 0 and let an be a sequence going to zero as n → ∞. Finally, let

Yn =
n∑

m=1

(εa2
m + amXm).

Suppose that
∑

a2
n = ∞. We claim there exists a subsequence n(i) → ∞, so with

probability 1,
lim

i→∞
Yn(i) = ∞. (6.1)
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The reason (6.1) holds is that by the central limit theorem
∑n

m=1 anXn is typically
not more negative than O

( − √∑
a2

n

)
and, because of the square root, this is smaller

than ε
∑n

m=1 a2
n.

To make a proof, notice that since
∑n

m=1 a2
m → ∞, we can choose n(i) so that∑n(i)

m=1 a2
m ≥ i2. By a Tschbechev inequality,

Prob
( n(i)∑

1

amXm ≥ ε

2

n(i)∑
1

a2
m

)
≤ ‖∑n(i)

1 amXm‖2

( ε
2

∑n(i)
1 a2

m)2
=

4
ε2

1∑n(i)
1 a2

m

≤ 4
ε2i2

.

∑
1
i2 < ∞, so by the Borel-Cantelli lemma, with probability 1, eventually

n(i)∑
1

amXm ≤ ε

2

n(i)∑
1

a2
n

and thus eventually,

Yn(i) ≥ ε

2

n(i)∑
1

a2
m

diverges.
The usual Kolmogorov stopping argument that lets one prove things without subse-

quences isn’t obviously applicable here in a situation where we assume no regularity on
the am’s (see Section 8 for the case am = m−α). Since a subsequence suffices for our
application, we have not tried to push the argument through to get limYn = ∞, even in
the toy problem.

Notice that independence of the Xn’s was not needed; rather, it suffices to have enough
control of E(XnXm) to show that the first-order term is small compared to the second-
order term. In the case at hand, we will use integration by parts in k as we did in the
last section to get this control.

We summarize the key to the above argument with

Lemma 6.1. Let Pn, Qn be random variables so that
(i) Pn(x) ≥ αn > 0 for a.e. x and positive reals αn

(ii)
∑

α−1
n Exp(|Qn|) < ∞

(iii) limn→∞ αn = ∞.
Then Pn(x) + Qn(x) → ∞ for a.e. x. If (ii) is replaced with

(ii′) limn→∞ α−1
n Exp(|Qn|) = 0,

then there exists a subsequence n(i) so that Pn(i)(x) + Qn(i)(x) → ∞ for a.e. x.

Proof. If (ii′) holds, we can find a subsequence so that (ii) holds. Thus, it suffices to
prove the result assuming (ii).

By (ii),
∑

α−1
n |Qn(x)| < ∞ for a.e. x. In particular, α−1

n Qn(x) → 0 so Pn + Qn ≥
αn[1 − α−1

n |Qn(x)|] → ∞. �
We will also need the following lemma:
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Lemma 6.2. Suppose that Bn, αn, βn ≥ 0 are real numbers and that

Bn ≤ Bn−1 + 2αn

√
Bn−1 + βn (n ≥ 1). (6.2)

Then, √
Bn ≤

√
B0 +

n∑
k=1

αk +

√√√√ n∑
k=1

βk . (6.3)

Proof. We give a proof by induction. (6.2) holds for n = 0. Let an =
∑n

k=1 αk, bn =∑n
k=1 βk. By the induction hypothesis,√

Bn−1 ≤
√

B0 + an−1 +
√

bn−1 . (6.4)

(6.2) implies that

Bn ≤
(√

Bn−1 + αn

)2

+ βn.

So by (6.4),

Bn ≤
(√

B0 + an +
√

bn−1

)2

+ βn

≤
(√

B0 + an

)2

+ bn + 2
√

bn−1

(√
B0 + an

)
≤

(√
B0 + an +

√
bn

)2

proving (6.3) inductively. �
So fix a Pearson potential with

∑
a2

n = ∞. Fix θ0 and let R(x, k) be the solution of
(2.3/2.4). Let

Yn(k) = log R(xn + ∆, k)

and
δYn(k) = Yn(k) − Yn−1(k).

By (2.4),

δYn(k) =
an

2k

∫ ∆

−∆

W (y) sin 2θ(xn + y)dy. (6.5)

As in Section 5, we write

θ̃n(y) = θ(xn−1 + ∆) + k(xn + y − xn−1 − ∆).

But we expand θ to the next order by letting

θ(1)
n (y) = −an

k

∫ y

−∆

W (y) sin2(θ̃n(y))dy. (6.6)
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Then by (2.3),
θ(xn + y) = θ̃n(y) + θ(1)

n (y) + O(a2
n),

so by (6.5),

δYn(k) = anX(1)
n + a2

nSn + O(a3
n) (6.7a)

X(1)
n =

1
2k

∫ ∆

−∆

W (y) sin(2θ̃n(y))dy (6.7b)

Sn =
1
k

∫ ∆

−∆

W (y) cos(2θ̃n(y))
[

θ
(1)
n (y)
an

]
. (6.7c)

In the formula for θ
(1)
n , use

sin2(θ̃n(y)) = 1
2
(1 − cos(2θ̃n(y))).

The cos term from this formula when plugged into (6.7c) gives

1
2

k2

∫ ∆

−∆

W (y) cos(2θ̃n(y))
( ∫ y

−∆

W (s) cos(2θ̃n(s))
)

dy

=
1

4k2

( ∫ ∆

−∆

W (y) cos(2θ̃n(y))dy

)2

(6.8)

We lump the contribution of the 1
2 term with the first-order term. Defining X(y) =∫ y

−∆
W (s)ds, we find

δYn(k) = [a2
nZn(k) + anXn(k)] + O(a3

n), (6.9)

where

Zn(k) =
1

4k2

( ∫ ∆

−∆

W (y) cos(2θ̃n(y))dy

)2

Xn(k) =
1
2k

∫ ∆

−∆

[
W (y) sin(2θ̃n(y)) − anW (y)X(y)

2k
cos(2θ̃n(y))

]
dy.

In (6.9), the O(a3
n) means an error bounded by Ca3

n where C is a finite constant for
k ∈ [a, b] any compact subinterval of (0,∞).

Define

W̃ (k) =
∫ ∆

−∆

W (y)e2iky dy.

Then,

Zn(k) =
1

8k2
|W̃ (k)|2 + X̃n(k), (6.10)
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where
X̃n(k) =

1
8k2

|W̃ (k)|2 cos(4(θ̃n(0, k) + ϕ(k)), (6.11)

where ϕ(k) = 1
2Arg(W̃ (k)).

For let θ̃n(y) = θ̃n(0) + ky. If W̃ (k) = |W̃ (k)|e2iϕ(k), then

Zn(k) =
1

4k2

(
Re

∫ ∆

−∆

W (y)e2i(θ̃n(0)+ky) dy

)2

=
1

4k2
|W̃ (k)|2 cos2(2(θ̃n(0, k) + ϕ(k))).

Proof of Theorem 1.6, Part (2). Let

Pn(k) =
1

8k2
|W̃ (k)|2

n∑
m=1

a2
m

Qn(k) = Yn(k) − Pn(k); δQn(k) = Qn(k) − Qn−1(k),

so
δQn(k) = a2

nX̃n(k) + anXn(k) + O(a3
n).

Let g be a C∞-function compactly supported in {k ∈ (0,∞) | W̃ (k) 6= 0}. Let

Bn =
∫

g(k)
∣∣∣∣

n∑
m=1

amXm(k)
∣∣∣∣
2

dk

B̃n =
∫

g(k)
∣∣∣∣

n∑
m=1

a2
mX̃m(k)

∣∣∣∣2 dk.

We will prove that √
Bn

/ n∑
m=1

a2
m → 0 (6.12)

as n → ∞, and similarly for B̃n. Since
∑n

m=1 a3
m/

∑n
m=1 a2

m → 0 (on account of an → 0
and

∑n
m=1 a2

m → ∞), (6.12) and the Schwartz inequality imply that

∫
g(k)|Qn(k)| dk

/ n∑
m=1

a2
m → 0

so by Lemma 6.1 and infk∈supp g
|W̃(k)|

8k2 > 0 implies that there is a subsequence n(i) so
that Yn(i)(k) → ∞ for a.e. k in supp g. By doing this for two values of θ0 and using
Theorem 2.1 and Theorem 1.1, we conclude there is no a.c. spectrum on supp g.
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Since W̃ is an entire function, it has isolated zeros and thus, this argument shows σac

is empty. By Theorem 1.4, σpp ∩ (0,∞) is empty, and an elementary argument proves
that σ(H) ⊃ [0,∞). So the spectrum on (0,∞) is purely singular continuous. It thus
suffices to prove (6.12) (the proof for B̃n is essentially identical).

Let Mn−1(k) =
∑n−1

m=1 amXm(k). Then

Bn ≤ Bn−1 +
∣∣∣∣
∫

g(k)Mn−1(k)anXn(k)
∣∣∣∣ + Ca2

n

for a suitable constant C . Now Xn has cos(2θ̃n(y)) and sin(2θ̃n(y)) terms. As in the last
section, we write those as a suitable [dθ̃n(y, k)/dk]−1 d

dk [. . . ] and integrate by parts and
get three terms:

One coming from ∂[k−1g(k)]
∂k ∂k. Noting that |Mn(k)| ≤ Cn, we have that this is

bounded by Cn
xn

.

One coming from ∂Mn(k)
∂k . Using (5.1), this term is bounded by

C
n−1∑
m=1

anam
xm

xn
.

One coming from Ln = [∂2θn

∂k2 ]/[∂θn

∂k
]2. As in the last section, this Ln is bounded by

C(
∑n−1

m=1 amx2
m)/x2

n. We can use the Schwartz inequality to control
∫

g(k)|Mn(k)| dk,
and so bound this term by C

√
Bn−1 an

∑n−1
m=1 amx2

m/x2
n. The net result is the bound

Bn ≤ Bn−1 + 2αn

√
Bn−1 + βn, (6.13)

where

αn = C
n−1∑
m=1

|anam| x2
m

x2
n

and

βn = C

[
a2

n +
n

xn
+

n−1∑
m=1

anam
xm

xn

]
.

By the argument in Lemma 5.3 with xn−1/xn → 0 and
∑∞

m=1 a2
n → ∞, we see that

n∑
m=1

αm

/ n∑
m=1

a2
m → 0 (6.14)

and that
n∑

m=1

βm ≤ C

(
1 +

n∑
m=1

a2
m

)
,
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so √√√√ n∑
m=1

βm

/ n∑
m=1

a2
m → 0. (6.15)

Lemma 6.2 and (6.13–6.15) imply (6.12). �

One can modify this construction to make examples of decaying potentials for which
the associated Schrödinger operator has regions of a.c. spectrum and regions of s.c. spec-
trum. The idea is to arrange that W̃ (k) vanishes in a whole interval so that even though
an /∈ `2, we have a.c. spectrum for those k. Of course, W̃ (k) cannot vanish if W has com-
pact support, so we will take the bump functions of increasing support converging toward
a function whose Fourier transform vanishes in an interval. So, let S = [a, b] ⊂ (0,∞).
Let f be an even Schwartz class function that vanishes if k2 ∈ S and is strictly positive
on [0,∞)\S.

Let an = n−1/2, xn = (n!)2, ∆n = n−1/12. Notice that
∑

a2
n = ∞. Define

f̃(x) =
1
4π

∫
exp(−2ikx)f(k)dk

Wn(x) = f̃(x)χ(−∆n,∆n)(x)

and
V (x) =

∑
n

anWn(x − xn).

We are heading toward:

Theorem 6.3. The half-axis Schrödinger operator − d2

dx2 + V (x) has purely singular
spectrum on (0,∞)\S and purely a.c. spectrum on S.

Lemma 6.4. For any m > 0, there exists a constant Cm with

∣∣∣∣f(k) −
∫

e2ikxWn(x)dx

∣∣∣∣ ≤ Cmn−m. (6.16)

Proof. Let fn(k) =
∫

e−2ikxWn(x)dx. Then

fn(k) =
1
2π

∫
sin(∆n(k − k′))

(k − k′)
f(k′)dk′

so the left side of (6.16) is

1
2π

∣∣∣∣
∫

sin∆n(k − k′)
k − k′ [f(k) − f(k′)] dk′

∣∣∣∣,
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which has the form ∣∣∣∣
∫

g(y, k) sin ∆ny dy

∣∣∣∣,
where g(y, k) is Schwartz space in y with bounds (including bounds on derivatives) uni-
form in k. If we integrate by parts 12m times, we will get (6.16). �

Proposition 5.1 extends with no change. In the region where f(k) 6= 0, the analysis
earlier in this section shows that log R(xn(i) + ∆n(i)) → ∞ for a.e. k and a suitable
subsequence xn(i), so we know the spectrum in (0,∞)\S is purely singular continuous.

On the other hand, if g is C∞ supported in S, we claim that

sup
n

∫
g(k)R(k, xn + ∆n)4 dk < ∞. (6.17)

The proof is similar to that in the last section. In place of (5.22), we need to use

exp(Qn) ≤ 1 + Qn + 1
2 Q2

n + O(a3
n).

As in this section, Q2
n has a term a2

n|W̃n(k)|2/8k2 and oscillatory terms that we can
integrate by parts. Noting that

n−1∑
m=1

anam
xm

xn
≤ n−2n−1/2

n−1∑
m=1

m−1/2 ≤ Cn−2

is still summable and that
∑

a2
n|W̃n(k)|2 is summable by Lemma 6.4, we obtain (6.17). �

§7. Sparse Potentials: The Discrete Case

In this section, we will sketch the proof of Theorem 1.7. The proof follows closely that
in the last two sections with (2.12) replacing (2.3/2.4). We will make use of (2.14), the
Pastur-Figotin form of (2.12b).

Fix α > 0 and pick k ∈ (α, π −α) and then N so large that for all such k, |νk(n)| < 1
2

for n ≥ N0. (2.14) can then be effectively used to prove the analogs of (5.1/5.2), that is,∣∣∣∣∂θ

∂k
(xn)

∣∣∣∣ ≤ Cxn

∣∣∣∣∂2θ

∂k2
(xn)

∣∣∣∣ ≤ Cx2
n. (7.1)

(2.12c) can be rewritten

log R(n + 1) − log R(n) = 1
2 log(1 + νk(n) sin(2θ̄) + νk(n)2 sin2(θ̄)). (7.2)

This implies the bound

log R(xn) ≤ C

n∑
m=1

|am|. (7.3)
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Next notice that

1 + α sin(2θ) + α2 sin2(θ) = (1 + 1
2 α sin(2θ))2 + α2 sin4(θ).

This provides a uniform bound on the argument of the log(·) in (7.2), and so allows one
to prove ∣∣∣∣ ∂

∂k
logR(xn)

∣∣∣∣ ≤ C

n∑
m=1

anxm. (7.4)

With these tools, the proof of assertion (1) of Theorem 1.6 is similar to that in Sec-
tion 5, only a little simpler since (2.12c) implies

R(n + 1)4 ≤ R(n)4(1 + νk(n) sin(2θ̄(n)) + Cna2
n).

The same integration by parts used in Sections 5 and 6 shows that∫
g(k)R(n, k)4νk(n) sin(2θ(n))dk = C(bn + cn + B−n/2)

(
1 +

∫
g(k)R(n, k)4 dk

)

with bn =
∑n−1

m−1 anam xm/xn and cn is like bn with x2
m/x2

n replacing xm/xn. As in
Section 5, this proves assertion (1) in Theorem 1.7.

To prove assertion (2), we must identify a strictly positive second-order term. We
write

log(1 + α sin(2θ) + α2 sin2(θ)) = α sin(2θ) + α2(sin2(θ) − 1
2

sin2(2θ)) + O(α3) (7.5)

= α sin(2θ) + 1
4 α2 cos(4θ) − 1

2 α2 cos(2θ) + 1
4 α2 + O(α3).

(7.6)

This lets us write
log R(n + 1) − log R(n) = 1

2 a2
n + anXn

and, as in Section 6, use the integration by parts machine to prove(∫ ( N∑
n=1

anXn

)2

g(k)dk

)1/2/ ∑
a2

n → 0

and complete the proof as there.
In this case, we don’t need to worry about zeros of W̃ (k) since the analog of W here

is δn0 and so W̃ (k) = 1.

§8. Random Decaying Potentials: The Discrete Case

In this section, we consider discrete situations where the V (n) are independent random
variables of zero mean and decaying variance. The results that imply a.c. spectrum
require no regularity in E(V (n)2), while those for singular spectrum require some kind
of regular decay, as we will explain.

The results for a.c. spectrum are so general yet so simple to prove that they are a
paradigm of the usefulness of the EFGP transform.
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Theorem 8.1. Suppose Vω(n) are independent random variables with E(Vω(n)) = 0 and

∑
n

E(Vω(n)2) + E(Vω(n)4) < ∞. (8.1)

Then for a.e. ω, hω has purely a.c. spectrum on (−2, 2).

Remarks. 1. For E(V 2
ω )1/2 ≤ Cn−α with V bounded and α > 1

2 , we get a.c. spectrum
recovering results of Delyon, et al. [7].

2. If the Vω(n) are uniformly bounded, then E(Vω(n)4) ≤ CE(Vω(n)2) and so (8.1)
becomes

∑
n E(Vω(n)2) < ∞; we state the general bound because unbounded V ’s are so

easy to accommodate.
3. The case E(Vω(n)2)1/2 = n−1/2 log(n)−1 is of some interest. This sequence is `2 so

if V is bounded, the theorem proves a.c. spectrum. Kotani-Ushiroya [21] cannot handle
such borderline cases.

Proof. Fix θ0. Then Rω(n) and θω(n) become random variables which are measurable
functions of {Vω(j)}j≤n−1 and so independent of {Vω(j)}j≥n.

By (2.12c),

R(n + 1)4 = R(n)4
(

1 +
Vω(n)
sink

sin(2θ̄ω(n)) + O(V 2
ω + V 4

ω )
)

.

Since Vω(n) is independent of θ̄(n) and R(n), we have

E(Rω(n)4Vω(n) sin(2θω(n) )) = E(Vω(n))E(R4
ω(n) sin(2θ̄ω(n))) = 0.

Using independence to bound E(R(n)4V j
ω ) by E(R(n)4)E(V j

ω ), we see that

E(Rω(n + 1)4) ≤ [1 + CE(V 2
ω (n) + V 4

ω (n))]E(R4
ω(n)),

where C is uniformly bounded for k in any (α, π − α) with α > 0. It follows that

E

( ∫ π−α

α

Rω(n, k)4 dk

)
< ∞.

By Fatou’s lemma, for a.e. ω,

lim
∫ π−α

α

Rω(n, k)4 dk < ∞,

and by Theorem 1.3, the spectrum is purely a.c. on (−2 cos(α), 2 cos(α)). �
For the case where

∑∞
n=1 E(V (n)2) = ∞, we need some regularity of the fall-off.

Rather than try to find complicated general conditions, we consider the case where
E(V (n)2) ∼ n−2α with α ≤ 1

2 . The same method can handle a case like E(V (n)2) =
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[n log(n + 1)]−1 (which always has singular continuous spectrum of Hausdorff dimension
1) by the kind of arguments we will discuss in the case α = 1

2 ; in this case for typical
energies ‖T (0, n)‖ grows like log(n).

Explicitly, we suppose

(i) E(Vω(n)2)1/2 = λn−α 0 < α ≤ 1
2 ; λ > 0

(ii) E(Vω(n)) = 0
(iii) For some ε > 0, supω |Vω(n)| ≤ Cn−(2α/3)−ε

(iv) Vω(n) is independent of {Vω(j)}n−1
j=1 .

Remarks. 1. Think of the case discussed in [26, 7] where Vω(n) = n−αXn(ω) with Xn

identically distributed bounded, independent random variables. If E(X) = 0 and X is
bounded, then (i)–(iv) hold.

2. With some extra effort, we could allow unbounded distributions, and only require
that limn→∞ n+αE(Vω(n)2)1/2 exists and be non-zero.

Theorem 8.2. Suppose (i)–(iv) hold. Fix k in (0, π) with k 6= π
4 , 2π

4
3π
4 . Then for a.e. ω,

lim
n→∞

log ‖T2 cos(k)(n, 0)‖
(
∑n

j=1 j−2α)
=

λ2

8 sin2(k)
.

Remark. In case α < 1
2 , this says ‖T (n, 0)‖ ∼ exp(Cn1−α) with C = λ2

8(1−2α) sin2(k)
. If

α = 1
2 , this says ‖T‖ ∼ nC with C = λ2

8 sin2(k)
.

Proof. By Theorem 2.3, we need only prove this result with R(n) replacing T for each
θ0. So fix k and θ0, and let θω(n), Rω(n) solve (2.12). By (2.12c),

log R(n + 1) − log R(n) = 1
2 log(1 + νk(n) sin(2θ̄(n)) + νk(n)2 sin2(θ̄(n))). (8.2)

Since supω νk(n) → 0 as n → ∞, we can use

log(1 + x) = x − x2

2
+ O(x3). (8.3)

We also use
sin2 θ − 1

2 sin2(2θ) = 1
4 − 1

2 cos(2θ) + 1
4 cos(4θ).

The net result is

log R(n) =
1
8

n∑
j=1

E(Vω(n)2)
sin2(k)

+ C1 + C2 + C3 + C4
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where the corrections have the form

C1 = − 1
2 sin(k)

n∑
j=1

Vω(j) sin(2θ̄ω(j))

C2 =
1

2 sin2(k)

n∑
j=1

[Vω(j)2 − E(Vω(j)2)]
[
sin2(θ̄ω(j)) − 1

2
sin2(2θ̄ω(j))

]

C3 =
1

2 sin2(k)

n∑
j=1

E(Vω(j)2)
[
1
2

cos(2θ̄ω(j)) − 1
4

cos(4θ̄ω(j))
]

C4 =
n∑

j=1

O(Vω(j)3 + Vω(j)4).

The theorem follows if we prove that for each q = 1, 2, 3, 4 and a.e. ω,

lim
n→∞

|Cq(ω)|∑n
j=1 j−2α

= 0. (8.4)

(8.4) for q = 4 is an immediate consequence of hypothesis (iii).
C1, C2 clearly have zero expectation values and variances that decay properly for us

to hope (8.4) holds; the key to the proof will be a Martingale inequality. C3 will depend
on the fact that cos(θ) has zero average and the slow variation of E(Vω(n)2).

We break the proof to present some needed lemmas. For the first two of these lemmas,
let X0,X1, . . . ,XN be independent random variables where X0 can be vector valued.
Suppose that for j = 1, . . . , N ,

Zj = Xjfj(X1, . . . ,Xj−1 ;X0) (8.5)

with fj a measurable function, and that

E(Xj) = 0. (8.6)

The following is a variant of a standard Martingale inequality; we provide a proof for the
reader’s convenience:

Lemma 8.3.

E

(
sup

n=1,2,...,N
|Z1 + · · · + Zn| ≥ r

)
≤ 1

r2
E

( N∑
j=1

Z2
j

)
(8.7)

Proof. Define

Yn =
n∑

j=1

Zj , Qn =
N∑

j=n+1

Zj
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and let
Aj = {ω | |Y1| ≤ r, |Y2| ≤ r, . . . , |Yj | > r}.

Then χn, the characteristic function of An, is a function only of X0,X1, . . . ,Xn and thus,
if k > n,

E(ZkYnχAn) = E(Xk)E(fk(X1, . . . ,Xk−1,X0)YnχAn) = 0.

Thus,
E(χnY 2

n ) ≤ E(χn(Yn + Qn)2)

since the cross term has zero expectation when we expand the square. Thus,

r2
n∑

j=1

E(χj) ≤
N∑

j=1

E(χjY
2
j ) ≤

N∑
j=1

E(χjY
2
N ) ≤ E(Y 2

N )

which is (8.7). �

Lemma 8.4. Suppose E(Z2
n) ≤ Cn−2α. Then for a.e. ω:

(1) If α < 1
2

and β > 1
2
(1 − 2α), then

lim
n→∞

∣∣∣∣
n∑

j=1

Zj

∣∣∣∣n−β = 0.

(2) If α = 1
2 and β > 1

2 , then

lim
n→∞

∣∣∣∣
n∑

j=1

Zj

∣∣∣∣(log n)−β = 0.

(3) If α > 1
2 ,

lim
n→∞

n∑
j=1

Zj = Y∞

exists, and for any β < α − 1
2 ,

lim
n→∞n+β

∣∣∣∣
∞∑

j=n

Zj

∣∣∣∣ = 0.

Remark. Naively, fluctuations should behave as (
∑n

j=1 j−2α)1/2. This lemma shows they
are not much worse. Since we only need that they are small compared to

∑n
j=1 j−2α,

the lemma suffices.
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Proof. (1) Pick β1 so β > β1 ≥ 1
2
(1 − 2α). By Lemma 8.3,

E

(
sup

j=1,...,2n−1

∣∣∣∣
2n−1+j∑

k=2n−1+1

Zk

∣∣∣∣ ≥ 2nβ1

)
≤ C 2−2nβ12(n−1)2−2(n−1)α

≤ C 2−(n−1)(2α+2β1−1)

(8.8)

is summable in n by the choice of β1. Therefore, by the Borel-Cantelli lemma, for a.e. ω,
there is an n0(ω0) so that the sup inside (8.8) is less than 2nβ1 if n ≥ n0. Let j be larger
than 2n0−1 and pick n so that 2n−1 + 1 ≤ j ≤ 2n. Then

|Z1 + · · · + Zj | ≤ |Z1 + · · · + Z2n0 | +
n∑

k=1

2kβ1

≤ |Z1 + · · · + Z2n0 | + 2nβ1

2β1 − 1

≤ |Z1 + · · · + Z2n0 | + 2β1

2β1 − 1
jβ1.

Thus, lim j−β1|Z1 + · · · + Zj | < ∞. Since β > β1, the limit for β is 0.
(2) Pick β1 with β > β1 > 1

2 and define

Kn =
{

ω

∣∣∣∣ sup
j=1,...,2n

∣∣∣∣
j∑

m=1

Zj

∣∣∣∣ ≥ nβ1

}
.

Then by Lemma 8.3,

E(Kn) ≤ n−2β1

2n∑
1

1
j
≤ n−2β1(1 + n log 2) ≤ Cn1−2β1

since
∑k

1
1
j ≤ 1 + log k.

Pick an integer m so m(2β1 − 1) > 1. Then

∞∑
n=1

E(Knm) < ∞.

So by the Borel-Cantelli lemma, for a.e. ω, there is n0(ω) so if n ≥ n0, then ω /∈ Knm . If
j > 2nm

0 , pick n so that
2(n−1)m

< j ≤ 2nm

.

Then

|Z1 + · · · + Zj | ≤ (nm)β1 ≤ 2mβ1(n − 1)mβ1 ≤ 2mβ1(log 2)−β1(log j)β1 .



MODIFIED PRÜFER AND EFGP TRANSFORMS 39

(3) Pick β1 so β < β1 < α − 1
2
. Then

E

(
sup

j=1,...,2n−1

∣∣∣∣
2n−1+j∑

k=2n−1+1

Zk

∣∣∣∣ ≥ 2−nβ1

)
≤ C 2−2nβ12n−12−2(n−1)α

≤ C 22β12−2(n−1)[α−1/2−β1]

is summable. Thus, for a.e. ω, there is an n0(ω) so that for n ≥ n0(ω), the sup is bounded
by 2−nβ1. Thus, if j1 ≥ j2 ≥ 2n2−1 ≥ 2n0−1,

∣∣∣∣
j2∑

k=j1

Zk

∣∣∣∣ ≤
∞∑

n=n2

2−nβ1 → 0

as n2 → ∞. So the sum is convergent (i.e., the partial sums are Cauchy). Moreover, if
j ≥ 2n0−1 and n is picked so 2n−1 ≤ j ≤ 2n, then

∣∣∣∣
∞∑

k=j

Zk

∣∣∣∣ ≤
∞∑

m=n

2−mβ1 =
2−nβ1

1 − 2−β1
≤ j−β1

1 − 2−β1

and thus, if we multiply by jβ, the limit is 0. �

Lemma 8.5. Suppose that k ∈ R is not in Zπ. Then there exist integers q` → ∞ so
that for any θ0, . . . , θq` ,

∣∣∣∣
q`∑

j=1

cos(θj)
∣∣∣∣ ≤ 1 +

q`∑
j=1

|θj − θ0 − kj|.

Remark. In essence, we show |∑q
j=1 cos(θ0 + kj)| ≤ 1 a stronger result than the ergodic

theory result that | 1
q

∑q
j=1 cos(θ0 + kj)| → 0. The weaker ergodic theory result suffices

for our application, but the proof of this lemma is easy so we give it.

Proof. By general number theory considerations [14], we can find p`, q` so that

∣∣∣∣k − πp`

q`

∣∣∣∣ ≤ 1
q2
`

(8.8)

and p`/q` /∈ Z if k /∈ Zπ. For any p/q /∈ Z and any θ0,

q∑
j=1

cos
(

θ0 +
jpπ

q

)
= 0. (8.9)
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Thus

∣∣∣∣
q`∑

j=1

cos(θj)
∣∣∣∣ =

∣∣∣∣
q`∑

j=1

cos(θj) − cos
(

θ0 +
jp`π

q`

)∣∣∣∣ ≤
q`∑

j=1

∣∣∣∣
(

θj − θ0 − jp`π

q`

)∣∣∣∣
≤

q`∑
j=1

|θj − θ0 − kj|+
q`∑

j=1

j

∣∣∣∣k − πp`

q`

∣∣∣∣
≤ q`(q` + 1)

2q2
`

+
q`∑

j=1

|θj − θ0 − kj|. �

Conclusion of the Proof of Theorem 8.2. We need to verify (8.4) for q = 1, 2, 3. Vω(n)
sin(2θ̄ω(n)) ≡ Zn has the form (8.5) and E(Z2

n) ≤ Cn−2α, so by Lemma 8.4, for a.e. ω,

|C1(ω)| = o

( n∑
j=1

j−2α

)
.

[Vω(n)2−E(Vω(n)2)][sin2(θ̄)− 1
2 sin2(2θ)] also has the form of (8.4) since E(V 2

ω−E(V 2
ω )) =

0. Since V is bounded,
E((V 2 − E(V 2))2) ≤ CE(V 2).

Thus, for a.e. ω,

|C2(ω)| = o

( n∑
j=1

j−2α

)

also.
Finally, we will show

n∑
j=1

j−2α cos(4θ̄ω(j)) = o

( n∑
j=1

j−2α

)
,

which proves (8.4) for q = 3. By hypothesis on k, 4k /∈ Zπ so Lemma 8.5 applies. Let q`

be as in that lemma. Note next that by hypothesis (iii) and Proposition 2.4 for j large,

|θω(j + 1) − θω(j) − k| ≤ C0j
−2α/3. (8.10)

Pick n0 so
n0 ≥ q2

` (8.11)

and
4C0n

−2α/3
0 ≤ q−2

` . (8.12)
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Suppose N = n0 + Kq`. Then

∣∣∣∣
N∑

j=n0+1

j−2α cos(4θω(j))
∣∣∣∣ =

∣∣∣∣
K∑

m=0

q∑̀
j=1

(n0 + mq` + j)−2α cos(4θω(mq` + j))
∣∣∣∣ = A1 + A2

where A1 is what we get by replacing (n0 + kq` + j)−2α by (n0 + kq`)−2α and A2 is the
difference. By Lemma 8.5, (8.10), and (8.12),

A1 ≤
K∑

k=0

(n0 + kq`)−2α[1 + 1]

while using

|(n0 + kq` + j)−2α − (n0 + kq`)−2α| ≤ (n0 + kq`)−2αjn−1
0

and (8.11),

A2 ≤
K∑

k=0

(n0 + kq`)−2αq2
` n−1

0 ≤
K∑

k=0

(n0 + kq`)−2α.

Thus for any N , ∣∣∣∣
N∑
1

j−2α cos(4θω(j))
∣∣∣∣ ≤ C` + 3q−α

`

N∑
j=1

j−2α

and so

lim
N→∞

( N∑
j=1

j−2α

)−1∣∣∣∣
N∑
1

j−2α cos(4θω(j))
∣∣∣∣ ≤ 3q−α

`

uniformly in ω. Since we can take q` → ∞ by Lemma 8.5, the lim is 0. �
Theorem 8.6. Suppose that (i)–(iv) hold with α < 1

2 but we consider V (1) as a contin-
uous parameter. Then for a.e. ω:

(1) For a dense Gδ of values of V (1), Hω has purely singular continuous spectrum
in (−2, 2).

(2) For Lebesgue a.e. value of V (1), Hω has dense pure point spectrum in (−2, 2)
and the eigenfunctions obey Hωu = 2cos(km)u with

lim
n→∞

log(|u(n)2 + u(n + 1)2|1/2)
|n|1−2α

= − (1 − 2α)λ2

8 sin2(km)
. (8..13)

If we consider a whole-line problem with independent Vω(n) where both {Vω(n)}∞n=1

and Ṽω(n) ≡ Vω(−n), n = 1, 2, . . . obey hypotheses (i)–(iv) and Vω(0) has a purely
a.c. density, then for a.e. ω, Hω has dense pure point spectrum in (−2, 2) and
(8.13) holds as |n| → ∞.
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Remark. This strengthens the result originally proven in [31] and improved in [7] in two
ways. First, we get the explicit constant in (8.13). Second, we only require one Vω( · ) to
have an a.e. distribution.

Proof. By Theorem 8.2 and Fubini’s theorem for a.e. ω, we have for a.e. k ∈ (0, π),

lim
n→∞

log ‖T (n)‖
n1−2α

=
(1 − 2α)λ2

8 sin2(k)
.

Thus by Theorem 8.3 of [22], there is an L2-solution obeying (8.13). The theorem follows
from general principles on rank one perturbations [12, 4, 5, 28]. �

The case α = 1
2 has an extra subtlety we will need to deal with, using an argument

modeled on Kotani-Ushiroya [21]. The following replaces an explicit but complex formula
they use for the projection onto a decaying solution (and fills in a gap in their argument):

Lemma 8.7. Let uθ = (cos θ, sin θ) in R2. For any unimodular matrix A with ‖A‖ > 1,
let θ(A) be the unique θ ∈ (−π

2 , π
2 ] with ‖Auθ‖ = ‖A‖−1. Define ρ(A) = ‖Au0‖/‖Auπ/2‖.

Let An be a sequence of unimodular matrices with ‖An‖ → ∞ and ‖An+1A
−1
n ‖/‖An‖‖An+1‖

→ 0 as n → ∞. Let ρn = ρ(An), θn = θ(An). Then:
(i) θn has a limit θ∞ if and only if limn→∞ ρn ≡ ρ∞ exists (ρ∞ = ∞ is allowed, but

then we only have |θn| → π
2 ).

(ii) Suppose θn has a limit θ∞ 6= 0, π
2 (equivalently, ρ∞ 6= 0,∞). Then

lim
n→∞

log ‖Anu∞‖
log ‖An‖ = −1 (8.14)

if and only if

lim
n→∞

log |ρn − ρ∞|
log ‖An‖ ≤ −2. (8.15)

Remark. Consider

An =
(

cosh(n) (−1)n sinh(n)
(−1)n sinh(n) cosh(n)

)
.

Then ρ(An) ≡ 1 and ‖An‖ → ∞ but θn = (−1)n+1(π
4 ) does not have a limit. This shows

that the condition ‖An+1A
−1
n ‖/‖An‖‖An+1‖ → 0 is required. Indeed, in this case that

limit is 1. Kotani-Ushiroya miss this issue.

Proof. (i) Note first that

‖Anuθ‖2 = ‖An‖2 sin2(θ − θn) + ‖An‖−2 cos2(θ − θn). (8.16)

Thus,

ρn =
tan2(θn) + ‖An‖−4

1 + ‖An‖−4 tan2(θn)
. (8.17)
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It follows that ρn has a finite limit ρ∞ if tan2(θn) has a finite limit. By writing

ρ−1
n =

cot2(θn) + ‖An‖−4

1 + ‖An‖−4 cot2(θn)
,

this is true also for ρn → ∞ and tan2(θn) → ∞.
Pick η ∈ [0, π

2 ] so tan2(θn) → tan2(η). If η = 0, then θn → 0, and if η → π
2 , then

|θn| → π
2 because of the continuity of tan(θ) on [−π

2 , π
2 ]. If 0 < η < π

2 , we only have
|θn| → η and have to worry about the sign (see the remark above).

In (8.16), take θ = θn+1 and see that

sin2(θn+1 − θn) ≤ ‖An‖−2‖AnA−1
n+1‖2‖An+1uθn+1‖2 = ‖An‖−2‖An+1‖−2‖An+1A

−1
n ‖2

since AnA−1
n+1 is unimodular, and thus ‖AnA−1

n+1‖ = ‖An+1A
−1
n ‖. Thus by hypothesis,

sin2(θn+1 − θn) → 0.

This, together with |θn| → η ∈ (0, π
2 ), implies that θn has a limit.

(ii) By (8.16), we have that (8.14) holds if and only if

lim
n→∞

log |θn − θ∞|
log ‖An‖ ≤ −2. (8.18)

Since θ∞ 6= 0, π, this is true if and only if

lim
n→∞

log | tan2(θn) − tan2(θ∞)|
log ‖An‖ ≤ −2.

By (8.17) and θ∞ 6= π,∣∣| tan2(θn) − tan2(θ∞)| − |ρn − ρ∞|∣∣ ≤ C‖An‖−4.

Thus, (8.18) holds if and only if (8.15) holds. �
Lemma 8.8. Suppose the hypotheses of Theorem 8.2 hold with α = 1

2 and k 6= π
4 , 2π

4 , 3π
4

is fixed. Then for a.e. ω, there exists an initial condition uθ(ω) so that

lim
n→∞

log ‖T2 cos(k)(n, 0)uθ(ω)‖
log(n)

= − λ2

8 sin2(k)
.

Remark. As noted in [22] (and gotten incorrectly in [21]), Ruelle’s deterministic argument
doesn’t ever suffice in this ‖T‖ ∼ nγ case. If An is a sequence of unimodular matrices
with limn→∞ log ‖An‖/ log(n) = γ, then [22] has explicit examples (even coming from
deterministic Schrödinger operators) for each γ > 1

2 where the decaying solution only
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obeys limn→∞ log ‖Anu∞‖/ log(n) = −γ +1. It also appears one needs γ > 3
2

to be sure
of the existence of decaying solutions. But following [21], the probabilistic argument here
can replace Ruelle’s argument.

Proof. Let β = λ2

8 sin2(k)
. Let R1(n) and R2(n) be the R’s associated to θ = 0 and θ = 1

2 .
By the proof of Theorem 8.2 for a.e. ω,

lim
n→∞

log ‖Ri(n)‖
log(n)

= β. (8.19)

Let θi(n) be the corresponding EFGP angles. By (2.7),

R1(n)R2(n) sin(θ1(n) − θ2(n)) = sin(k)[u1(n)u2(n − 1) − u1(n − 1)u2(n)] = −1

(by the initial conditions R1(1) = R2(1) = 0, θ1(1) = 0, θ2(1) = π
2 ) and constancy of the

Wronskian. Thus by (8.19) for a.e. ω,

lim
n→∞

log |θ1(n) − θ2(n)|
log(n)

= −2β. (8.20)

Let ρn = R1(n)
R2(n) . Then by (2.12c),

Lω(n) ≡ [log ρ(n + 1) − log ρ(n)] = log(1 + A1(n)) − log(1 + A2(n)),

where

Ai(n) = −Vω(n)
sin(k)

sin(2θi,ω(n)) +
Vω(n)2

sin2(k)
sin2(θi,ω(n)).

Define
F (a, θ) = log(1 − a sin(2θ) + a2 sin2(θ)).

By a finite Taylor expansion,

F (a, θ) =
J−1∑
j=1

ajPj(θ) + O(aJ )

with P1(θ) = sin(2θ) and the P ’s, C∞ in θ. Fix ε > 0 so for n large, use (8.20) to see
that |θ1 − θ2| = o(n−2β+ε). Choosing J so n−J/3 = o(n−2β−1), we see that

Lω(n) = −Vω(n)
sin(k)

[sin(2θ1(n)) − sin(2θ2(n))] + O(n−2β−1+ε).

Since θj(n) depend only on {Vω(k)}k≤n−1, we can apply part (3) of Lemma 8.4 (with
2α = 1 + 2β − ε) to see that for a.e. ω,

lim
N→∞

N∑
1

Lω(n) (8.21)
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exists and ∣∣∣∣
∞∑
N

Lω(n)
∣∣∣∣ ≤ CωN−2β+ε. (8.22)

By (8.21), lim R1(n)
R2(n) ≡ ρ∞ exists and is different from 0 and ∞. Moreover, by (8.22),

lim
log |ρ(n) − ρ(∞)|

log(n)
≤ −2β.

Lemma 8.7 completes the proof. �
Theorem 8.9. Suppose (i)–(iv) hold with α = 1

2 . Then,
(1) For a.e. ω, the essential spectrum of Hω is [−2, 2] and the absolutely continuous

spectrum of Hω is empty.
(2) If |λ| ≥ 2 and Vω(1) has an absolutely continuous distribution, then for a.e. ω,

Hω has dense point spectrum and only dense point spectrum in (−2, 2).
(3) If |λ| < 2 and Vω(1) has an absolutely continuous distribution, then for a.e. ω,

Hω has purely singular continuous spectrum in {E | |E| < (4 − λ2)1/2} and only
dense pure point spectrum in {E | (4 − λ2)1/2 < |E| < 2}.

In either case (2) or (3), in the region of point spectrum, there are almost surely
eigenvectors of power decay n−β with

β =
λ2

8 − 2E2
. (8.23)

Remark. This theorem extends results of Delyon, et al. [7], Delyon [6], and Kotani-
Ushiroya [21]. In particular, [7] conjectured that there is a region of point spectrum near
E = ±2 no matter how small λ is.

Proof. By Theorem 8.2, limn→∞ ‖Tω(0, n)‖ = ∞ for a.e. E for a.e ω, so by Theorem 1.1,
we conclude (3). By Lemma 8.8, for a.e. pairs (ω,E), there is a unique decaying solution
with rate of decay n−β with β = λ2

8−2E2 . If β > 1
2
, this is `2 and we have potential point

spectrum. If β < 1
2 , there is no `2 solution. The general theory of rank one perturbations

([32, 5]) then yields (2) and (3). �
We can compute the precise Hausdorff dimension of the singular continuous spectral

measures in this case:

Theorem 8.10. Fix λ < 2 and a model obeying (i)–(iv) with α = 1
2 . In the region

|E| ≤ (4 − λ2)1/2, define

d(E, λ) =
4 − E2 − λ2

4 − E2
.

Suppose Vω(1) has an absolutely continuous density. Then for a.e. ω, the spectral mea-
sure, µ, has dimension d(E, λ) at E in the sense that for any ε, there is a δ so that
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µ(A) = 0 if A is a subset of (E − δ,E + δ) of Hausdorff dimenion less than (d − ε), and
there is a subset B of Hausdorff dimension less than (d+ ε), so µ((E − δ,E + δ)\B) = 0.

Proof. Let ‖u‖L = (
∑L

j=1 u(j)2)1/2. By the general theory of rank one perturbations,
Theorem 8.2, Lemma 8.8, and the assumption of Vω(1) for a.e. ω, µ is supported on the
set of energies where most solutions grow as nβ and one decays as n−β where β(E, λ) is
given by (8.23). The hypothesis for singular spectrum is precisely β < 1

2 .
Since β < 1

2 , ‖u1‖L ∼ L−βL1/2 while ‖u2‖L ∼ LβL1/2 where a ∼ b is shorthand for
lim log(a)

log(b) = 1. The Jitomirskaya-Last version [16, 17] of the Gilbert-Pearson [11] theory
says that the Borel transform of the spectral measure is supported on the set of E’s
where

|m(E + iε)| ∼ ‖u2‖L

‖u1‖L
(8.26)

and E is given by

‖u1‖L‖u2‖L =
1
2ε

(8.27)

(the ∼ in (8.26) holds in the strong sense that the ratio lies in the interval (5−√
24 , 5+√

24 )). Thus, ε ∼ L−1 and (8.26) says that

|m(E + iε)| ∼ ε−2β .

Since β is continuous, the theory in [3] then says that the local dimension is given by
1 − 2β as claimed. �

§9. Random Decaying Potentials: The Continuum Case

Having done the discrete random case, we will only sketch the continuum case. We will
specialize to a situation where {V (x)}n≤x<n+1 are independent for different n’s. Using
ideas from [21], one can presumably use Martingale methods to control asymptotically
independent situations.

Theorem 9.1. Let {Vω(x)}0≤x<∞ be a family of random variables and let

an(ω) =
∫ n+1

n

|Vω(y)| dy. (9.1)

Suppose

(i) E(Vω(x)) = 0 for each x
(ii)

∑
n E(a2

neCan) < ∞ for all C > 0
(iii) {V (x)}n≤x<n+1 are independent for different n’s.
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Then for a.e. ω, − d2

dx2 + Vω(x) on L2(0,∞) has purely absolutely continuous spectrum
on (0,∞) for any boundary condition.

Remarks. 1. Our methods imply for all E > 0 and a.e. ω, TE(n) is bounded, and that
implies − d2

dx2 +Vω(x) is limit point at infinity, so we need not worry about self-adjointness
issues.

2. A simple example where (ii) holds is if supω,x |Vω(x)| < ∞ and E(
∫ ∞
0 V (y)2 dy) <

∞.

Proof. By (2.4),
R4(n + 1) = R4(n) exp(Bn(ω)), (9.2)

where

Bn(ω) =
2
k

∫ n+1

n

Vω(x) sin(2θω(x))dx. (9.3)

By (2.3),

|θω(x) − θω(n) − k(x − n)| ≤ 2
k

an(ω). (9.4)

Using
|ex − 1 − x| ≤ 1

2
x2ex,

we obtain from (9.2)–(9.4),

R4(n + 1) ≤ R4(n)(1 + Ca2
neCan) + Qn (9.5a)

Qn =
2
k

R4(n)
∫ n+1

n

Vω(x) sin(2θω(n) + 2k(x − n))dx (9.5b)

for some constant C uniformly bounded for k in any compact of (0,∞).
Since Vω(x) is independent of {Vω(y)}y≤n , it is independent of R(n) and θω(n), and

so E(Qn) = 0.
Moreover, an is independent of R(n), so (9.5) implies that

E(R4(n + 1)) ≤ E(R4(n))E(1 + Ca2
neCan).

By condition (ii), we see that

lim
n→∞E(R4(n)) < ∞

with bounds uniform in k on compacts of (0,∞). Thus by Fatou’s lemma, for a.e. ω,
lim

∫ b

a
R4

ω(n, k)dk < ∞ and so the spectrum is purely absolutely continuous by Theo-
rem 1.3. �
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Theorem 9.2. Let f be supported on (0, 1) and let

Vω(x) =
∞∑

n=0

(n + 1)−αXn(ω)f(x − n),

where {Xn(ω)} are independent, identically distributed bounded variables of mean zero
and 0 < α ≤ 1

2 . Then for 4k /∈ Zπ,

lim
n→∞

log ‖T (n, 0)‖∑n
j=1 j−α

=
E(X2

n)
8k2

∣∣∣∣
∫ 1

0

f(y)eiky dy

∣∣∣∣
2

. (9.6)

Remarks. 1. This implies pure point spectrum for a.e. ω if α < 1
2 .

2. If α = 1
2 , we get singular continuous spectrum for large E and pure point spectrum

for small E (assuming
∫ 1

0 f(y)dy 6= 0 or
∫ 1

0 yf(y)dy 6= 0) and no a.c. spectrum.

Sketch. Define θn(y) = θ(n) + ky and

δθn(y) = −(n + 1)−αXn

∫ y

0

f(y) sin2(θn(y))dy. (9.7)

By (2.3),
|θn(n + y) − θn(y) − δθn(y)| = O(n−2α)

for y ∈ (0, 1).
Plugging this into (2.4), we find that

log R(n + 1) − logR(n) = Y (1)
n + Y (2)

n + O(n−2α),

where

Y (1)
n =

(n + 1)−αXn(ω)
2k

∫ 1

0

f(y) sin(2θn(y))dy

and

Y (2)
n =

(n + 1)−αXn(ω)
2k

∫ 1

0

2f(y) cos(2θn(y))(δθn)(y)dy.

By using Lemmas 8.2 and 8.3, one sees that( n∑
j=0

(j + 1)−2α

)∣∣∣∣
n∑

j=0

Y
(1)
j

∣∣∣∣ → 0

for a.e. ω. The same lemmas let us replace Xn(ω)2 by E(X2
n(ω)) in Y

(2)
n . So if we let $

indicate equal up to o(
∑n

j=0(j + 1)−2α) terms, we see that

log R(n) $
n−1∑
j=0

(Y (3)
n + Y (4)

n ),
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where we use sin2(θn(y)) = 1
2 − 1

2 cos(2θn(y)) and let Y
(3)
n indicate the − 1

2 cos(2θ) terms
and Y

(4)
n the 1

2 terms. By an argument analogous to the one in the proof of Theorem 9.2
that used Lemma 8.5,

∑
Y

(4)
n $ 0 because k /∈ Zπ.

As in (6.5), we get

log R(n) $
n−1∑
j=0

(j + 1)−2αE(Xn(ω)2)
4k2

(∫ 1

0

f(y) cos(2θj(y))dy

)2

.

As in the proof of Lemma 6.2, this last square is

1
2

∣∣∣∣
∫ 1

0

f(y)eiky

∣∣∣∣2

plus a term that has cos(4θj(y)), which we can handle using Lemma 8.5. �
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