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Abstract. We discuss results where the discrete spectrum (or partial information on the

discrete spectrum) and partial information on the potential q of a one-dimensional Schrödinger

operator H = − d2

dx2 + q determine the potential completely. Included are theorems for finite

intervals and for the whole line. In particular, we pose and solve a new type of inverse spectral

problem involving fractions of the eigenvalues of H on a finite interval and knowledge of q
over a corresponding fraction of the interval. The methods employed rest on Weyl m-function

techniques and densities of zeros of a class of entire functions.

§1. Introduction

In 1978, Hochstadt-Lieberman [14] proved the following remarkable theorem:

Theorem 1.1. Let h0 ∈ R , h1 ∈ R ∪{∞} and assume q1, q2 ∈ L1((0, 1)) to be real-valued.
Consider the Schrödinger operators H1,H2 in L2((0, 1)) given by

Hj = − d2

dx2
+ qj , j = 1, 2,

with the boundary conditions

u′(0) + h0u(0) = 0, (1.1a)

u′(1) + h1u(1) = 0. (1.1b)

Let σ(Hj) = {λj,n} be the (necessarily simple) spectra of Hj , j = 1, 2. Suppose that
q1 = q2 (a.e.) on [0, 1

2 ] and that λ1,n = λ2,n for all n. Then q1 = q2 (a.e.) on [0, 1].

Here, in obvious notation, h1 =∞ in (1.1b) singles out the Dirichlet boundary condition
u(1) = 0.
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For each ε > 0, there are simple examples where q1 = q2 on [0, 1
2 − ε] and σ(H1) =

σ(H2) but q1 �= q2. (Choose h0 = −h1, q1(x) = 0 for x ∈ (0, 1
2 − ε] ∪ [ 12 , 1] and nonzero on

(12 − ε, 1
2 ), and q2(x) = q1(1− x). See also Theorem I′ in the appendix of [35].)

Later refinements of Theorem 1.1 in [11, 35] (see also the summary in [33]) showed
that the boundary condition for H1 and H2 at x = 1 need not be assumed a priori to be
the same, and that if q is continuous, then one only needs λ1,n = λ2,m(n) for all values
of n but one. ([35] claims the result does not require continuity of q, but we will see in
Section 3 that this assertion is false.) The same boundary condition for H1 and H2 at
x = 0, however, is crucial for Theorem 1.1 to hold (see [11, 31]).
Moreover, analogs of Theorem 1.1 for certain Schrödinger operators are considered in

[17] and the interval [0, 1
2 ] replaced by different subsets of [0, 1] was studied in [16] (see

also [29], Ch. 4). Reconstruction techniques for q(x) in this context are discussed in [32].
Our purpose in this paper is to provide a new approach to Theorem 1.1 that we feel is

more transparent and, moreover, capable of vast generalizations. To state our generaliza-
tions, we will introduce a shorthand notation to paraphrase Theorem 1.1 by saying “q on
[0, 1

2 ] and the eigenvalues of H uniquely determine q.” This is just a shorthand notation
for saying q1 = q2 if the obvious conditions hold.
Unless explicitly stated otherwise, all potentials q, q1, and q2 will be real-valued and in

L1((0, 1)) for the remainder of this paper. Moreover, to avoid too many case distinctions
in the proofs below, we shall assume h0, h1 ∈ R in (1.1) throughout the main body of this
paper. In particular, for h0, h1 ∈ R we index the corresponding eigenvalues λn of H by
n ∈ N 0 = N ∪ {0}. The case of Dirichlet boundary conditions, where h0 = ∞ and/or
h1 =∞ will be dealt with in Appendix A.
Here are some of the generalizations we will prove for Schrödinger operators on [0, 1]:

Theorem 1.2. LetH = − d2

dx2+q in L2((0, 1)) with boundary conditions (1.1) and h0, h1 ∈
R . Suppose q is C2k((1

2
− ε, 1

2
+ ε)) for some k = 0, 1, . . . and for some ε > 0. Then q on

[0, 1
2 ], h0, and all the eigenvalues of H except for (k + 1) uniquely determine h1 and q on

all of [0, 1].

Remarks. 1. The case k = 0 in Theorem 1.2 is due to Hald [11].
2. In the non-shorthand form of this theorem, we mean that both q1 and q2 are C2k

near x = 1
2 .

3. One need not know which eigenvalues are missing. Since the eigenvalues asymptoti-
cally satisfy

λn = (πn)2 + 2(h1 − h0) +
∫ 1

0

dx q(x) + o(1) as n → ∞, (1.2)

given a set of candidates for the spectrum, one can tell how many are missing.
4. For the sake of completeness we mention the precise definition of H in L2((0, 1)) for

real-valued q ∈ L1((0, 1)) and boundary condition parameters h0, h1 ∈ R ∪ {∞} in (1.1):

H =− d2

dx2
+ q,

D(H) ={g ∈ L2((0, 1)) | g, g′ ∈ AC([0, 1]); (−g′′ + qg) ∈ L2((0, 1));

g′(0) + h0g(0) = 0, g′(1) + h1g(1) = 0}, (1.3)
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where AC([0, 1]) denotes the set of absolutely continuous functions on [0, 1] and hx0 =∞
represents the Dirichlet boundary condition g(x0) = 0 for x0 ∈ {0, 1} in (1.3).
In Section 3, we discuss examples which show that Theorem 1.2 is optimal in the sense

that if q is only assumed to be C2k−1 near x = 1
2 for some k ≥ 1, then it is not uniquely

determined by q [0, 1
2
] and all the eigenvalues but (k + 1).

Theorem 1.2 works because the condition that q is C2k near x = 1
2 gives us partial

information about q on [ 12 , 1]; namely, we know q(12 ), q
′(12 ), . . . , q

(2k)(12 ) computed on [
1
2 , 1]

since we can compute them on [0, 1
2
]. This suggests that knowing q on more than [0, 1

2
]

should let one dispense with a finite density of eigenvalues. That this is indeed the case is
the content of the following theorem:

Theorem 1.3. LetH = − d2

dx2+q in L2((0, 1)) with boundary conditions (1.1) and h0, h1 ∈
R . Then q on [0, 1

2+
α
2 ] for some α ∈ (0, 1), h0, and a subset S ⊆ σ(H) of all the eigenvalues

σ(H) of H satisfying

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2

(1.4)

for all sufficiently large λ0 ∈ R , uniquely determine h1 and q on all of [0, 1].

Remarks. 1. As a typical example, knowing slightly more than half the eigenvalues and
knowing q on [0, 3

4 ] determines q uniquely on all of [0, 1]. To the best of our knowledge,
Theorem 1.3 solves a new type of inverse spectral problem. In particular, we are not aware
of any inverse spectral result involving fractions of the set of eigenvalues as in (1.4).
2. As in the case α = 0, we have an extension of the same type as Theorem 1.2.

Explicitly, if q is assumed to be C2k near x = 1
2 +

α
2 , we only need

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2 − (k + 1) (1.5)

instead of (1.4).
We can also derive results about problems on all of R . In Section 5, we will prove

Theorem 1.4. Suppose that q ∈ L1
loc(R ) obeys

(i) q(x) ≥ C |x|2+ε −D for some C, ε,D > 0, and that
(ii) q(−x) ≥ q(x) x ≥ 0.

Then q on [0,∞) and the spectrum of H = − d2

dx2 + q in L2(R ) uniquely determine q on all
of R .

In Section 5, we will also present further conjectures and explain how condition (i) is
related to the class of entire functions of type less than one.
All these results are related to two other papers we have written. In [10], we consider,

among other topics, analogs of Theorems 1.1 and 1.3 for finite tridiagonal (Jacobi) matrices
extending a result in [13]. The approach there is very similar to the current one except
that the somewhat subtle theorems on zeros of entire functions in this paper are replaced
by the elementary fact that a polynomial of degree at most N with N + 1 zeros must be
identically zero. In [9], we consider results related to Theorem 1.4 in that for Schrödinger
operators on (−∞,∞), “spectral” information plus the potential on one of the half-lines
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determine the potential on all of (−∞,∞). In that paper, we consider situations where
there are scattering states for some set of energies and the “spectral” data are given by a
reflection coefficient on a set of positive Lebesgue measure in the a.c. spectrum of H. The
approach is not as close to this paper as is [10], but m-function techniques (see also [8])
are critical in all three papers.
Hochstadt-Lieberman [14] use the details of the inverse spectral theory in their proof.

In a sense, we only use the main uniqueness theorem of that theory due to Marchenko [26],
which we now describe. For q ∈ L1((a, b)) real-valued, −∞ < a < b < ∞, consider

−u′′ + qu = zu (1.6)

with the boundary condition
u′(b) + hbu(b) = 0 (1.7)

at x = b. Let u+(z, x) denote the solution of this equation, normalized, say, by u+(z, b) = 1.
The m+-function is then defined by

m+(z, a) =
u′

+(z, a)
u+(z, a)

. (1.8)

Similarly, given a boundary condition at x = a,

u′(a) + hau(a) = 0, (1.9)

we define the solution u−(z, x) of (1.6) normalized by u−(z, a) = 1 and then define

m−(z, b) = −u′−(z, b)
u−(z, b)

. (1.10)

The differing signs in (1.8) and (1.10) are picked so that both m+ and m− are Herglotz
functions, that is, m± : C+ → C+ are analytic (in our present context where −∞ < a <
b < ∞, m± are even meromorphic on C ), C+ the open complex upper half-plane. In
particular,

Im (z) > 0 =⇒ Im (m−(z, b)) > 0, Im (m+(z, a)) > 0. (1.11)

Marchenko’s [26] fundamental uniqueness theorem of inverse spectral theory then reads
as follows:

Theorem 1.5. m+(z, a) uniquely determines hb as well as q (a.e.) on [a, b].

If q ∈ L1
loc([a,∞)) is real-valued (with |a| < ∞) and − d2

dx2 + q is in the limit point case
at infinity, one can still define a unique m+(z, a) function but now for Im (z) �= 0 rather
than all z ∈ C . For such z, there is a unique function u+(z, · ) which is L2 at infinity
(unique up to an overall scale factor which drops out of m+(z, a) defined by (1.8)). Again,
one has the following uniqueness result independently proved by Borg [3] and Marchenko
[26]
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Theorem 1.6. m+(z, a) uniquely determines q (a.e.) on [a,∞).
It is useful to have m−(z, b) because of the following basic fact:

Theorem 1.7. Let H = − d2

dx2 + q be a Schrödinger operator in L2((a, b)) with boundary
conditions (1.7), (1.9) and let G(z, x, y) be the integral kernel of (H − z)−1. Suppose
c ∈ (a, b) and let m+(z, c) be the corresponding m+-function for [c, b] and m−(z, c) the
m−-function for [a, c]. Then

G(z, c, c) = − 1
m+(z, c) +m−(z, c)

. (1.12)

Theorems 1.5 and 1.6 are deep facts; Theorem 1.7 is an elementary calculation from the
explicit formula for the integral kernel of (H − z)−1,

G(z, x, y) =
u−(z,min(x, y))u+(z,max(x, y))

W (u−(z), u+(z))(x)
,

where W ( · , · ) is the Wronskian defined by
W (f, g)(x) = f ′(x)g(x) − f(x)g′(x).

An analog of Theorem 1.7 holds in case [a, b] is replaced by (−∞,∞).
We can now describe the strategy of our proofs of Theorems 1.1–1.4. G(z, c, c) has poles

at the eigenvalues of H (this is not quite true; see below), so by (1.12), at eigenvalues λn
of H:

m+(λn, c) = −m−(λn, c). (1.13)

If we know q on a left partial interval [a, c] and we know some eigenvalue λn, then we
know m−(z, c) exactly; so by (1.13), we know the value of m+(λn, c) at the point λn.
In Appendix B we discuss when knowing the values of f(λn) of an analytic function of
the type of the m-functions uniquely determines f(z). If m+(z, c) is determined, then by
Theorem 1.5, q is determined on [a, b] and so is hb.
So the logic of the argument for a theorem like Theorem 1.1 is the following:
(i) q on [0, 1

2 ] and h0 determine m−(z, 1
2) by direct spectral theory.

(ii) The λn and (1.13) determinem+(λn, 1
2 ), and then by suitable theorems in complex

analysis, m+(z, 1
2 ) is uniquely determined for all z.

(iii) m+(z, 1
2 ) uniquely determines q (a.e.) on [

1
2 , 1] and h1 by inverse spectral theory.

It is clear from this approach why h0 is required and h1 is free in the context of Theo-
rem 1.1 (see [31] for examples where h1 and q [0, 1

2 ] do not determine q); without h0 we
cannot compute m−(z, 1

2
) and so start the process.

As indicated before (1.13), G(z, c, c) may not have a pole at an eigenvalue λn of H. It
will if un(c) �= 0, but if un(c) = 0, then G(z, c, c) = 0 rather than ∞. Here un denotes the
eigenfunction of H associated with the (necessarily simple) eigenvalue λn. Nevertheless,
(1.13) holds at points where un(c) = 0 since then u−(c) = u+(c) = 0, and so both sides
of (1.13) are infinite. (In spite of (1.13), m+ + m− is also infinite at z = λn and so
G(λn, c, c) = 0.) We summarize this discussion in the following
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Theorem 1.8. For any c ∈ (a, b), (1.13) holds at any eigenvalue λn of H[a,b] (with the
possibility of both sides of (1.13) being infinite).

An alternative way of proving (1.13) is that λn is an eigenvalue if and only if the
Wronskian of u+ and u− is zero, which is precisely (1.13).
Here is a sketch of the contents of this paper. In Section 2 we present our proofs of

Theorems 1.1 and 1.2. In Section 3 we discuss an example that delimits Theorem 1.2
and shows that Theorem 1.2 is optimal with respect to smoothness conditions on q. In
Section 4 we prove Theorem 1.3, and in Section 5 we prove Theorem 1.4. Appendix A is
devoted to the case of Dirichlet boundary conditions, and Appendix B presents some facts
on entire functions that are necessary to prove our principal results.

§2. Theorems for a Half Interval

In this section, we will prove the original Hochstadt-Lieberman theorem (Theorem 1.1)
and our extension of it (Theorem 1.2) for h0, h1 ∈ R . Consider a problem on [0, 1] with
boundary condition (1.2) at x = 1. Let u+(z, x) be defined by −u′′

+ + qu+ = zu+ and

u′
+(z, 1) = −h1, u+(z, 1) = 1. (2.1)

Then u+ is known to have the following properties:
(1) For each x ∈ [0, 1], u+(z, x), u′

+(z, x) are entire functions of z. (This follows from
the fact that u+(z, 1) = 1 and u′

+(z, 1) = −h1 are independent of z, see, e.g., [4],
Theorem I.8.4, Problem I.7, and p. 226.)

(2)

u+(z, x) = cos
(√

z (1 − x)
)
+O

(
eIm (

√
z) (1−x)
√
z

)
, (2.2)

u′
+(z, x) =

√
z sin

(√
z (1 − x)

)
+O

(
eIm (

√
z) (1−x)) (2.3)

as |z| → ∞ for all x ∈ [0, 1], where √z is the square root branch with Im(
√
z) ≥ 0

(see, e.g., [27], Sect. 1.4).
(3) The zeros of u+( · , x) and u′

+( · , x) are all real for any x ∈ [0, 1] and they all lie
in some λ-interval [c,∞) (this is because these zeros are eigenvalues of self-adjoint
boundary value problems for Schrödinger operators in L2((0, 1)) bounded from
below).

The final pair of preliminary results we need concerns the high-energy asymptotics of
the m+-function,

m+(z, x) =
u′

+(z, x)
u+(z, x)

.

(4) It is known [1, 6] that under the general hypothesis q ∈ L1((0, 1)),

m+(z, x)−1 = −i(
√
z )−1(1 + o(z−1/2)) (2.4)
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uniformly in x ∈ [0, 1 − δ], δ > 0 as |z| → ∞ in any sector ε < Arg(z) < 2π − ε,
ε > 0.

(5) If q is C2k near x0 ∈ (0, 1), k = 0, 1, 2, . . . , then m+(z, x0) and m+(z, x0)−1 are
known to have asymptotic expansions of the form [5],

m+(z, x0) = i(
√
z )

( 2k+2∑
�=0

C�(x0)z−�/2 + o(z−k−1)
)
, C0(x0) = 1, (2.5)

m+(z, x0)−1 = −i(
√
z )−1

( 2k+2∑
�=0

D�(x0)z−�/2 + o(z−k−1)
)
, D0(x0) = 1, (2.6)

as |z| → ∞ in any sector ε < Arg(z) < 2π − ε, ε > 0, where C�(x0) and D�(x0)
are universal functions of q(x0), . . . , q(�−2)(x0). In fact, C�(x) and D�(x0) have a
well-known connection to the conserved densities of the KdV hierarchy [7] and they
can be computed recursively as follows. Consider the Riccati-type equations for
m+(z, x) and m+(z, x)−1 ,

m′
+(z, x) +m+(z, x)2 = q(x)− z, (2.7)

[m+(z, x)−1 ]′ +m+(z, x)−2 [q(x)− z] = 1. (2.8)

Inserting the asymptotic expansions (2.5) and (2.6) into (2.7) and (2.8) then yields
the recursion relations

C0(x) = 1, C1(x) = 0, C2(x) = − 1
2 q(x),

Cj(x) = i
2 C ′

j−1(x) − 1
2

j−1∑
�=1

C�(x)Cj−�(x), j ≥ 3, (2.9)

D0(x) = 1, D1(x) = 0, D2(x) = 1
2
q(x),

Dj(x) = i
2 D′

j−1(x) +
1
2 q(x)

j−2∑
�=0

D�(x)Dj−�−2(x)− 1
2

j−1∑
�=1

D�(x)Dj−�(x), j ≥ 3.
(2.10)

With these preliminaries out of the way, let q be given (a.e.) on [0, 1
2
] and let q1, q2 be

two candidates for q extended to all of [0, 1]. Let σ(H1) = {λ1,n}∞n=0 be the set of all the
eigenvalues of H1 = − d2

dx2 + q1. Define for j = 1, 2,

Pj(z) = uj,+(z, 1
2 ), (2.11)

Qj(z) = u′
j,+(z,

1
2 ), (2.12)

fj(z) =
Pj(z)
Qj(z)

= mj,+(z, 1
2 )

−1, (2.13)

g(z) = u′
1,+(z, 0) + h0u1,+(z, 0), (2.14)
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so that {λ1,n}∞n=0 are precisely the zeros of g(z). (Note in this context that u1,+(z, x)
satisfies (1.1b) at x = 1 for all z ∈ C . Thus, if and only if g(λ̂) = 0, u1,+(λ̂, x) also
satisfies (1.1a) at x = 0 and hence λ̂ ∈ σ(H1).) Here uj,± are the corresponding solutions
of −u′′ + qju = zu used in (1.8) and (1.10). By adding a sufficiently large constant to q1
and q2, we can suppose all the zeros of Pj , Qj , and g are in [1,∞).
By (1)–(5) above, we infer:
(a) Pj , Qj , and g are all of the form (see, e.g., [19], Ch. I; [28], Sect. II.48)

c

∞∏
n=0

(
1− z

xn

)
(2.15)

for suitable {xn}∞n=0 ⊆ [1,∞) (which a priori could differ for the five functions).
(b) Pj , Qj , and g are all bounded by C1 exp(C2|z|1/2) for some C1, C2 > 0.
(c) |f1(iy)− f2(iy)| = o(|y|−1) as y (real)→ ±∞.
(d) If qj ∈ C2k near x = 1

2 , then as y (real)→ ±∞,

|f1(iy)− f2(iy)| = o(|y|−(2k+3)/2).

(e) |Qj(iy)| = 1
2 |y|1/2 | exp(12 Im (

√
i) |y|1/2)|(1 + o(1)) as y (real)→ ∞.

(f) |g(iy)| = 1
2 |y|1/2 | exp(Im (

√
i) |y|1/2)| (1 + o(1)) as y (real)→ ∞.

(g) For n sufficiently large, infθ∈[0,2π] |g((π(n + 1
2 ))

2eiθ)| ≥ πn+O(1).

Part (d) holds by (2.6) and (2.10) because q
(�)
1 (12 ) = q

(�)
2 (12 ) for all 0 ≤ * ≤ 2k by the

regularity of q near x = 1
2 and hence the termsD0(x0), . . . ,D2k+2(x0) in (2.6) in connection

with q1 and q2 will cancel when inserted into [f1(iy)− f2(iy)]. (g) follows from (2.3) since
by (2.15), the infimum is taken at θ = 0.

Proof of Theorem 1.1 (for h0, h1 ∈ R ). Define

F (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)
. (2.16)

By Theorem 1.8, (1.13) holds at the points λ1,n. Hence Q1(z)
P1(z) = Q2(z)

P2(z) at z = λ1,n.
Moreover, at points where both sides are infinite, one infers P1 = P2 = 0. Thus, the cross
ratio P1Q2 − P2Q1 vanishes at each point where g vanishes, and since g necessarily has
simple zeros (H1 has simple spectrum), F is an entire function.
In addition, by (b) and (g), F (z) satisfies

|F (z)| ≤ C1 exp(C2|z|1/2) (2.17)

since (2.17) first holds when |z| = (π(n + 1
2 ))

2 for n sufficiently large (by (f)) and then
by the maximum modulus principle for all z. By Proposition B.6 (a Phragmén-Lindelöf
argument) and (2.17), if we show that |F (iy)| → 0 as y → ∞ (y real), then F ≡ 0.
But

F (z) =
Q1(z)Q2(z)

g(z)
[f1(z)− f2(z)], (2.18)
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so by (c), (e), and (f),

|F (iy)| = 1
2 |y|1/2 [o(|y|−1)](1 + o(1)) = o(|y|−1/2) as y (real)→ ∞, (2.19)

goes to zero as required.
Once F ≡ 0, we can multiply by g(z)

Q1(z)Q2(z)
(which has isolated zeros and poles) to

conclude that f1 = f2, and so by Theorem 1.5, q1 = q2 (a.e.).

Remark. There is a (patchable) gap in the paper of Hochstadt-Lieberman [14]. They
consider an entire function ψ(z) = H(z)

ω(z) where they show |H(z)| ≤ M exp(Im (
√|z|) ) and

ω(z) = C
√
z sin(

√
z ) + O(eIm (

√
z)) and then claim |ψ(z)| = O

(
1√
|z|

)
without comment.

Because of the zeros of sin( · ), this is not evident and one needs a Phragmén-Lindelöf-type
argument to complete their proof.

Proof of Theorem 1.2. Let {λ�}k+1
�=1 be the k + 1 eigenvalues of − d2

dx2 + q1 in L2((0, 1))
which a priori are not assumed to be the same for the two potentials. Now define F̃ (z) by

F̃ (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)

k+1∏
�=1

(z − λ�) (2.20)

instead of (2.16).
(2.17) still holds, and as in (2.18) and (2.19), one now infers from (d), (e), and (f),

|F̃ (iy)| = O(|y|k+1)|y|1/2 [o(|y|−(2k+3)/2)](1 + o(1)) = o(1) as y (real)→ ∞.

Thusm+(z, 1
2 ) determines h1 (cf. Theorem 1.5) and q1 = q2 (a.e.) follows as in the previous

proof.

§3. An Example

Our goal in this section is to construct, for each k, a function q on [0, 1] with the
following properties:

(1) q is C∞ on [0, 1
2 ] and [

1
2 , 1]; q is C

2k−1 on [0, 1].

(2) d2kq
dx2k is discontinuous at x = 1

2
.

(3) q = 0 on [0, 1
2 ].

(4) For a suitable boundary condition parameter h1 ∈ R , the eigenvalues of − d2

dx2 +q in
L2((0, 1)) with u′(0) = 0, u′(1)+h1u(1) = 0 boundary conditions agree with those
for − d2

dx2 in L2((0, 1)) with u′(0) = u′(1) = 0 boundary conditions with precisely
(k + 1) exceptions.

For k = 0, (2) means that q is discontinuous at x = 1
2 .

This example shows that in Theorem 1.2, one cannot weaken the continuity requirement
on q. In particular, it provides a counterexample to the claim in Suzuki [35] that his
Theorem I in his Appendix only requires q ∈ L1((0, 1)). Continuity of q at x = 1

2
is critical

for his result to hold.
Our results depend on the following well-known fact:
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Proposition 3.1. Suppose that x0 < y0 < x1 < y1 < · · · are given so that for n
sufficiently large,

xn = [(2n)π]2, yn = [(2n+ 1)π]2. (3.1)

Then, there exists (a unique) h1 and a C∞ function q on [ 12 , 1] so that

− d2

dx2
+ q in L2((12 , 1)); u′(12 ) = 0, u′(1) + h1u(1) = 0 (3.2)

has eigenvalues {xn}∞n=0 and

− d2

dx2
+ q in L2((12 , 1)); u(12 ) = 0, u′(1) + h1u(1) = 0 (3.3)

has eigenvalues {yn}∞n=0. (By (1.2) and (A.5c), h1 = − 1
2

∫ 1

1/2
dxq(x).)

This is just a special case of the construction of Levitan and Gasymov [23]. Historically,
this classical two-spectra inverse problem goes back to Borg’s seminal paper [2]. Subse-
quently, Levinson [20] found considerable simplifications of Borg’s uniqueness arguments,
and Krein [18] developed his own solution of these inverse spectral problems. This circle
of ideas was further developed in [12], [21], [22], Ch. 3, [23], [24], Sect. 6.11 and continues
to generate interest (see, e.g., [15], [25], [34]).
We also need the elementary:

Lemma 3.2. Suppose that h0, h1, and q are given, and for some λ̂, there exists an h1/2

(with the Dirichlet boundary condition h1/2 =∞ at x = 1
2
allowed; u′(1

2
) + h1/2u(12 ) = 0

is then interpreted as u(12 ) = 0) so that λ̂ is an eigenvalue of both

− d2

dx2
+ q in L2((0, 1

2 )); u′(0) + h0u(0) = 0, u′(12 ) + h1/2u(12 ) = 0

and

− d2

dx2
+ q in L2((12 , 1)); u′(12 ) + h1/2u(12) = 0, u′(1) + h1u(1) = 0.

Then λ̂ is also an eigenvalue of

− d2

dx2
+ q in L2((0, 1)); u′(0) + h0u(0) = 0, u′(1) + h1u(1) = 0.

Proof. One can match the solutions in the two halves so that they and their first derivatives
become absolutely continuous near x = 1

2 .

Let x(0)
n = [(2n)π]2 and y

(0)
n = [(2n+1)π]2, n = 0, 1, . . . be the eigenvalues that lead to

q = 0 on [ 12 , 1] (and h
(0)
1 = 0) in Proposition 3.1. To construct our example, we will take
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xn = x
(0)
n for all n = 0, 1, . . . and yn = y

(0)
n for n = 0, 1 . . . with k + 1 exceptions, say,

yn0 �= y
(0)
n0 , yn1 �= y

(0)
n1 , . . . , ynk �= y

(0)
nk . Make the choice so that for * = 1, 2, . . . , k,

k∑
j=0

y�nj
=

k∑
j=0

[y(0)
nj
]�. (3.4)

Choices satisfying (3.4) can certainly be made. For example, we can take yn0 = y
(0)
n0 + ε

with ε small, and solve the k equations, (3.4), for yn1 , . . . , ynk using the fact that the
Jacobian determinant that needs to be non-zero to apply the inverse function theorem is
essentially just a k × k Vandermonde determinant, det(a), with aj� = *(y(0)

nj )�−1.
Let m(0)

N,+(z,
1
2 ) = − 1√

z
cot(12

√
z), the Neumann m+-function on [ 12 , 1] for q = 0 (and

h
(0)
1 = 0). Let mN,+(z) be the corresponding Neumann m+-function on [ 12 , 1] for the q
constructed in Proposition 3.1 (whose poles and zeros are given by the eigenvalues xn and
yn, n = 0, 1 . . . of (3.2) and (3.3)). We claim that

mN,+(z, 1
2) =

k∏
j=0

(
z − ynj

z − y
(0)
nj

)
m

(0)
N,+(z,

1
2 ). (3.5)

Indeed, the two sides have the same zeros and poles and both are ratios of functions of order
1
2 ; thus they are constant multiples of each other. Since both sides behave asymptotically
like ∼ −|z|−1/2 as z → −∞, the constant multiple must be 1.
Because of (3.4),

ln
( k∏
j=0

(
z − ynj

z − y
(0)
nj

))
=

k∑
j=1

[
ln

(
1− ynj

z

)
− ln

(
1− y

(0)
nj

z

)]
= O(z−k−1).

(3.6)

Since m(0)
N,+(z,

1
2 ) = − i√

z
(1 + o(z−K)) for all K consistent with q = 0 in (2.10), (3.5) and

(3.6) imply that

mN,+(z, 1
2 ) = − i√

z
(1 +O(z−k−1)).

Thus in (2.6), D�(12 ) = 0 for * = 1, 2, . . . , 2k+1. But by (2.10) and induction, this implies
that

q(m)(1
2
) = 0 for m = 0, 1, 2, . . . , 2k − 1. (3.7)

Next, let q(x) be defined a.e. on [0, 1] by

q(x) = 0, 0 ≤ x < 1
2

= constructed q (1
2
, 1), 1

2
< x ≤ 1.

By (3.7), q is C2k−1 at x = 1
2 . By Lemma 3.2, − d2

dx2+q in L2((0, 1)), with u′(0) = 0, u′(1)+
h1u(1) = 0 boundary conditions, has {x(0)

n }∞n=0 ∪ {y(0)
n }∞n=0,n �=n0,n1,...,nk

as eigenvalues, so
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at most (k + 1) eigenvalues differ from the free Neumann case (i.e., q = 0 on [0, 1], h0 =
h1 = 0). If fewer than k + 1 eigenvalues differed, then by Theorem 1.2, q ≡ 0 and h1 = 0.
Since the yni are not y

(0)
ni , this cannot be true. Thus, exactly k + 1 eigenvalues differ. If

q(2k)(12 ) were zero, then by Theorem 1.2, again q ≡ 0 and h1 = 0, so q is not C2k.
There remains an interesting open question: Can one replace information on the missing

eigenvalue by knowledge of the boundary condition h1?

§4. The Case of Partially Known Spectra

Our goal in this section is to prove Theorem 1.3. Define

gS(z) =
∏
λn∈S

(
1− z

λn

)
, gσ(H)(z) =

∞∏
n=0

(
1− z

λn

)
, S ⊆ σ(H) = {λn}∞n=0.

By the hypothesis (1.4) on S and σ(H) in Theorem 1.3 and the method of proof of Theo-
rem B.4 (see the critical equality (B.16)), we infer

ln(|gS(iy)|) ≥ (1 − α) ln(|gσ(H)(iy)|) + α
4 ln(1 + y2) + C0. (4.1)

Since σ(H) is a complete set of eigenvalues for a self-adjoint problem on [0, 1], we know
that asymptotically

|gσ(H)(iy)| ∼ 1
2 |y|1/2

∣∣eIm(
√
i) |y|1/2 ∣∣ as y (real)→ ∞.

Thus by (4.1), there exists a constant C > 0 such that

|gS(iy)| ≥ C |y|1/2 ∣∣eIm(
√
i)(1−α)|y|1/2∣∣ (4.2)

for |y| sufficiently large.
Let Pj(z) = uj,+(z, 1

2 +
α
2 ), Qj(z) = u′

j,+(z,
1
2 +

α
2 ), j = 1, 2 for the two candidate

potentials. Then, since 1− (12 + α
2 ) =

1
2 (1− α), we use (2.3) to infer asymptotically

|Qj(iy)| ∼ 1
2 |y|1/2

∣∣eIm(
√
i) (1/2)(1−α)|y|1/2∣∣ as y (real)→ ∞. (4.3)

With (4.2), (4.3), the arguments in Section 2 extend to prove Theorem 1.3.

§5. Theorems for the Whole Real Line

Our main goal in this section is to prove Theorem 1.4. So we suppose that q1(x), q2(x)
are two potentials on R satisfying

qj(x) ≥ C |x|2+ε + 1, j = 1, 2 (5.1)
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for some C, ε > 0. (The condition in Theorem 1.4 has −D in place of 1. Just add D + 1
to initial qj ’s to get (5.1) if need be.) Thus for any z ∈ C , there exist solutions uj,±(x, z)
of −u′′(x) + qj(x)u(x) = zu(x) which are L2 near ±∞ and

mj,±(z) := ±u′
j,±(0, z)

uj,±(0, z)
, j = 1, 2

are meromorphic functions of z. Let {λm}∞m=1 be the eigenvalues of − d2

dx2 + q1(x) on
(−∞,∞) and denote by {µj,m}∞m=1 the eigenvalues of − d2

dx2+qj(x) on (−∞, 0] with Dirich-
let (i.e., u(0) = 0) boundary conditions at x = 0. We claim:

Proposition 5.1. (i) Let ρ0 = 1− ε
(4+2ε) . Then for all ρ > ρ0, j = 1, 2,

∞∑
m=1

λ−ρ
m < ∞, (5.2)

∞∑
m=1

(µj,m)−ρ < ∞. (5.3)

(ii)
µj,m ≥ λ2m , m ∈ N . (5.4)

Proof. Let αm be the mth eigenvalue of − d2

dx2 +Cx2+ε on (−∞,∞). The large m asymp-
totics of αm is given by a classical phase space argument (see, e.g., Theorem XIII.81 in [32],
or Section 7.1 in [36]), that is, for an explicit constantK ∈ (0,∞), limm→∞ αm/m

1/ρ0 = K.
Thus,

∑
m∈N α−ρ

m < ∞ if ρ > ρ0, and so (5.2) holds since λm ≥ αm. Let βj,m be the mth

eigenvalue of − d2

dx2 + qj(−|x|) on (−∞,∞). By the hypothesis qj(−|x|) ≥ qj(x), we infer
that βj,m ≥ λm. But by Dirichlet-Neumann alternation, µj,m = βj,2m for m = 1, 2, . . .
proving (5.4). (5.3) then follows from (5.4).

Define

Qj(z) =
∞∏
m=1

(
1− z

µj,m

)
,

g(z) =
∞∏
m=1

(
1− z

λm

)
.

Proposition 5.2. For all y ∈ R ,

|Q1(iy)Q2(iy)|
|g(iy)| ≤ 1. (5.5)

Proof. |1− iy
w | = (1 + y2

w2 )1/2 for y,w real, is monotone decreasing in w, so by (5.4),
∣∣∣∣1− iy

µj,m

∣∣∣∣ ≤
∣∣∣∣1− iy

λ2m

∣∣∣∣ ≤
∣∣∣∣1− iy

λ2m−1

∣∣∣∣.
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It follows that

|Qj(iy)| ≤
∞∏
m=1

|1− iy

λ2m
| ≤

∞∏
m=1

|1− iy

λ2m−1
|,

so (5.5) holds.

Now let
Pj(z) = mj,−(z)Qj (z), j = 1, 2,

which are entire functions, and

fj(z) = mj,−(z), j = 1, 2.

Define

F (z) =
P1(z)Q2(z) −Q1(z)P1(z)

g(z)
=

Q1(z)Q2(z)
g(z)

(f1(z)− f2(z)). (5.6)

Proof of Theorem 1.4. At z = λk, the eigenfunctions on the left half-line for both q1 and q2
must match to the common eigenfunctions on the right, so P1(λk)Q2(λk)−P2(λk)Q1(λk) =
0, that is, F (z) is an entire function.
By (5.2), g(z) is a function ofm-type as defined in Appendix B. Thus by Proposition B.5,

there exists a sequence Rk → ∞ so that sup{ 1
|g(z)| | |z| = Rk} ≤ C1 exp(+C2R

ρ
k) for some

ρ < 1. By (5.3) and a similar estimate for the Dirichlet eigenvalues, Pj , Qj are functions
of m-type. It follows by Proposition B.6 that if

lim
|y|→∞

|F (iy)| = 0, (5.7)

then F ≡ 0. If we prove that, then m1,−(z) = m2,−(z), and thus q1 = q2 a.e. on (−∞, 0]
and hence on R . Thus, we need only prove (5.7).
By (2.4), which holds for half-line m-functions [1, 6], |f1(iy) − f2(iy)| = o(1). Thus,

Proposition 5.2 and (5.6) show that (5.7) holds.

Several questions remain open. We do not believe that hypothesis (i) is needed in
Theorem 1.4:

Conjecture 5.3. Theorem 1.4 remains true if (i) is replaced by lim|x|→∞ q(x) =∞.
This will require dealing with entire functions of type larger than 1.
We also believe:

Conjecture 5.4. Suppose limx→∞
q(−x)
q(x) =∞ and lim|x|→∞ q(x) =∞. Then q near +∞

and a finite density subset of eigenvalues for − d2

dx2 + q(x) uniquely determine q on R .
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Appendix A: Dirichlet Boundary Conditions

In this appendix we provide some details in the remaining cases, which involve Dirichlet
boundary conditions at x = 0 and/or x = 1. We need to distinguish three cases (cf. (1.1)):

(I) H has a Dirichlet boundary condition at x = 0 and x = 1, that is,

u(0) = 0, (A.1a)

u(1) = 0. (A.1b)

(II) H has a non-Dirichlet boundary condition at x = 0 and a Dirichlet boundary
condition at x = 1, that is,

u′(0) + h0u(0) = 0, h0 ∈ R , (A.2a)

u(1) = 0. (A.2b)

(III) H has a Dirichlet boundary condition at x = 0 and a non-Dirichlet boundary
condition at x = 1, that is,

u(0) = 0, (A.3a)

u′(1) + h1u(1) = 0, h1 ∈ R . (A.3b)

Since later on, q is supposed to be known on [0, 1
2
+ ε] for some 0 ≤ ε < 1

2
, cases II

and III represent inequivalent situations and need to be treated separately in connection
with Theorems A.1–A.3. Depending on the case at hand, we index the corresponding
eigenvalues λn of H by

{λn}∞n=1 in case I and {λn}∞n=0 in cases II and III. (A.4)

The asymptotic expansion (1.2) then becomes as n → ∞,

λn = (πn)2 +
∫ 1

0

dx q(x) + o(1) in case I, (A.5a)

λn = (π(n + 1
2 ))

2 − 2h0 +
∫ 1

0

dx q(x) + o(1) in case II, (A.5b)

λn = (π(n + 1
2
))2 + 2h1 +

∫ 1

0

dx q(x) + o(1) in case III. (A.5c)

Let u+(z, x) be defined by −u′′
+ + qu+ = zu+ subject to the boundary conditions and

normalizations

u′
+(z, 1) = 1, u+(z, 1) = 0 in cases I and II, (A.6a)

u′
+(z, 1) = −h1, u+(z, 1) = 1 in case III. (A.6b)
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Next we note that items (1) and (3)–(5) of Section 2 remain valid in the present cases
I–III, whereas item (2) becomes

u+(z, x) = − sin
(√

z (1− x)
)

√
z

+O

(
eIm (

√
z) (1−x)

z

)
, (A.7)

u′
+(z, x) = cos

(√
z (1− x)

)
+O

(
eIm (

√
z) (1−x)
√
z

)
(A.8)

in cases I and II, and

u+(z, x) = cos
(√

z (1 − x)
)
+O

(
eIm (

√
z) (1−x)
√
z

)
, (A.9)

u′
+(z, x) =

√
z sin

(√
z (1 − x)

)
+O

(
eIm (

√
z) (1−x)) (A.10)

in case III, as |z| → ∞ for all x ∈ [0, 1].
Introducing Pj , Qj , fj , j = 1, 2 as in (2.11)–(2.13), and g by

g(z) = u1,+(z, 0) in cases I and III, (A.11a)

g(z) = u′
1,+(z, 0) + h0u1,+(z, 0) in case II, (A.11b)

one infers again that {λ1,n}∞n=1 in case I and {λ1,n}∞n=0 in cases II and III are precisely the
zeros of g(z). The corresponding properties (a)–(g) listed in Section 2, suitably adapted
to the present cases I–III, then read as follows:
(a′) Item (a) remains valid except that n in (2.15) runs through N in case I and through

N 0 in cases II and III.
(b′–d′) Items (b), (c), and (d) remain valid.

(e′) As y (real)→ ∞,

|Qj(iy)| = 1
2
| exp(1

2
Im (

√
i) |y|1/2)|(1 + o(1)) in cases I and II,

|Qj(iy)| = 1
2
|y|1/2 | exp(1

2
Im (

√
i) |y|1/2)|(1 + o(1)) in case III.

(f′) As y (real)→ ∞,

|g(iy)| = 1
2 |y|−1/2 | exp(Im (

√
i) |y|1/2)| (1 + o(1)) in case I,

|g(iy)| = 1
2 | exp(Im (

√
i) |y|1/2)| (1 + o(1)) in cases II and III.

(g′) For n sufficiently large, one obtains,

inf
θ∈[0,2π]

|g((π(n + 1
2
))2eiθ)| ≥ 1

πn
+O( 1

n2 ) in case I,

inf
θ∈[0,2π]

|g((π(n + 1))2eiθ)| ≥ 1 +O( 1
n
) in cases II and III.
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Introducing F (z) as in (2.16) and (2.18), one verifies, using (b′) and (g′), that (2.17)
remains valid. Items (c′), (e′), and (f′), however, yield the following modification of (2.19)
as y (real)→ ∞,

|F (iy)| = 1
2 |y|1/2 [o(|y|−1)](1 + o(1)) = o(|y|−1/2) in case I, (A.12a)

|F (iy)| = 1
2 [o(|y|−1)](1 + o(1)) = o(|y|−1) in case II, (A.12b)

|F (iy)| = 1
2 |y|[o(|y|−1)](1 + o(1)) = o(1) in case III. (A.12c)

Following the arguments in (2.16)–(2.19) step-by-step and taking into account the eigen-
value asymptotics in (A.5), the remaining Dirichlet cases in Theorem 1.1 then read as
follows.

Theorem A.1. Let H = − d2

dx2 + q in L2((0, 1)) with boundary conditions (A.1), (A.2),
or (A.3) according to cases I, II, or III. Then q on [0, 1

2 ], together with the knowledge of
h0 = ∞ or h0 ∈ R , and all the eigenvalues of H, uniquely determine h1 (i.e., h1 = ∞ in
cases I and II and h1 ∈ R in case III) and q (a.e.) on all of [0, 1].

Remark. Case I for q ∈ L2((0, 1)) appears to be due to Pöschel and Trubowitz [29], Ch. 4.
Much to our surprise, the extension of case I to q ∈ L1((0, 1)) in Theorem A.1 seems to be
new. Case II is originally due to Hochstadt and Lieberman [14] as recorded in Theorem 1.1.
To the best of our knowledge, case III is a new result.
The analog of Theorem 1.2 is now obtained as follows. Replace the definition of F̃ in

(2.20) by

F̃ (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)

k+1∏
�=1

(z − λ�) in cases I and II, (A.13a)

F̃ (z) =
[P1(z)Q2(z)− P2(z)Q1(z)]

g(z)

k∏
�=1

(z − λ�) in case III. (A.13b)

Here {λ�}k+1
�=1 in cases I and II, and {λ�}k�=1 in case III represent eigenvalues of H1 and H2

which are not a priori assumed to be equal.
The asymptotic behavior of |F̃ (iy)| as y (real) → ∞,

|F̃ (iy)| = o(1) in case I, (A.14a)

|F̃ (iy)| = o(|y|−1/2) in cases II and III, (A.14b)

then yields the following new result.

Theorem A.2. Let H = − d2

dx2 +q in L2((0, 1)) with boundary conditions (A.1), (A.2), or
(A.3) according to cases I, II, or III. Suppose q is C2k((12 − ε, 1

2 + ε)), k = 0, 1, . . . for some
ε > 0. Then q on [0, 1

2
], together with the knowledge of h0 = ∞ or h0 ∈ R , and all the

eigenvalues of H except for (k +1) in cases I and II and k in case III, uniquely determine
h1 (i.e., h1 =∞ in cases I and II and h1 ∈ R in case III) and q on all of [0, 1].

Finally, we consider the analog of Theorem 1.3 in the Dirichlet context.
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Theorem A.3. Let H = − d2

dx2 +q in L2((0, 1)) with boundary conditions (A.1), (A.2), or
(A.3). Then q on [0, 1

2 +
α
2 ] for some α ∈ (0, 1), h0 =∞ or h0 ∈ R , and a subset S ⊆ σ(H)

of all the eigenvalues σ(H) of H satisfying

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2 (A.15)

for all sufficiently large λ0 ∈ R , uniquely determine h1 (i.e., h1 =∞ in cases I and II and
h1 ∈ R in case III) and q on all of [0, 1].

Proof. Following the arguments employed in Section 4, we introduce again

gS(z) =
∏
λn∈S

(
1− z

λn

)
, S ⊆ σ(H),

gσ(H)(z) =
∞∏
n=1

(
1− z

λn

)
in case I,

gσ(H)(z) =
∞∏
n=0

(
1− z

λn

)
in cases II and III,

where

σ(H) = {λn}∞n=1 in case I and σ(H) = {λn}∞n=0 in cases II and III.

Then (A.15) and the method of proof of Theorem B.4 yield

ln(|gS(iy)|) ≥ (1 − α) ln(|gσ(H)(iy)|) + α
4
ln(1 + y2) + C0. (A.16)

Since asymptotically (cf. (f′)) for |y| large enough,

|gσ(H)(iy)| ∼ 1
2 |y|−1/2

∣∣eIm(
√
i) |y|1/2 ∣∣ in case I,

|gσ(H)(iy)| ∼ 1
2

∣∣eIm(
√
i) |y|1/2 ∣∣ in cases II and III,

one infers from (A.16) that for some C > 0

|gS(iy)| ≥ C |y|−1/2
∣∣eIm(

√
i)(1−α)|y|1/2∣∣ in case I, (A.17a)

|gS(iy)| ≥ C
∣∣eIm(

√
i)(1−α)|y|1/2∣∣ in cases II and III (A.17b)

for |y| sufficiently large.
Introducing again Pj(z) = uj,+(z, 1

2 +
α
2 ), Qj(z) = u′

j,+(z,
1
2 +

α
2 ), j = 1, 2 for the

two candidate potentials, noticing 1 − (12 +
α
2 ) =

1
2 (1 − α), we infer asymptotically as

y (real) → ∞,

|Qj(iy)| ∼ 1
2

∣∣eIm(
√
i) (1/2)(1−α)|y|1/2∣∣ in cases I and II, (A.18a)

|Qj(iy)| ∼ 1
2 |y|1/2

∣∣eIm(
√
i) (1/2)(1−α)|y|1/2∣∣ in case III. (A.18b)
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Given (A.17) and (A.18), one can now finish the proof of Theorem A.3 in the same way
as that of Theorem 1.3 in Section 4.

Remark. As in the case α = 0, we have an extension of the same type as Theorem A.2.
Explicitly, if q is assumed to be C2k near x = 1

2 +
α
2 , we only need

#{λ ∈ S | λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) | λ ≤ λ0}+ α
2
−N(k) (A.19)

instead of (A.15), where N(k) = k + 1 in cases I and II and N(k) = k in case III.

Appendix B: Zeros of Entire Functions

In discussing extensions of Hochstadt’s discrete (finite matrix) version [13] of the
Hochstadt-Lieberman theorem in [10], we made use of the following simple lemma which
is an elementary consequence of the fact that any polynomial of degree d with d+ 1 zeros
must be the zero polynomial:

Lemma B.1. Suppose f1 = P1
Q1

and f2 = P2
Q2

are two rational fractions where the

polynomials satisfy deg(P1) = deg(P2) and deg(Q1) = deg(Q2). Suppose that d =
deg(P1) + deg(Q1) and that f1(zn) = f2(zn) for d + 1 distinct points {zn}d+1

n=1 ∈ C . Then
f1 = f2.

Our main goal in this appendix is to prove an analogous theorem for a class of entire
functions. The theorem is sharp in the sense that it includes Lemma B.1 (at least the case
of Lemma B.1 where the zeros of the entire functions involved and the zn are all positive).
We will be interested here in entire functions of the form

f(z) = C
∞∏
n=0

(
1− z

xn

)
, (B.1)

where 0 < x0 < x1 < · · · is a suitable sequence of positive numbers which are the zeros of
f and C is some complex constant.
Given a sequence {xn}∞n=0 of positive reals, define

N(t) = #{n ∈ N ∪ {0} | xn < t}. (B.2)

Recall the following basic theorem (see, e.g., [19], Ch. I; [28], Sects. II.48 and II.49):

Theorem B.2. Fix 0 < ρ0 < 1. Then:
(i) If {xn}∞n=0 is a sequence of positive reals with

∞∑
n=0

x−ρ
n < ∞ for all ρ > ρ0 (B.3)

then the product in (B.1) defines an entire function f with

|f(z)| ≤ C1 exp(C2|z|ρ) for all ρ > ρ0. (B.4)

(ii) Conversely, if f is an entire function satisfying (B.4) with all its (complex) zeros
on (0,∞), then its zeros {xn}∞n=0 satisfy (B.3), and f has the canonical product
expansion (B.1).
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Moreover, (B.3) holds if and only if

N(t) ≤ C |t|ρ for all ρ > ρ0. (B.5)

Given this theorem, we single out:

Definition B.3. A function f is called of m-type if and only if f is an entire function
satisfying (B.4) (of type 0 < ρ < 1 in the usual definition) with all the zeros of f on (0,∞).
Our choice of “m-type” in Definition B.3 comes from the fact that in many cases we

discuss in this paper, the m-function is a ratio of functions of m-type. By Theorem B.2,
f in Definition B.3 has the form (B.1) and N(t), which we will denote as Nf(t), satisfies
(B.5). We are heading toward a proof of

Theorem B.4. Let f1, f2, g be three functions of m-type so that:

(i) f1(z) = f2(z) at any point z with g(z) = 0.
(ii) For all sufficiently large t,

max(Nf1 (t), Nf2 (t)) ≤ Ng(t)− 1.

Then, f1 = f2.

Proposition B.5. Let f be a function of m-type. Then there exists a 0 < ρ < 1 and a
sequence {Rk}∞k=1, Rk → ∞ as k → ∞, so that

inf{|f(z)| | |z| = Rk} ≥ C1 exp(−C2R
ρ
k).

Proof. By hypothesis, for some 0 < ρ′ < 1,

Nf (t) ≤ Ctρ
′
. (B.6)

This implies

xn ≥
(
n

C

)1/ρ′

. (B.7)

If for all n ≥ n0,
|xn − xn−1| ≤ 2,

then
xn ≤ xn0 + 2(n− n0),

which contradicts (B.7). Thus for an infinite sequence {n(k)}∞k=1, n(k) → ∞ as k → ∞,
we necessarily must have

xn(k) − xn(k)−1 ≥ 2. (B.8)

We will pick
Rk = 1

2 (xn(k) + xn(k)−1). (B.9)
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For any α > 0, |1− αeiθ|2 = 1 + α2 − 2α cos(θ) takes its minimum value at θ = 0, so

inf{|f(z)| | z = Rk} = |f(Rk)|. (B.10)

By Theorem B.2, f has the form (B.1). We will write

ln(|f(Rk)|) = A1 + A2, (B.11)

where

A1 =
∑

n|xn≥2xn(k)

ln
( ∣∣∣∣1− Rk

xn

∣∣∣∣
)
, A2 =

∑
n|xn<2xn(k)

ln
( ∣∣∣∣1− Rk

xn

∣∣∣∣
)
.

We estimate A1 by writing the sum as a Stieltjes integral, integrating by parts, and using
(B.6):

A1 =
∫ ∞

2xn(k)

ln
(
1− Rk

t

)
dNf (t)

= −
∫ ∞

2xn(k)

(
1

1− Rk

t

)
Rk
t2
[Nf (t)−Nf(2xn(k))] dt

≥ −
∫ ∞

2Rk

2Rk
t2

Ctρ
′
dt = −CRρ

′
k , (B.12)

where we have used C to represent a positive constant that varies from formula to formula.
For A2, we write,

ln
( ∣∣∣∣1− Rk

xn

∣∣∣∣
)
= ln(|xn −Rk|)− ln(|xn|) ≥ − ln(|xn|) (B.13)

≥ − ln(4Rk), (B.14)

where (B.13) follows from (B.8) and (B.9), and (B.14) follows from

|xn| < 2xn(k) ≤ 2(2Rk).

Thus by (B.6),

A2 ≥ −Nf (2xn(k)) ln(4Rk) ≥ −CRρ
′
k ln(4Rk) ≥ −CRρ

′′
k (B.15)

for some 1 > ρ′′ > ρ′ and suitable positive constants C . (B.10), (B.11), (B.12), and (B.15)
prove the proposition.

Proposition B.6. Let F be an entire function that satisfies

(i) sup|z|=Rk
|F (z)| ≤ C1 exp(C2R

ρ
k) for some 0 ≤ ρ < 1, C1, C2 > 0, and some

sequence Rk → ∞ as k → ∞.
(ii) lim|x|→∞;x∈R |F (ix)| = 0.
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Then F ≡ 0.

Proof. A standard Phragmén-Lindelöf estimate separately applied to Re(z) > 0 and
Re(z) < 0 (i.e., to an angle of opening π; see, e.g., [28], Sect. II.34) shows that F is
bounded. Liouville’s theorem implies that F is constant, and then the fact that |F (ix)| → 0
as x → ∞ (x real), shows that F = 0.

Proof of Theorem B.4. By hypothesis (i), f1(z)−f2(z)
g(z) := Q(z) is an entire function. By

(B.4) (applied to f1 and f2) and Proposition B.5 (applied to g), there is a sequenceRk → ∞
as k → ∞ so that Q(z) satisfies condition (i) of Proposition B.6. Thus, it suffices to prove
limx→±∞

f1(ix)
g(ix) = limx→±∞

f2(ix)
g(ix) = 0. We will prove the f1 result for definiteness. In

fact, our proof will show that f1(ix)
g(ix) = O(x−1) as |x| → ∞. Without loss of generality, we

will assume that f1, g satisfy (B.1) with C = 1, that is, that f1(0) = g(0) = 1. We will also
suppose that Nf1 (t) = Ng(t) = 0 if t ≤ 1, which can be arranged by appropriate scaling.
Notice first that

ln(|f1(ix)|) =
∞∑
n=0

1
2 ln

(
1 +

x2

x2
n

)

= 1
2

∫ ∞

0

ln
(
1 +

x2

t2

)
dNf1 (t)

= 1
2

∫ ∞

0

1
1 + x2

t2

2x2

t3
Nf1(t)dt

=
∫ ∞

0

x2

t3 + tx2
Nf1(t)dt. (B.16)

The boundary term at t = 0 in the integration by parts step vanishes since Nf1(0) = 0
and the one at t = ∞ vanishes by the estimate (B.5) and the fact that for x fixed,
ln(1 + x2

t2 ) = O(t−2) as t → ∞.
By hypothesis (ii) of the theorem, there are t0 ≥ 1 and C ≥ 0 such that

Nf1(t) ≤ Ng(t)− 1, t ≥ t0 (B.17a)

≤ Ng(t) +C, t ≤ t0. (B.17b)

Hence, by (B.16),

ln
( ∣∣∣∣f1(ix)

g(ix)

∣∣∣∣
)

≤ (C + 1)
∫ t0

1

x2

t3 + tx2
dt−

∫ ∞

1

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2),

since x2

t3+tx2 = − d
dt
[ 1
2
ln(1 + x2

t2
)]. Thus, as claimed,

f1(ix)
g(ix)

= O(x−1)
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as |x| → ∞. .

One can replace (B.17a) by the following pair of conditions for t ≥ t0 ≥ 1, t0 sufficiently
large:

Nf1 (t) ≤ Ng(t) +D for some D > −1, (B.18)

lim
t→∞ t−(D+1)−1 |{s ∈ [t0, t] | Nf1(s) > Ng(s)− 1}| = 0, (B.19)

where | · | abbreviates Lebesgue measure. Indeed, denoting by
γ(t) = |{s ∈ [t0, t] | Nf1 (s) > Ng(s) − 1}|

the Lebesgue measure of the set in (B.19), the method of proof in Theorem B.4, together
with (B.18) and (B.19), imply

ln
( ∣∣∣∣f1(ix)

g(ix)

∣∣∣∣
)
=

∫ ∞

0

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

≤ C

∫ t0

1

x2

t3 + tx2
dt+

∫ ∞

t0

x2

t3 + tx2
[Nf1 (t)−Ng(t)] dt

= C

∫ t0

1

x2

t3 + tx2
dt+

∫
{t∈[t0,∞)|Nf1(t)≤Ng(t)−1}

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

+
∫
{t∈[t0,∞)|Nf1(t)>Ng(t)−1}

x2

t3 + tx2
[Nf1(t)−Ng(t)] dt

≤ C

∫ t0

1

x2

t3 + tx2
dt−

∫ ∞

t0

x2

t3 + tx2
dt

+ (D + 1)
∫
{t∈[t0 ,∞)|Nf1(t)>Ng(t)−1}

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2)

+ (D + 1)
∫ ∞

x

x2

t3 + tx2
dt+ (D + 1)

∫
{t∈[1,x]|Nf1 (t)>Ng(t)−1}

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2
ln(1 + x2) + 1

2
(D + 1) ln(2)

+ (D + 1)
∫ γ(x)+1

1

x2

t3 + tx2
dt

≤ (C + 1) ln(t0)− 1
2 ln(1 + x2) + 1

2 (D + 1) ln(2) + (D + 1)
∫ γ(x)+1

1

dt

t

≤ − 1
2 ln(1 + x2) + 1

2(D + 1)[ln(2) + ln((1 + γ(x))2)] + (C + 1) ln(t0).
(B.20)

In particular, (B.19) is precisely the result needed in (B.20) to ensure that the limit |x| → ∞
of | f1(ix)

g(ix) | is zero. In (B.20) we used the obvious inequality x2

[t3+tx2] < (1t ) for t > 0 and the



24 F. GESZTESY AND B. SIMON

fact that ∫
Ω

f(t)dt ≤
∫ |Ω|+1

1

f(t)dt

whenever Ω ⊆ [1,∞) has finite Lebesgue measure, |Ω| < ∞, and f is monotone decreasing
on [1,∞).
An interesting case is D = 0 in (B.18)–(B.20).
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