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Abstract. We provide a new proof of the theorem of Simon and Zhu that in the region

|E| < λ for a.e. energies, − d2

dx2 + λ cos(xα), 0 < α < 1 has Lyapunov behavior with a

quasi-classical formula for the Lyapunov exponent. We also prove Lyapunov behavior for

a.e. E ∈ [−2, 2] for the discrete model with V (j2) = ej , V (n) = 0 if n /∈ {1, 4, 9, . . . }. The

arguments depend on a direct analysis of the equations for the norm of a solution.

§1. Introduction

In this paper, we will consider half-line Schrödinger operators

Hθ = − d2

dx2
+ V (x) (1.1)

on L2(0,∞) with u(0) cos(θ) + u′(0) sin(θ) = 0 boundary conditions and the discrete
analog on `2(Z+), Z+ = {1, 2, 3, . . . },

(hαu)(n) =
{

u(n + 1) + u(n− 1) + V (n)u(n) n ≤ 2
u(2) + (V (1) + α)u(1) n = 1

(1.2)

where α plays the role of a boundary condition.
We are interested in models where Hθ has dense point spectrum in some interval [a, b].

By general instability results [3,7], this cannot happen for all θ but can and does for a.e. θ
if [a, b] ⊂ spec(Hθ), and if for a.e. E ∈ [a, b], there is a solution −u′′ +V u = Eu which is
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2 Y. LAST AND B. SIMON

L2 at infinity [4,15,16]. The first examples of such operators involved random V ’s where
one proves dense point spectrum for a.e. V.

Examples which are deterministic were first found by Gordon [6] (also see [9]), who
showed it for problems with very high and sparse but not too sparse barriers. Simon-
Zhu [17] proved a similar result for slowly oscillating potentials like V (x) = λ cos(xα);
0 < α < 1. Attention on the first class was focused by work of Simon-Spencer [15], and
on the second by work of Behncke [1] and Stolz [18] — these authors showed the absence
of a.c. spectrum.

Our goal here is to obtain dense pure point spectrum by direct control of the asymp-
totics of the transfer matrix T (0, x), defined by T (0, x)

(u′(0)
u(0)

)
=

(u′(x)
u(x)

)
for solutions

of
−u′′ + V u = Eu (1.3)

in the continuum case, and T (0, n)
(u(1)

u(0)

)
=

(u(n+1)
u(n)

)
for solutions of

u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n) (1.4)

in the discrete case. It follows from results of Ruelle [13] that if limn→∞ 1
n ln ‖T (0, n)‖ >

0, then there is an L2 solution (here we include existence and finiteness of the limit).
The same idea works for other situations, for example, if limn→∞ 1

nγ ln ‖T (0, n)‖ > 0 for
any γ > 0; see [11].

For the case V (x) = λ cos(xα), that limn→∞ 1
n ln ‖T (0, n)‖ exists for a.e. E and an

explicit formula for the limit was found by Simon and Zhu [17]. In Section 6, we will
prove

Theorem 1.1. Let V (x) = 1 + cos(xα); 0 < α < 1. Let xn = (2πn)1/2; let a(n) =
n(1−α)/2α, and let {E(n)

j }∞j=1 be the eigenvalues of

− d2

dx2
+ V (x); u(xn−1) = u(xn) = 0

on L2(xn−1, xn; dx) and let

Ā =
∞⋂

k=1

∞⋃
m=k

∞⋃
j=1

(E(n)
j − e−a(n), E

(n)
j + e−a(n))

(so that Ā is a Gδ dense in [0,∞) of Lebesgue measure zero).
Let E ∈ (0, 2)\Ā. Then,

lim
n→∞

1
n

ln‖TE(0, n)‖ =
1
2π

∫
{y|1+cos(y)≥E}

(1 + cos(y) − E)1/2 dy.

Remarks. 1. The forbidden set Ā in [17] is larger; they conjecture that our Ā is the
“right” one. One should be able to use WKB methods to describe Ā more completely.
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2. It is known [1,18] that for E > 2, the limit exists and is zero.
3. V (x) can be replaced by any f(xα) where f is any C2 periodic function with a

finite number of critical points in each period.
Unlike Simon-Zhu [17], we will directly attack the transfer matrix by using a transfor-

mation idea. In the continuum case, we transform from u′(x), u(x) to R(x), θ(x) defined
by (k =

√
E):

u′(x) = kR(x) cos(θ(x)) (1.5a)

u(x) = R(x) sin(θ(x)). (1.5b)

Then (1.3) is equivalent to

d(θ(x))
dx

= k − V (x)
k

sin2(θ(x)) (1.6)

d ln R

dx
(x) =

1
2k

V (x) sin(2θ(x)). (1.7)

In [10], together with A. Kiselev, we have shown how to exploit these formulas in a
variety of spectral situations, and our main goal here is to show that they are useful in
many tunnelling calculations.

In the classically forbidden region where V (x) > k2, (1.6) tends to drive θ toward
values where the left side vanishes, that is,

sin(θ) = ±
√

k2

V (x)
. (1.8)

At such points,
1
2k

V (x) sin(2θ(x)) = ±
√

V (x) − k2 . (1.9)

The solutions of (1.8) where (1.9) has the plus sign are attracting, which is why R grows
like exp

(
+

∫ √
V (x) − k2

)
.

In the classically allowed region where V (x) < k2, it is useful to define R, θ in a slightly
different way. Define

k(x) =
√

k2 − V (x) (1.10a)

u′(x) = k(x)Rw(x) cos(θw(x)) (1.10b)

u(x) = Rw(x) sin(θw(x)) (1.10c)

which we will call WKB-Prüfer variables. Then, Rw, θw obey

dθw(x)
dx

= k(x) − k′(x)
2k(x)

sin(2θw(x)) (1.11)

d ln Rw(x)
dx

= −k′

k
cos2(θw(x)). (1.12)
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For later purposes, note that cos2(u) = 1
2

+ 1
2

cos(2u) suggests we define

R̃w(x) = k(x)1/2Rw(x) (1.13)

in which case,
d ln R̃w(x)

dx
= − k′

2k
cos(2θw(x)). (1.14)

Equations (1.11)/(1.14) can be found, for example, in [2].
To the extent that purely oscillatory terms are unimportant because they average to

zero, we have R̃w(x) = constant, θw(x) =
∫ x

k(y)dy so that u has the the WKB form,

k(x)−1/2 sin
(

θ0 +
∫ x

x0

k(y)dy

)
.

As we will see in the appendix, this makes (1.11/1.14) ideal tools for WKB approxima-
tions in the classically allowed region.

For the discrete case, we need an analog of modified Prüfer variables, and these are
provided by what we have called EFGP variables after contributions in [5,8,12]. Define
R(n), θ(n) by

R(n) cos(θ(n)) = u(n) − cos(k)u(n − 1) (1.15a)

R(n) sin(θ(n)) = (sink)u(n − 1), (1.15b)

where E ∈ (−2, 2) and k are related by E = 2cos(k). Then

θ̄(n) ≡ θ(n) + k; νk(n) ≡ − V (n)
sin(k)

(1.16)

cot(θ(n + 1)) = cot(θ̄(n)) + νk(n) (1.17)

R(n + 1)2

R(n)2
= 1 + νk(n) sin(2θ̄(n)) + νk(n)2 sin2(θ̄(n)). (1.18)

We will also need the following relation between θ and u:

u(n)
u(n − 1)

=
sin(θ̄(n))
sin(θ(n))

. (1.19)

For any θ0 ∈ [0, π), define R(x, θ0) (resp. R(n, θ0)) to solve (1.6/1.7) (resp. (1.17/1.18))
with θ(0) = θ0 (resp. θ(1) = θ0) and R(0) = 1 (resp. R(1) = 1). Then the behavior of
any two R’s determines the growth of T in the sense that for any fixed k with k > 0
(resp. k ∈ (0, π)),

C1(k)R(n, θ1) ≤ ‖T (0, n)‖ ≤ C2(k, θ1, θ2)max(R(n, θ1), R(n, θ2)),

where C1 and C2 are constants independent of n and V . In particular,
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Proposition 1.2. If for θ1 6= θ2 (both in [0, π)) we have

lim
n→∞

1
n

ln R(n, θ1) = lim
n→∞

1
n

ln R(n, θ2) = γ,

then
lim

n→∞
1
n

ln ‖T (n, 0)‖ = γ.

As already mentioned, in the classically forbidden region, the basic equations push R
to want to grow as exp

(
+

∫ √
V (y) −E dy

)
or else to decay as exp

(−∫ √
V (y) − E dy

)
.

In examples like cos(xα), forbidden and allowed regions alternate. Our strategy will be
to prove one of three possibilities occurs:

(i) All forbidden regions are decay regions for x sufficiently large. In that case, u
will be in L2.

(ii) All forbidden regions are growth regions for x sufficiently large. In that case, R
grows in the expected WKB manner.

(iii) Arbitrarily far out, there will be a growing region followed by a decaying region.
In that case, we can cut off u at the centers of those forbidden regions and get a
very good approximate eigenfunction, and so see that E ∈ Ā.

So if E /∈ Ā, either R grows in the expected way or u is L2. Since at most one θ0 can
lead to an L2 solution, we can always find two θ’s with the expected growth and so use
Proposition 1.2.

In Section 2, we discuss a discrete model with sparse growing barriers for which
limn→∞
1
n lim ln ‖T (0, n)‖ > 0. This shows the use of EFGP variables. In Section 3, we discuss a
model like cos(xα) but where cos is replaced by a periodized step function. Sections 4–6
present our proof of Theorem 1.1. An appendix discusses bounded transfer matrices in
the region E > 2 in the 1 + cos(xα) model if α < 1

2
.

B.S. would like to thank M. Ben-Artzi for the hospitality of the Hebrew University
where some of this work was done. Y.L. would like to thank J. Avron for the hospitality
of the ITP at the Technion where some of this work was done.

§2. A Model of Simon-Spencer Type

In this section, we will study the following model on `2([1,∞)),

(Hαu)(n) = u(n + 1) + u(n − 1) + V (n)u(n) n ≥ 2

= u(n + 1) + αu(n) n = 1

where

V (j2) = eβj j ≥ 2

V (n) = 0 n 6= 4, 9, 16, . . .
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α plays the role of a boundary condition. β is a parameter, β > 0.
Define

Am =
m−1⋃
j=1

(2 cos(πj/m) − e−
√

m , 2 cos
(
πj/m) + e−

√
m

)
and let

Ā =
∞⋂

k=1

∞⋃
m=k

A2m+1

so Ā is a dense Gδ in [−2, 2] of Lebesgue measure zero.
We will the prove the following theorem:

Theorem 2.1. Suppose E /∈ Ā is in [−2, 2]. Then,

lim
n→∞

1
n

ln ‖T (n, 0)‖ =
β

2
. (2.1)

For a.e. α, Hα has dense point spectrum in [−2, 2] with eigenfunctions decaying as
e−βn/2.

Remarks. 1. By “eigenfunctions decaying as e−βn/2,” we mean limn→∞ ln(|u(n)|2 +
|u(n + 1)|2)1/2/n = −β

2 .
2. Since lim |V (n)| = ∞, the results of Simon-Spencer [15] imply σac(Hα) = ∅. Gordon

[6] and Kirsch-Molchanov-Pastur [9] proved that for some potentials of Simon-Spencer
type (where the distances between the bumps are not too large), H has dense point
spectrum for a.e. boundary condition. Their methods apply to the problem discussed
here. Our method is different and identifies the set Ā and the Lyapunov exponent
γ(E) = β

2 .
3. A similar result holds if V ([jβ ]) = eνjµ

for any µ > 0 and β > 1 (here [jβ] is the
greatest integer less than jβ). Then, limn→∞

ln ‖T (n,0)‖
nζ = ν

µ+1
where ζ = (µ + 1)/β.

Where we use Ruelle’s result [13] in the argument below, one instead uses its extension
in [11].

Proof. It obviously suffices to prove that for E /∈ Ā, lim 1
n ln ‖T (n, 0)uθ0‖ = β

2 for uθ0 =
(cos(θ0), sin(θ0)) and at least two out of three values of θ0, say, θ0 = 0, π

4 , and π
2 . Pick

θ0 = 0 and let k be defined by E = 2cos(k) and let θ(n), R(n) be the EFGP variables
for this value of θ0 and E.

Assume that for j ≥ j0,
|θ̄(j2)| ≥ exp(−j2/3). (2.2)

We then have that by (1.18), R(n)2 is constant for n = j2 + 1, . . . , (j + 1)2 and jumps
from n = j2 to n = j2 + 1. By (1.16) and (1.18),

R(j2 + 1)2

R(j2)2
≤ 1 +

eβj

| sink| +
e2βj

sin2(k)

≥ 1 +
sin2 exp(−j2/3)

sin2(k)
e2βj − eβj

sin(k)
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for j ≥ j0. From these inequalities and
∑m

j=1 j = m(m+1)
2 , one easily sees that limn→∞

ln R(j2+1)
j2 = β

2 and then

lim
n→∞

lnR(n)
n

=
β

2
. (2.3)

We need to examine (2.2). We will prove that at least one of the following holds for
E, θ0 fixed:

(i) (2.2) holds; or
(ii) E ∈ Ā; or
(iii) ∑

n

‖T (n, 0)uθ0‖2 < ∞. (2.4)

If we prove this and E /∈ Ā, then for each of θ0 = 0, θ0 = π
4 , and θ0 = π

2 , one of (i) or
(iii) must hold. Since (2.4) can hold for at most one θ0 (by constancy of the Wronskian),
(2.2) must hold for at least two θ0’s and so (2.3) holds for two θ0’s, and thus (2.1) holds.

Once (2.1) holds, application of Ruelle’s theorem [13] implies that for E /∈ Ā, there
exists an initial uE so that lim ln ‖T (0, n)uE‖/n = −β

2 , and then the Simon-Wolff [16]
method proves point spectrum for a.e. α (see, e.g., [4,14]).

Thus, we need only prove that one of the three alternatives (i)–(iii) above holds.
Suppose neither (i) nor (ii) holds. We will prove that (iii) holds.

Since (ii) is assumed false, there exists j0 large so that Lemma 2.2 holds and so that
E /∈ Ā2j−1 for j ≥ j0. In particular, alternative (a) of Lemma 2.2 does not hold.
Suppose j1 ≥ j0 and |θ̄(j2

1)| ≤ exp(−j
2/3
1 ). Since alternative (b) of Lemma 2.2 holds, we

can iterate and see that (2.5) holds for j = j0 + 1, . . . , j1.
If alternative (i) fails, there are j1’s going to infinity with |θ̄(j2

1)| ≤ exp(−j
2/3
1 ), so

(2.7) holds for all j ≥ j0, and thus |R(n)| ≤ Ce−(α−ε)n/4 so (2.4) holds. �
Lemma 2.2. There is a j0 (depending only on k and β) so that if j ≥ j0 and |θ̄(j2)| ≤
exp(−j2/3), then either

(a) For some ` ∈ {1, . . . , 2j − 2}, |E − 2 cos( π`
2j−1 )| ≤ e−

√
2j−1 , or

(b) |θ̄(j − 1)2)| ≤ exp(−(j − 1)2/3) and

R(j2) ≤ e−βj/2R((j − 1)2). (2.5)

Proof. By (1.19),

|u(j2)| =
∣∣∣∣R(j2)

sink
sin(θ̄(j2))

∣∣∣∣ ≤ CR(j2) exp(−j2/3), (2.6)

where C will be used to indicate a constant depending only on k. C can vary from
formula to formula!
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Let q = (j − 1)2. If (recall R(n) = R(j2) if q < n ≤ j2)

|u(q)| ≤ R(j2) exp(−j2/3), (2.7)

then ũ ≡ u � (j = q + 1, . . . , j2 − 1) is an extremely accurate trial function for H̃0, the
Jacobi matrix on (j = q + 1, . . . , j2 − 1), for by (2.6), (2.7)

‖(H̃0 − E)ũ‖2 ≤ CR(j)2 exp(−2j2/3)

while by an elementary estimate,

‖ũ‖2 ≥ CjR(j)2.

Thus, by taking j0 large enough, we can be certain that

‖(H̃0 − E)ũ‖
‖u‖ ≤ exp(−

√
2j − 1 )

if j ≥ j0. Since the eigenvalues of H̃0 are {2 cos( π`
2j−1

)}`=1,...,2j−2, we conclude if j ≥ j0

and (2.7) holds, then alternative (a) holds.
So suppose that (2.7) fails. Since u(q)2 + u(q + 1)2 ≥ CR(q + 1)2 = CR(j2), we

conclude that ∣∣∣∣ u(q)
u(q + 1)

∣∣∣∣ ≥ C exp(−j2/3). (2.8)

Thus, using the eigenfunction equation,∣∣∣∣u(q − 1)
u(q)

∣∣∣∣ ≥ eβj − |E| − C exp(j2/3) ≥ 1
2

eβ(j−1) (2.9)

if j ≥ j0 and j0 is sufficiently large.
By (1.19), (2.9) implies ∣∣∣∣sin(θ̄(q))

sin(θ(q))

∣∣∣∣ ≤ 2e−β(j−1)

so for j ≥ j0 with j0 large, we have |θ̄(q)| ≤ Ce−β(j−1) ≤ exp(−(j − 1)2/3) verifying one
of the conclusions.

Moreover, by (2.8) and (2.9) (C is a constant whose value changes!),

R(j)2 = R(q + 1)2 ≤ C(u(q)2 + u(q − 1)2)

≤ Ce−2βj[1 + exp(2j2/3)]u(j − 1)2

≤ Ce−2βj[1 + exp(2j2/3)]R(q)2

≤ e−βjR(q)2
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if j ≥ j0 with j0 large. This proves (2.5). �

§3. A Warm-up Problem

In this section, we treat an elementary tunnelling problem that, because V is piecewise
constant, avoids some of the technicalities we will need in the cos(xα) case. Throughout
this section, let [x] ≡ greatest integer less than x, and define

f(x) = 1
2 (1 + (−1)[x])

V (x) = f(xα) (3.1)

with 0 < α < 1. Thus, f is 1 (resp. 0) for x in [0, 1)∪ [2, 3)∪ [4, 5) · · · (resp. [1, 2)∪ [3, 4)∪
· · · ). V consists of regions 1, 2, . . . , where V is first 1, then 0, then 1, . . . and region n
runs from (n − 1)1/α to n1/α and has approximate width α−1n(1/α)−1 going to infinity.
We will use Q1, L1, Q2, L2, . . . for the regions and |Q1|, |L1|, . . . for their widths. Ln is
the nth region where V is 0.

For each L, consider the potential WL which is 0 on [0, L] and 1 for other x. Let
e1(L) < · · · < emL (L) denote the eigenvalues of − d2

dx2 + WL of energy less than 1. A
Sturm oscillation argument shows that mL = L

2π + O(1) as L → ∞.
Define

Aj =
mLj⋃
k=1

(
ek(Lj) − e−

√
|Qj | , ek(Lj) + e−

√
|Qj | )

and let

Ā =
∞⋂

`=1

∞⋃
j=`

Aj

which is a dense Gδ of [0, 1] of Lebesgue measure zero.

Theorem 3.1. Let Hθ = − d2

dx2 + V (x) with V given by (3.1) with 0 < α < 1 and θ

boundary conditions at 0. Suppose E ∈ (0, 1)\Ā. Then

lim
x→∞

1
|x| ln‖T (0, x)‖ =

1
2

√
1 −E . (3.2)

Proof. Let Qi = (xi, yi), Li = (yi, xi+1). We will look at three values of θ
(k)
0 , say, 0, π

4 , π
2

for k = 1, 2, 3 and let Rk(x), θk (x) be the solution of the usual modified Prüfer equations
with θ(0) = θ

(i)
0 and Rk(0) = 1. Our goal is to prove that if E ∈ (0, 1)\Ā, then for each

k, either ‖T (0, x)uθk‖ ∈ L2 or limn→∞ 1
|x| ln Rk(x) = 1

2

√
1 − E. Since at most one k can

have ‖T (0, x)uθk‖ ∈ L2, we conclude (3.2).
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In each region Lj , T (yj , x) is just the free transfer matrix at energy E and so ‖T (yj , x)‖
≤ C if x ∈ Lj . Thus, | ln Ri(xj+1) − ln Ri(yj)| ≤ C and thus

lim
n→∞

1
xn+1

n∑
j=1

| ln R(xj+1) − lnR(yj)| → 0

since xn+1 ∼ (2n)1/α and thus n
xn+1

→ 0. That means we only have to control the change
of R in the tunnelling regions Qi.

Define an angle η in (0, π
2 ) by sin(η) = k so cos(η) =

√
1 −E. Then in the regions Qi,

(1.6) can be rewritten as
dθ

dx
=

1
k

(sin2(η) − sin2(θ)). (3.3)

The equation (3.3) with θ thought of as running mod 2π has a simple structure. There
are four fixed points where sin2(θ) = sin2(η), viz. θ = ±η, π ± η. The fixed points at η
and π + η are attracting, and the ones at −η and π − η are repelling. As x increases,
θ moves away from the neighboring repeller and toward the neighboring attractor. For
definiteness, we will talk about θ in the interval (−η, η) and suppose η < π

2 , but a similar
argument works for any other interval.

For x ∈ Qi,
1
2k

V (x) sin(2η) =
1
k

sin(η) cos(η) =
√

1 − E

and one sees similarly that at the two attracting fixed points (2k)−1V (x) sin(2θ) is√
1− E, and at the two repelling fixed points, it is −√

1 − E, and for regions near
−η, ln R decreases by (δx)

√
1 − E.

Fix ε small and define η1 by (2k)−1 sin(2η1) =
√

1 −E− ε. Let `0 be the length of x it
takes a solution of (3.3) to run from −η1 to η1. Consider the region (xk , xk + |Qk|2/3) at
the start of Qk. Suppose θ(xk) ∈ (−η, η) in accordance with our simplifying assumption.
If θ(xk + |Qk|2/3) ≤ −η1, then

ln R(xk + |Qk|2/3) ≤ ln R(xk) − (
√

1 −E − ε) |Qk |2/3. (3.4)

If θ(xk + |Qk|2/3) ≥ −η1, then once x ≥ xk + |Qk|2/3 + `0, we have d ln R
dx ≥ √

1 − E − ε,
and so

ln R(yk) ≥ ln R(xk) + (
√

1 −E − ε)(|Qk | − |Qk|2/3 − `0) − (|Qk|2/3 + `0). (3.5)

Thus for such intervals, either (3.4) or (3.5) holds. For (η,−η+π) intervals (or if η > π
2 ),

we need to deal with
√

1 −E + ε instead of
√

1 − E − ε. The net result is that∣∣ln R(yk) − ln R(xk) −√
1 − E |Qk|

∣∣ ≤ ε |Qk| + C`0 + C |Qk|2/3. (3.6)

If we can show that (3.4) fails for large k, then for y large,∣∣ln R(y) − 1
2

√
1 − E |y| ∣∣ ≤ 1

2 ε|y| + o(y). (3.7)
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So, since ε is arbitrary, we obtain the desired result.
Suppose (3.4) holds. Go back to Qk−1 = (xk−1, yk−1). Again, for simplicity, suppose

θ(yk−1) ∈ (−η, η). If θ(yk−1 − |Qk|2/3) ≥ η1, then

ln R(yk−1 − |Qk|2/3) ≤ ln R(yk−1) − (
√

1 − E − ε)|Qk|2/3. (3.8)

If θ(yk−1 − |Qk|2/3) ≤ η1, then θ(x) ≤ −η1 for xk−1 ≤ x ≤ yk−1 − |Qk|2/3 − `0, and
(assuming k is so large that |Qk| ≥ 2|Qk|2/3 + `0) we conclude that (3.4) holds for k − 1
replacing k. Moreover, R(yk) ≤ R(xk) exp(− 1

2

√
1− E |Qk|) (again for k large).

If (3.4) and (3.8) hold, we can smoothly cut off u at yk−1 −√
Qk and xk +

√
Qk and

get a trial function for − d2

dx2 + WLk , and so we see that |E − ej(|Lk|)| ≤ e−
√

Qk . As in
the last section, we see that one of the following holds:

(1) E ∈ Ā
(2) (3.5) holds for all large k (and so (3.7) holds)
(3) u ∈ L2.

As explained at the start of the proof, this suffices. �

§4. The Classically Allowed Region

In proving Theorem 1.1, we will break up [0,∞) into three regions where V (x) ≤
E − ε0, where V (x) ≥ E − ε0, and where |V (x) − E| ≤ ε0. Here ε0 is a parameter
we will take to zero eventually, using the fact that we can show the contribution of the
|V (x) − E| ≤ ε0 region to lim ln R(x)

x is bounded by Cε0. In this section, we will control
the contribution of the classically allowed region where V (x) ≤ E − ε0. The goal will be
to show that each oscillation of V contributes at most a constant C to lnR(x), so that,
since x−1# of oscillations → 0, the classically allowed region makes no contribution to γ
(as it makes no contribution to the integral in Theorem 1.1).

Theorem 4.1. Fix 0 ≤ A ≤ B < E. Suppose that V is a C1 function on (a, b) so that
there is a c ∈ (a, b) with

(i) V (x) is monotone decreasing on (a, c) and monotone increasing on (c, b).
(ii) A ≤ V (x) ≤ B on (a, b).

Fix θ0 and let any R(x) solve (1.7) on [a, b] with θ(a) = θ0. Then there is a constant C
(depending only on A,B,E but not on V, a, b or θ0 ) so that

| ln R(a) − ln R(b)| ≤ C.

Remarks. 1. The proof shows that one can take

C = ln(E/(E −B)) + ln((E − A)/(E − B)).
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2. That V be piecewise monotone is convenient but not critical. In general, one gets

C = ln(E/(E − B)) +
1
2

∫ b

a

∣∣∣∣ d

dx
ln(E − V (x))

∣∣∣∣ dx.

Proof. We use what we called WKB-modified Prüfer variables, that is, we let k(x) =√
E − V (x) and Rw(x)2 = u(x)2 + (u′(x))2/k(x)2. Then by (ii) and A ≥ 0,

R(x)2 ≤ Rw(x)2 ≤ E

E − B
R(x)2

so
| ln R(x) − ln Rw(x)| ≤ 1

2
ln(E/(E − B)). (4.1)

By (1.12), ∣∣∣∣d ln Rw(x)
dx

∣∣∣∣ ≤ ∣∣∣∣k′(x)
k(x)

∣∣∣∣
so

| ln Rw(a) − ln Rw(b)| ≤
∫ b

a

∣∣∣∣ d

dx
ln k(x)

∣∣∣∣ dx

=
∫ c

a

d

dx
ln k(x) −

∫ b

c

d

dx
ln k(x)

= ln
(

k(c)
k(a)

)
+ ln

(
k(c)
k(b)

)
since d

dxk ≥ 0 on (a, c) and d
dxk ≤ 0 on (c, b). So

| ln Rw(a) − ln Rw(b)| ≤ 1
2
× 2 ln

(
E −A

E − B

)
. (4.2)

(4.1) and (4.2) prove the theorem. �

§5. The Classically Forbidden Region

Our goal in this section is to prove the following:

Theorem 5.1. Let 0 < E < 2. Let V be the potential of Theorem 1.1. Let R(x), θ(x)
be the solution of (1.6/1.7) for some θ0 with ‖T (x, 0)uθ0‖ /∈ L2. Suppose E /∈ Ā. Then

lim
x→∞

1
x

∫
{y|V (y)≥E+ε0;0≤y≤x}

d

dy
ln R(y)

=
1
2π

∫
{y|1+cos(y)≥E+ε0;0≤y≤2π}

(1 + cos(y) − E)1/2 dy. (5.1)
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Proof. The argument is very similar to that in Section 3, so we will focus on the new
elements. In {y | V (y) ≥ E + ε0}, let k(x) ≡ √

V (x) −E and η(x) = Arcsin(
√

E/V (x) )
so that (because of the ε0 cutoff) |k′(x)| ≤ Cx1−α and |η′(x)| ≤ Cx1−α. Notice that

1
2k

V (x) sin(2η(x)) = k(x). (5.2)

Pick ε ≤ 1
2

min(η(x), π
2
− η(x)) ≡ ε1. ε1 > 0 because of the ε0 cutoff and E > 0. We

claim that
(a) If |θ − η(x)| < ε, then | 1

2k
V (x) sin(2θ) − k(x)| ≤ Dε

(b) k − V (x)
k sin2(η(x) − ε) ≥ Y > 0 uniformly in x

(c) k − V (x)
k

sin2(η(x) + ε) ≤ −Y < 0 uniformly in x.
Here D and Y are fixed ε independent (but they are ε0 dependent) non-zero constants.
(a) holds by (5.2). (b), (c) follow from the monotonicity of sin2 in (0, π

2
) and the condition

ε ≤ ε1.
We claim in any interval where V (x) ≥ E+ε0 and |x| is sufficiently large, as x increases,

once x ∈ (η(x) − ε, η(x) + ε) ≡ I1, it remains in that interval. For d
dx [θ(x) − η(x)] ≥

E − Cx1−α at θ = η − ε and ≤ −E + Cx1−α at θ = η + ε. Similarly, once θ leaves
(−η − ε, η + ε) ≡ I2, it stays outside it; and in a finite distance `0, it moves from
anywhere outside I2 into I1 (or the interval (π + η − ε, π + η + ε)).

By mimicking the arguments in Section 3, we see that either E ∈ Ā or ‖T (x, 0)uθ0‖ ∈
L2 or else

lim
x→∞

1
x

∫
{y|V (y)≥E+ε0;0≤y≤x}

∣∣∣∣ d

dy
ln R(y) − k(y)

∣∣∣∣ ≤ Dε.

Since we can take ε to zero and

1
x

∫
{y|V (y)≥E+ε0;0≤y≤x}

k(y)dy =
1
2π

∫
{1+cos(y)≥E+ε0;0≤y≤2π}

(1 + cos(y) −E)1/2 dy

the theorem is proven. �

§6. Putting It Together

Here we will prove Theorem 1.1. Suppose E /∈ Ā and θ0 is such that ‖T (x, 0)uθ0‖ /∈ L2.
Let R(x) solve (1.7) with θ(x) = θ0. Fix ε0 < 0 and consider the three regions:

Z(1) : {x | V (x) ≤ E − ε0}
Z(2) : {x | |V (x) − E| ≤ ε0}
Z(3) : {x | V (x) ≥ E + ε0}.

In Section 4, we proved that

1
x

∫
Z(1)∩{y≤x}

(
d

dy
ln R(y)

)
dy → 0.
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In Section 5, we proved that

lim
∣∣∣∣1x

∫
Z(3)∩{y≤x}

(
d

dy
ln R(y)

)
dy− 1

2π

∫
{y|1+cos(y)≥E;0≤y≤2π}

(1−cos(y)−E)1/2 dy

∣∣∣∣
≤ D0ε0

for a constant D0.
By (1.7), | d

dy lnR(y)| ≤ 2
2k . Moreover, it is clear that lim 1

x |Z(2) ∩ {y ≤ x}| ≤ D1ε0
for some constant D1.

Thus, we have

lim
∣∣∣∣1x [ln R(x) − ln R(0)] − 1

2π

∫
{y|1+cos(y)≤E;0≤y≤2π}

(1 + cos(y) − E)1/2 dy

∣∣∣∣ ≤ D2ε0

with D2 = D0 + D1
2k . Taking ε0 to zero, we prove that

1
x

ln R(x) → 1
2π

∫
{y|1+cos(y)≥E;0≤y≤2π}

(1 + cos(y) − E)1/2 dy.

Since at most one θ0 has ‖T (x, 0)uθ0‖ ∈ L2, we see that 1
x ln ‖T (x, 0)‖ has the required

limit. �

Appendix: WKB Prüfer Variables and Bounded Transfer Matrices

In this appendix, we will show how to use WKB-Prüfer variables to show for E > 1,
the transfer matrix for cos(xα) potentials is bounded. This is a result of Behncke [1]
and Stolz [18] whose proof is not unrelated. Their method is basically a variation of
parameters, and this appendix reiterates the idea of [10] that modified Prüfer variables
are often a suitable replacement for variation of parameters.

Recall the definition (1.13) for R̃w(x) and θ̃w(x). They obey

dθw

dx
= k(x) +

1
2

k′

kx
sin(2θ2(x)) (A.1)

d ln R̃w

dx
= − k′

2k
cos(2θw(x)). (A.2)

Let V (x) = cos(xα), with 1
2

< α < 1 and E > 1. Then k(x) =
√

E − V (x) >√|E − 1| is bounded away from zero. Moreover, we have for j = 0, 1, 2, . . . and |x| ≥ 1:∣∣∣∣djk(x)
dxj

∣∣∣∣ ≤ Cj(1 + |x|)−j(1−α) (A.3)∣∣∣∣ dj

dxj

(
k′

k

)∣∣∣∣ ≤ Dj(1 + |x|)−(j+1)(1−α). (A.4)
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In particular, for x large, dθ
dx

≥ √|E − 1|−D0(1+|x|)−(1−α) > 0. By (A.1) and (A.3/A.4),
we see ∣∣∣∣ d2

dx2
θw(x)

∣∣∣∣ ≤ x−(1−α). (A.5)

Integrate (A.2) to get (where x0 is picked so large that k(x) > δ > 0 for x > x0)

ln R̃w(x) − ln R̃w(x0) =
∫ x0

x

− k′

4k

1
dθw

dx

d

dx
(sin(2θw(x)))dx

and integrate by parts. By (A.4) and (A.5), the integrand bounded by (1 + |x|)−2(1−α)

is integrable, so R̃w(x) is bounded.

Remarks. 1. One doesn’t gain anything by iterating the integration by parts because
dj

dxj θw(x) only falls as (1 + |x|)−2(1−α).
2. One also sees by integrating by parts that θw(x) − ∫ x

x0
k(y)dy has a limit, and so

one can prove there are WKB-type solutions.
3. By using higher-order modifications, it should be possible to accommodate 0 <

α ≤ 1
2 .

4. All this proof requires, if one keeps track of the derivatives, is that V is C2 and

(i) supx V (x) = V+ < ∞, infx V (x) > −∞
(ii) V ′(x) → 0 as x → ∞
(iii) V ′ ∈ L2, V ′′ ∈ L1.

One obtains a bounded transfer matrix if E > V+.
5. The point of this is that bounded transfer matrices imply purely a.c. spectrum

[1,11,18].
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