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1 Introduction

In this paper, we want to discuss a new set of equations that let us relate
solutions of

−u′′ + (V + V0)u = Eu (1)

to solutions of

−ϕ′′ + V0ϕ = Eϕ. (2)

These equations will be particularly useful in regions where all solutions of (2)
remain bounded as x → ∞. We will also discuss the discrete analogs,

u(n+ 1) + u(n− 1) + (V + V0)(n)u(n) = Eu(n) (3)
ϕ(n+ 1) + ϕ(n − 1) + V0(n)ϕ(n) = Eϕ(n). (4)

If V is in L1, virtually any perturbation technique allows one to control u
(and, in fact, to show that all solutions of (1) are bounded as x → ∞). We
are interested in cases where V is not L1 but is small at infinity in some sense.
We want to generalize what has turned out to be a powerful set of tools in
case V0 ≡ 0, namely, the use of modified Prüfer equations and their discrete
analogs, which were dubbed EFGP equations in [6] on account of contributions
of [4, 5, 11].

Explicitly, in the continuum case when V0 ≡ 0 and E = k2 > 0, one defines
R(x), θ(x) by

u(x) = R(x) sin(θ(x)) (5)
u′(x) = kR(x) cos(θ(x)) (6)

and finds that R, θ obey

d

dx
lnR(x) =

V (x)
2k

sin(2θ(x)) (7)

dθ

dx
= k − V (x)

k
sin2(θ(x)). (8)
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In the discrete case when V0 ≡ 0 and E = 2 cos(k) ∈ (−2, 2), we define
R(n), θ(n) by

u(n − 1) = R(n)
sin(θ(n))

sin(k)
(9)

u(n) = R(n)
sin(θ̃(n))

sin(k)
(10)

θ̃(n) ≡ θ(n) + k (11)

(in earlier references, the equivalent formula with (10), (11) replaced byR(n) cos(θ(n)) =
u(n)− cos(k)u(n− 1) is used; also what we denote θ̃ is called θ̄, but since there
will be complex conjugates below, we use ˜ in place of ¯ to avoid confusion) and
find that

R(n+ 1)2 = R(n)2[1 + U(n) sin(2θ̃(n)) + U(n)2 sin2(θ̃(n))] (12)

cot(θ(n + 1)) = cot(θ̃(n)) + U(n) (13)

U(n) ≡ − V (n)
sin(k)

. (14)

These equations are useful in studying spectral properties [6] and tunneling
[8]. One of our main goals is to extend them to situations with V0 6≡ 0.

An important ingredient in our extension is the realization that R and θ
should be viewed as pieces of a single complex valued function. As a bonus of
this point of view, we have a rewriting of (7), (8) and (12), (13) that makes the
fact that they are analogs totally transparent and, moreover, is a more tractable
version of (13) or its equivalent form noted by Figotin-Pastur:

e2iθ(n+1) = e2iθ̃(n) +
iU(n)

2

(
(e2iθ̃(n) − 1)2

1 − iU(n)
2 (e2iθ̃(n) − 1)

)
.

Namely, in the continuum case, define

ρ(x) = R(x)ei(θ(x)−kx).

Then (7), (8) are equivalent to

dρ

dx
= ρ(x)

V (x)
k

sin(θ(x))e−iθ(x). (15)

In the discrete case, define

ρ(n) = R(n)ei(θ̃(n)−kn). (16)

Then (12), (13) are equivalent to

ρ(n+ 1) − ρ(n) = ρ(n)U(n) sin(θ̃(n))e−iθ̃(n). (17)

2



It is clear that (17) is the discrete analog of (15); this is not so clear from
the form (7), (8) and (12), (13).

In applications, the critical feature of the (R, θ) variables is that R(x) ∼
(u′(x)2 + u(x)2)1/2 (resp. (u(n)2 + u(n − 1)2)1/2) in the sense that for some C
independent of V (but dependent on k),

C−1R(x)2 ≤ u′(x)2 + u(x)2 ≤ CR(x)2.

Our variables when V0 6≡ 0 will not be quite as simple as (5), (6) and (9),
(10), (11) when expressed in that format, but will yield an R, θ with R ∼
(u2 + (u′)2)1/2 and will obey

d

dx
lnR(x) =

V (x)
2γ′(x)

sin(2θ(x))

dθ

dx
= γ′(x) − V (x)

γ′(x)
sin2(θ(x))

where γ′ is no longer a constant k and now obeys 0 < α ≤ γ′(x) ≤ β < ∞ for
suitable α, β. In the discrete case, (12), (13) will hold but U(n) will no longer be
a constant multiple of V (n); rather for suitable α, β: 0 < α ≤ −V (x)

U(x) ≤ β <∞.
We will discuss two different applications of these equations in this paper.

First, we’ll study embedded eigenvalues. We will show that it’s possible to
generate bound states by perturbations of order V (x) = O(1/x). Then we
will generalize Naboko’s construction [9] to the case of a periodic background
potential.

As our second application, we will show that sufficiently regular ac spectrum
can be turned into sc spectrum by a perturbation that tends to zero. This V will
be a sparse potential of Pearson type (cf. [12]). We will also prove an auxiliary
result on the asymptotic distribution of the function γ(x, E) from above which
seems to be of independent interest.

As for the applications, there are few differences between the continuous and
discrete case. We’ll discuss embedded eigenvalues in the continuous case and
Pearson potentials in the discrete case, but we might as well have done it the
other way around.

The tools we develop here were also used in [14] to generalize a result on
stability of ac spectrum to situations with general background potentials. For
a different (in fact, earlier) approach to this problem, see [2].

Research of A.K. done at MSRI was supported in part by NSF grant DMS
9022140. C.R. would like to thank for the hospitality of Caltech, where most
of this work was done. He would also like to thank the Deutsche Forschungsge-
meinschaft for financial support.
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2 Basic Variables and Equations in the Contin-
uum Case

Let V0 be a real valued L1
loc function on [0,∞). Then, as usual for any E, we

define a transfer matrix T0(x, E) by

T0(x, E)
(
a

b

)
=
(
ϕ′(x)
ϕ(x)

)
where ϕ is the unique solution of (2) with ϕ′(0) = a, ϕ(0) = b. We will suppose
E ∈ R and that

K ≡ sup
x>0

‖T0(x, E)‖ <∞.

As usual, define the Wronskian W (f, g) of the C1 functions f, g by

W (f, g)(x) = f(x)g′(x) − g(x)f ′(x).

If f ′′(x) = A(x)f(x) and g′′(x) = B(x)g(x), then

W ′(f, g)(x) = (B(x) −A(x))f(x)g(x). (18)

In particular, if f, g both solve (2), then W is constant.
Fix E ∈ R and ϕ, a complex solution of (2). Then W (ϕ̄, ϕ) is constant and

W (ϕ̄, ϕ) = 2i Im(ϕ(x)ϕ′(x)).

If ϕ is essentially complex, then W (ϕ̄, ϕ) 6= 0. By interchanging ϕ and ϕ̄, we
can suppose ImW (ϕ̄, ϕ) > 0. Thus,

W (ϕ̄, ϕ)(x) = iω; ω = constant > 0.

We could normalize ϕ so that ω = 1 but do not do so to allow the standard
choice ϕ(x) = eikx (corresponding to ω = 2k) in case V0 ≡ 0. For definiteness,
you can think about the solution with

(
ϕ′(0)
ϕ(0)

)
=
(
i
1

)
; but in the periodic case, it

will be useful to take a Floquet solution instead.
We’ll define two phases γ(x), δ(x) by

ϕ(x) = |ϕ(x)|eiγ(x) (19)

ϕ′(x) = i|ϕ′(x)|eiδ(x). (20)

γ will play a central role; δ will not.

Proposition 2.1 (a) 2|ϕ(x)| |ϕ′(x)| cos(γ(x) − δ(x)) = ω
(b) γ′(x) = ω

2|ϕ(x)|2 > 0
(c) Let ϕ0 ≡ (|ϕ(0)|2 + |ϕ′(0)|2)1/2. Then

ω

2Kϕ0
≤ |ϕ(x)| ≤ Kϕ0

ω

2Kϕ0
≤ |ϕ′(x)| ≤ Kϕ0
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(d) ω
2K2ϕ2

0
≤ γ′(x) ≤ K2ϕ2

0
2ω

Proof. (a) This is just evaluating the Wronskian.
(b) γ′ = Im(ϕ

′

ϕ
) = |ϕ|−2Im(ϕ̄ϕ′) = ω

2|ϕ|2
(c) By definition of K, |ϕ(x)| ≤ Kϕ0 and |ϕ′(x)| ≤ Kϕ0. On the other hand,
by (a), |ϕ(x)| |ϕ′(x)| ≥ ω

2 . Thus, the upper bounds imply the lower bounds.
(d) follows from (b), (c). �

Remark. δ′ will not be non-negative in general; indeed,

δ′(x) = Im
(
ϕ′′

ϕ′

)
= (V0(x) −E) Im

(
ϕ

ϕ′

)
so if V0(x) − E ≥ 0, then δ′ ≤ 0; and if V0(x) − E < 0, then δ′ > 0. In case
V0 ≡ 0, δ′ > 0 but if there are regions with V0(x) − E > 0, then there are
regions with δ′ < 0. But γ(x) ≥ γ(0) + ωx

2K2ϕ2
0
, and |δ − γ| is bounded because

of Proposition 2.1(a), so δ′ is “mainly” positive.
Given a reference complex solution ϕ to (2) and a real valued solution u of

(1), we define ρ(x) ∈ C by(
u′(x)
u(x)

)
=

1
2i

[
ρ(x)

(
ϕ′(x)
ϕ(x)

)
− ρ̄(x)

(
ϕ̄′(x)
ϕ̄(x)

)]
(21)

= Im
[
ρ(x)

(
ϕ′(x)
ϕ(x)

)]
. (22)

(
ϕ′
ϕ

)
and

(
ϕ̄′
ϕ̄

)
are linearly independent since ω 6= 0 and so

(
u′
u

)
= α

(
ϕ′
ϕ

)
+ β

(
ϕ̄′
ϕ̄

)
.

The reality of u implies that β = ᾱ.
That ρ is a reasonable perturbation parameter follows from the fact that if

V = 0, then ρ is a constant.
We now define R(x), η(x) and θ(x) by

R(x) = |ρ(x)| (23)
η(x) = Arg(ρ(x)) (24)
θ(x) = γ(x) + η(x). (25)

η can be normalized by η(0) ∈ (−π, π] and η continuous. By (19), (20), (22)–
(25), we have

u(x) = R(x)|ϕ(x)| sin(θ(x)) (26)
u′(x) = R(x)|ϕ′(x)| cos(θ(x) + δ(x) − γ(x)). (27)

Example. If V0 ≡ 0 and ϕ(x) = eikx with E = k2, then |ϕ(x)| ≡ 1,
|ϕ′(x)| = k, and γ(x) = δ(x) = kx so γ − δ = 0. Thus, (26), (27) become (5),
(6) and our R, θ reduce to the standard ones.
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One can invert (21) by using Wronskians. Take the Wronskian of both sides
with ϕ̄ using W (ϕ̄, ϕ̄) = 0 to see that ρ

2i = W(u,ϕ̄)
W(ϕ,ϕ̄) or

ρ =
2
ω
W (ϕ̄, u). (28)

Thus,

R2 =
4
ω2

W (ϕ̄, u)W (ϕ, u)

θ = Arg(W (ϕ̄, u)).

By (22) and (28), R(x)2 is comparable to |u(x)|2 + |u′(x)|2:

Proposition 2.2

(|u(x)|2 + |(u′(x)|2)1/2
Kϕ0

≤ R(x) ≤ 2
ω
Kϕ0[|u(x)|2 + |u′(x)|2]1/2

Proof. By (22), (|u′(x)|2 + |u′(x)|2)1/2 ≤ |ρ(x)| (|ϕ(x)|2 + |ϕ′(x)|2)1/2 ≤
K0ϕ0R(x), yielding the lower bound. By (28),

R ≤ 2
ω
|W (ϕ̄, u)| ≤ 2

ω
(|ϕ(x)|2 + |ϕ′(x)|2)1/2(|u(x)|2 + |u′(x)|2)1/2.

�

Theorem 2.3

(a) ρ′(x) = ρ(x)
2|ϕ|2
ω

V sin(θ)e−iθ (29)

(b) [lnR(x)]′ =
V (x)
2γ′(x)

sin(2θ(x)) (30)

(c) θ(x)′ = γ′(x) − V (x)
γ′(x)

sin2(θ(x)). (31)

Proof. By (18) and (28),

ρ′ =
2
ω
V (x)ϕ(x)u(x).

Now by (26), u(x) = ρ(x)e−iη(x)|ϕ(x)| sin(θ(x)) and ϕ(x) = |ϕ(x)|e−iγ(x) so (a)
follows from η + γ = θ.

ρ′ρ−1 = (lnR + iη)′ so (b) is just the real part of (29) and 2|ϕ|2
ω

= (γ′)−1

(by Proposition 2.1(b)), and (c) is just the imaginary part. �
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3 The Discrete Case

The approach is similar to the continuum case. The transfer matrix T0(n, E) is
defined so that

T0(n, E)
(
a

b

)
=
(
ϕ(n + 1)
ϕ(n)

)
if ϕ obeys (4) with ϕ(1) = a, ϕ(0) = b. We will suppose that E ∈ R and

K ≡ sup
n>0

‖T0(n, E)‖ <∞.

The Wronskian of two functions f, g on Z+ is defined by

W (f, g)(n) = f(n)g(n + 1) − f(n + 1)g(n).

If f(n + 1) + f(n − 1) = A(n)f(n), g(n+ 1) + g(n − 1) = B(n)g(n), then

W (f, g)(n) −W (f, g)(n − 1) = (B − A)(n)f(n)g(n). (32)

Fix ϕ, a complex valued solution of (4), so that

W (ϕ̄, ϕ)(n) = 2i Im(ϕ(n+ 1)ϕ(n) ) = iω

with ω = constant > 0. The free case (V0 ≡ 0) is E = 2 cos(k), ϕ(n) = eikn,
ω = 2 sin(k). We define γ(n) by

ϕ(n) = |ϕ(n)|eiγ(n). (33)

By constancy of the Wronskian,

2|ϕ(n)| |ϕ(n+ 1)| sin(γ(n + 1) − γ(n)) = ω (34)

so we can fix non-uniqueness in γ by requiring γ(0) ∈ [0, 2π), γ(n) − γ(n− 1) ∈
(0, π). With this choice, γ(n) = kn in the free case.

Proposition 3.1 (a) γ(n + 1) − γ(n) =

{
Arcsin

(
ω

2|ϕ(n)||ϕ(n+1)|
)
, or

π − Arcsin
(

ω
2|ϕ(n)||ϕ(n+1)|

)
(b) Let ϕ0 = (|ϕ(0)|2 + |ϕ(1)|2)1/2. Then

ω

2Kϕ0
≤ |ϕ(n)| ≤ Kϕ0.

(c) Arcsin( ω
2K2ϕ2

0
) ≤ γ(n + 1) − γ(n) ≤ π − Arcsin( ω

2K2ϕ2
0
).

Proof. (a) follows from (34) if we note that if θ ∈ (0, π), then either θ =
Arcsin(sin(θ)) or θ = π − Arcsin(sin(θ)). To prove (b), note that |ϕ(n)| ≤ Kϕ0

is trivial and then (34), which implies 2|ϕ(n)||ϕ(n + 1)| ≥ ω, yields the lower
bound. (c) follows from (a), (b) and monotonicity of Arcsin. �
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Given a complex reference solution ϕ to (4) and a real valued solution u to
(3), define ρ(n) ∈ C by(

u(n)
u(n− 1)

)
=

1
2i

[
ρ(n)

(
ϕ(n)

ϕ(n − 1)

)
− ρ(n)

(
ϕ(n)

ϕ(n− 1)

)]
(35)

= Im
[
ρ(n)

(
ϕ(n)

ϕ(n− 1)

)]
(36)

and then R(n), η(n), θ(n), and θ̃(n) by

ρ(n) = R(n)eiη(n) (37)
θ(n) = η(n) + γ(n − 1) (38)

θ̃(n) = η(n) + γ(n) (39)

with η normalized by η(0) ∈ (−π, π] and η(n + 1) − η(n) ∈ (−π, π]. (We will
soon see if |V (n)| → 0, then |η(n+ 1) − η(n)| → 0 also.)

By (33), (36), and (38), (39),

u(n) = R(n)|ϕ(n)| sin(θ̃(n)) (40)
u(n− 1) = R(n)|ϕ(n− 1)| sin(θ(n))

which in the free case, where |ϕ(n)| = 1 and γ(n) = kn, is essentially (9), (10).
Our θ, θ̃ are the same as the EFGP θ’s. Our R differs from theirs by a constant
sin(k). We could have made the definitions agree (by using ρNew = ωρ

2 ) but chose
to make the normalization in the continuum and discrete cases identical. Since a
constant factor (ω

2
) is involved, no difference equations change and Proposition

3.1 changes in an elementary way.
We can use Wronskians to invert (35) to get

ρ(n) =
2
ω
W (ϕ, u)(n− 1). (41)

The strange fact that n appears on one side of (41) and (n−1) on the other is a
consequence of our reconciling the standard definition of W (involving n, n+ 1)
and the EFGP definition (involving n, n− 1). As in the continuum case, (36),
(41) immediately imply:

Proposition 3.2

(u(n)2 + u(n− 1)2)1/2

Kϕ0
≤ R(n) ≤ 2

ω
Kϕ0(u(n)2 + u(n− 1)2)1/2

Now we can apply (32) to get the evolution equations for ρ, θ, R.

Theorem 3.3 Let

U(n) = −2V (n)
ω

|ϕ(n)|2. (42)
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Then,

(a) ρ(n + 1) − ρ(n) = U(n)ρ(n) sin(θ̃(n))e−iθ̃(n) (43)

(b) If |U(n)| ≤ 1, then |η(n+ 1) − η(n)| = |θ(n+ 1) − θ̃(n)| ≤ π

2
|U(n)|

(44)

(c) R(n+ 1)2 = R(n)2[1 + U(n) sin(2θ̃(n)) + U(n)2 sin2(θ̃(n))] (45)

(d) cot(θ(n + 1)) = cot(θ̃(n)) + U(n). (46)

Remarks 1. (45), (46) are, of course, just (12), (13), so this generalizes the
free case.

2. As noted in the introduction, from the usual form of the free equations in
the continuum and discrete cases ((7), (8) vs. (12), (13)), the analogy appears
vaguer, but the complex form of the equations (29) vs. (43) are clearly analogs!

3. (b) strengthens slightly the result in [6] that if |U(n)| ≤ 1
2
, then (44)

holds with π
2

replaced by π.
Proof. (a) (3), (4), (32), and (41) imply that

ρ(n + 1) − ρ(n) = − 2
ω
V (n)u(n)ϕ(n)

= − 2
ω
V (n)R(n) sin(θ̃(n))|ϕ(n)|2e−iγ(n)

by (40). Given (42), (37), and (39), this is precisely (43).
(b) The distance of z0 = 1 from the line Arg(z) = θ or θ + π is | sin(θ)|.

Thus, if |z − 1| ≤ 1, we have that

|Arg(z)| ≤ π

2
| sin(Arg(z)| ≤ π

2
|z − 1|. (47)

But (43) implies ∣∣∣∣ρ(n + 1)
ρ(n)

− 1
∣∣∣∣ ≤ |U(n)|

and Arg(ρ(n+1)
ρ(n) ) = η(n+ 1) − η(n), so (47) is just (44).

(c) By (43),

R(n+ 1)2 = R(n)2
∣∣1 + U(n) sin(θ̃(n))e−iθ̃(n)

∣∣2.
Since |1 + α|2 = 1 + |α|2 + 2 Reα, we get (45).

(d) Multiply (43) by eiγ(n) to see that

R(n+ 1)eiθ(n+1) = R(n)[eiθ̃(n) + U(n) sin(θ̃(n))]. (48)

The real part of (48) divided by its imaginary part is precisely (46). �
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4 Embedded eigenvalues

As a warm-up, we show how to use the basic equations (30), (31) to construct
a potential of Wigner-von Neumann type.

Theorem 4.1 Suppose that K = supx≥0 ‖T0(x, E)‖ < ∞. Then for every
boundary condition at x = 0, we can find a potential V of order |V (x)| ≤
C(1 + x)−1, such that the equation (1) has an L2 solution that satisfies the
prescribed boundary condition.

Proof. Fix a reference solution ϕ and consider the differential equation

ψ′(x) = γ′(x) +
C

γ′(x)(1 + x)
sin 2ψ sin2 ψ, (49)

where C > 0 will be chosen later. By Proposition 2.1(d), there are positive
constants C1, C2 so that C1 ≤ γ′(x) ≤ C2. Hence the right-hand side of (49)
satisfies a global Lipschitz condition with respect to ψ, and thus (49) has a
unique global solution satisfying the initial condition ψ(0) = ψ0 (see, e.g., [3]).
Now set

V (x) = − C

1 + x
sin 2ψ(x).

Then, by uniqueness, the generalized Prüfer angle θ with the initial value θ(0) =
ψ0 is just ψ(x). Thus the equation (30) for R becomes

(lnR)′ = − C

2(1 + x)γ′(x)
sin2 2ψ(x). (50)

By (49), ψ′(x) is also bounded away from zero and infinity for large enough x,
so (50) implies

lnR(x) ≤ −AC lnx

(x sufficiently large) with some constant A > 0 that depends on C1, C2. If we
now take C big enough, then R is in L2. By Proposition 2.2, this also holds for
the solution u corresponding to the Prüfer variables R, θ. By adjusting ψ0, we
can achieve that u satisfies any given boundary condition. �

Next, we study embedded point spectrum for perturbed periodic operators.
So, let V0(x) be a periodic function of period 1 (say). Then the spectrum of
H0 = −∆+V0 (on the whole axis) is purely absolutely continuous and has band
structure

σ(H0) = σac(H0) =
∞⋃
n=1

[an, bn].

Theorem 4.2 Let F (x) be a positive, increasing function with limx→∞ F (x) =
∞. Then there is a potential V satisfying |V (x)| ≤ F (|x|)/(1 + |x|) so that
σpp(H0 + V ) ⊃ σ(H0).
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Proof. Clearly it suffices to consider the case where F (x) ≤ xβ for some β > 0
(otherwise let F̃ (x) = min(F (x), xβ) and construct a potential V for F̃ , it will
also work for the original F ). We will use the generalized Prüfer equations (30),
(31), where we take a Bloch solution as reference solution ϕ. So

ϕ(x, E) = p(x, E)eik(E)x, (51)

where p is periodic with period 1. Since the quasimomentum k(E) is monotone
in every band [an, bn], we can find a countable set of energies En ∈ σint(H0) so
that {En} is dense in σ(H0) and the numbers {π, k(En)} are rationally inde-
pendent.

It suffices to consider the half-line problem. Namely, we will prove that given
F as above and a set of boundary conditions {αn}, there is a potential V on
(0,∞) satisfying |V (x)| ≤ F (x)/(1+x), such that for every n, (1) with E = En
has an L2(0,∞) solution, and this solution satisfies the boundary condition αn.

On intervals with V ≡ 0, (31) says that θ′ = γ′. Since p is periodic, (51)
implies that

θ(x+ 1, E) − θ(x, E) = γ(x+ 1, E) − γ(x, E) = k(E)(mod2π).

By construction, the {k(En)} are rationally independent. Given this observa-
tion, the argument proceeds similarly to the original Naboko paper [9] (see also
[10]). For the sake of completeness we provide a sketch of the argument. Fix a
sector Γε,

Γε = {α||α+
π

4
| < ε}.

The value of ε needs to be chosen sufficiently small; we will assume ε < π
12 .

Let n0 = 1 and consider the first N0 values of energies from our set: {Ej}N0
j=1.

We suppose that the ordering in our sequence is fixed once and for all in some
arbitrary way. The choice of N0 is also arbitrary. We define V to be zero on
the interval (n0, n1), where n1 is chosen to be such that θ(n1, Ej), j = 1, . . .N0

all lie in Γε. This is possible because the rotation on the torus given by

(θ1, . . . , θN) 7→ (θ1 + k(E1), . . . , θN + k(EN)) (mod π)

is an ergodic map. Moreover, there is an a priori estimate on n1 − n0 which
is independent of the initial values θ(n0 , En). We denote the maximal possible
value of n1 −n0 by D(N(n0), ε). Similarly, we will denote D(M, ε) the maximal
distance needed to bring all values θ(x, Ej), j = 1, . . .M into Γε (for any initial
data). Set

hM =
12
π

supx∈R+,j=1,...M{|γ′(x, Ej)|, 1}. (52)

Let χ(x) be a characteristic function of the interval (0, 1). On the interval
(n1, n1 + 1) we define V as follows:

V (x) =
F (n1)
2 + n1

χ (hN0 (x− n1)) .

11



We continue the construction inductively. V is set to be zero on the intervals
(nl + 1, nl+1) and is defined by

V (x) =
F (nl)
2 + nl

χ
(
hNl−1 (x− nl)

)
. (53)

on the intervals (nl, nl+1). The formula (53) is devised in a way that the angles
θ(x, Ej), j = 1, . . .Nl−1 do not change much in the region where V 6= 0, staying
close to the phase which guarantees the fastest decay of R(x, Ej). It may seem
that we forget the second term in (31) influencing the change of θ(x, Ej), but
this term becomes arbitrary small at large distances and we can safely ignore
it.

We need to gradually add solutions at every energy Ej to our consideration,
but to do it carefully and slowly enough so that we can control the L2 norm
of every solution u(x, Ej) and make sure that they are square integrable. The
following simple algorithm works well. Suppose that we have constructed V up
to and on the interval (nl, nl+1). We check whether the following two conditions
hold true:

F (nl)h−2
Nl−1+1 > F

1
2 (nl) (54)

D(Nl−1 + 1, ε) + 1 < F
1
4 (nl). (55)

Here Nl−1 is the number of solutions that we took into account on the interval
(nl−1 + 1, nl). If both conditions are verified, we add one more solution to our
consideration in the interval (nl + 1, nl+1), so that Nl = Nl−1 + 1. If any of
the conditions fails, we do not add any new solutions in the next step so that
Nl = Nl−1.

It is clear that the potential we construct satisfies the decay condition. It
remains to show two things: that Nl eventually goes to infinity , so that we take
into account every Ej, and that it yields L2 solutions. The first is immediate
from (54), (55) since the function F tends to infinity as nl grows. We now
indicate how to verify the second claim. Consider any of the solutions u(x, Ej)
(satisfying the right boundary condition at zero). Then we can find nl such that
the following estimate holds by (30), (31) (52), (53), (54):

‖u(x, Ej)‖2
L2(nl+1,∞) ≤ CR2(nl, Ej)

∞∑
m=l

exp

(
−C1

m∑
i=l

F
1
2 (ni)

ni + 2

)
(D(N(nm), ε) + 1).

Employing (55), we find

‖u(x, Ej)‖2
L2(nl+1,∞) ≤ C

∞∑
m=l

exp

(
−C1

m∑
i=l

F
1
4 (ni) log

(
2 + ni+1

2 + ni

))
F

1
4 (nm).

This sum is obviously finite for any growing function F bounded by some power.
�
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5 Asymptotic Distribution of γ(n,E)

In these final two sections, we will work in the discrete setting. So, we consider
the operators Hλ acting on l2(N) as

(Hλy)(n) =

{
y(2) + (V0(1) + λ)y(1) n = 1
y(n − 1) + y(n + 1) + V0(n)y(n) n ≥ 2

.

The parameter λ plays the role of a boundary condition. If λ = 0, then the
corresponding index will usually be dropped.

We need some notation and some elementary facts. Let u(n, E), v(n, E) be
the solutions of (4) with the initial values u(0) = v(1) = 1, u(1) = v(0) = 0.
Write

mλ(z) ≡ 〈δ1, (Hλ − z)−1δ1〉,
where δ1(n) = δ1n. Although mλ(z) is defined originally only off the spectrum
of Hλ, the limit mλ(E) ≡ limε→0+mλ(E + iε) exists almost everywhere. In
regions where m(E) does exist and, moreover, Im m(E) > 0, a natural choice
for the complex solution ϕ from Section 3 is

ϕ(n, E) = u(n, E) −m(E)v(n, E) (56)

(the complex conjugation being necessary to have ω > 0). Note that for non-
real E, ϕ would be the l2 solution of (4). Our goal in this section is to show
that the γ(n, E) gotten from (56) is approximately uniformly distributed as a
function of E for large n.

We need some more preliminaries. Denote by HN
λ the operator restricted to

l2({1, . . . , N}) ≡ CN with Dirichlet boundary condition at N . More precisely,
define HN

λ by

(HN
λ y)(n) =

{
(Hλy)(n) n ≤ N − 1
y(N − 1) + V0(N)y(N) n = N

.

Correspondingly set mN
λ (z) = 〈δ1, (HN

λ − z)−1δ1〉. The functions mN
λ (z) are

meromorphic with precisely N simple poles on the real axis, and if E is not one
of these poles, then Im mN

λ (E) = 0. Also, it’s not hard to see that the solution
fN (n, z) ≡ u(n, z) −mN (z)v(n, z) satisfies fN (N + 1, z) = 0, and thus

mN (z) =
u(N + 1, z)
v(N + 1, z)

. (57)

So, if we write m(z) = a(z) + ib(z) (similar notations will be used for the other
m-functions introduced above), then (56), (57) yield

cot γ(N + 1, E) =
mN (E)
b(E)

− a(E)
b(E)

(58)
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The m-functions obey the following well-known transformation formula (see,
e.g., [15]): mλ = m/(1 + λm). In particular,

bλ(z) =
b(z)

(1 + λa(z))2 + λ2b2(z)
. (59)

Of course, analogous formulae hold for mN , mN
λ .

Finally, denote by dρλ, dρNλ the corresponding spectral measures, i.e. dρ(t) =
d‖E(t)δ1‖2 etc., where E(t) is the spectral resolution of H . Recall that dρNλ
converges weakly (i.e., when integrated against continuous functions of compact
support) to dρλ as N → ∞. Moreover, dρλ can also be obtained as the weak
limit πdρλ(E) = limε→0+ bλ(E + iε) dE.

Theorem 5.1 Suppose that m(E) = a(E) + ib(E) exists on I = [E1, E2], is
continuous, and b(E) > 0. Then

lim
N→∞

1
|J | |{E ∈ J : γ(N,E) ∈ S (mod π}| =

|S|
π
,

where J, S are subintervals of I and T1 = [0, π), respectively.

Remark. Some elements of the following proof are related to the spectral av-
eraging formula from the general theory of rank one perturbations (cf. [15]).
Results of a flavor similar to our Theorem 5.1 have been obtained in [13].

The proof uses the following elementary fact.

Lemma 5.2 Suppose that A(ε) = A0 + A1ε + O(ε2), B(ε) = B1ε + O(ε2) with
B1 > 0. Then

1
π

lim
ε→0+

∫ d

c

dt
B(ε)

(t− A(ε))2 + B2(ε)
=


0 A0 /∈ [c, d]
∈ (0, 1) A0 ∈ {c, d}(the limit exists!)
1 A0 ∈ (c, d)

.

Proof. Evaluate the integral. �
Proof of Theorem 5.1. We first consider the case when S = [γ1, γ2] with

γi 6≡ 0 (mod π). By (58), the Lemma, and the properties of mN (z), we get

π|{E ∈ J : γ(N + 1, E) ∈ S}| =∫
J

dE lim
δ→0+

lim
ε→0+

∫ c1(E)+δ

c2(E)−δ
dt

bN(E + iε)
(t− aN(E + iε))2 + (bN (E + iε))2

,

where ci(E) = a(E) + b(E) cot γi. The basic idea is to change the order of
integration, then let N → ∞, and finally go back to the original order. In

14



practice, things are a little messy, unfortunately; here are the details.

π|{E ∈ J : γ(N + 1, E) ∈ S}|

≥
∫
J

dE lim
ε→0+

∫ c1(E)

c2(E)

dt
bN(E + iε)

(t − aN (E + iε))2 + (bN (E + iε))2

= lim
ε→0+

∫
J

dE

∫ c1(E)

c2(E)

dt
bN(E + iε)

(t − aN (E + iε))2 + (bN (E + iε))2

= lim
ε→0+

∫
J

dE

∫ c1(E)

c2(E)

dt

t2
bN−t−1(E + iε)

≡ lim
ε→0+

∫
M

d(E, t)
bN−t−1(E + iε)

t2
.

We used dominated convergence in the second line and (59) in the third line.
The region of integration M ⊂ R2 is given by

M = {(E, t) : E ∈ J, c2(E) ≤ t ≤ c1(E)}.
Since c1/2(E) are continuous, we can find an increasing sequence of sets Mn, such
that every Mn is a finite, disjoint union of open rectangles, and χMn(E, t) →
χM (E, t) as n→ ∞ for almost every pair (E, t) ∈ R2.

Now, applying Fatou’s Lemma and using the properties of the sets Mn, we
get

π|{E ∈ J : γ(N + 1, E) ∈ S}| ≥ lim inf
ε→0+

∫
Mn

d(E, t)
bN−t−1(E + iε)

t2

= lim inf
ε→0+

∫
dt

t2

∫
In(t)

dE bN−t−1(E + iε)

≥
∫
dt

t2
lim inf
ε→0+

∫
In(t)

dE bN−t−1(E + iε)

≥ π

∫
dt

t2
ρN−t−1 (In(t)).

Here, the sets In(t) ⊂ J are finite, disjoint unions of open intervals (this follows
from the construction of the sets Mn). We can let N → ∞ to obtain

π lim inf
N→∞

|{E ∈ J : γ(N,E) ∈ S}| ≥ π

∫
dt

t2
lim inf
N→∞

ρN−t−1 (In(t))

= π

∫
dt

t2
ρ−t−1 (In(t))

=
∫
dt

t2

∫
In(t)

dE b−t−1(E)

=
∫
Mn

d(E, t)
b−t−1(E)

t2
.
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Finally, let also n → ∞ (using monotone convergence) and reverse the steps
from above:

π lim inf
N→∞

|{E ∈ J : γ(N,E) ∈ S}| ≥
∫
M

d(E, t)
b−t−1(E)

t2

=
∫
J

dE

∫ c1(E)

c2(E)

dt
b(E)

(t− a(E))2 + b2(E)

=
∫
J

dE

∫ cotγ1

cotγ2

du
1

u2 + 1
= |J |(γ2 − γ1).

Now it’s easy to see that the proven statement on lim inf |{γ ∈ S}| actually
implies the full claim. Namely, assume that on the contrary

lim
k→∞

1
|J | |{E ∈ J : γ(Nk , E) ∈ S}| =

|S|
π

+ δ

for some S,Nk → ∞ and δ > 0. Pick a closed interval S′ ⊂ T1 \ S with length
≥ π − |S| − (πδ)/2. Then, by what has already been shown,

lim inf
k→∞

1
|J | |{E ∈ J : γ(Nk , E) ∈ S ∪ S′}| ≥ |S|

π
+ δ + 1 − |S|

π
− δ

2
= 1 +

δ

2
,

an obvious contradiction. �
In the next section, we will use the following easy consequence of Theorem

6.1.

Corollary 5.3 Suppose that g : T1 → C is continuous. Then, under the as-
sumptions of Theorem 5.1, we also have that

lim
N→∞

1
E2 −E1

∫ E2

E1

g(γ(N,E)) dE =
1
π

∫ π

0

g(γ) dγ.

Proof. Let ε > 0 be given. Pick δ > 0 so that |g(γ)−g(γ′ )| < ε/3 if |γ−γ′| ≤ δ.
We may also assume that π/δ ∈ N. Let

In(N) = {E ∈ [E1, E2] : γ(N,E) ∈ [(n− 1)δ, nδ)}.

By Theorem 5.1, we can find an N0 so that for n = 1, . . . , π/δ∣∣∣∣|In(N)| − δ

π
(E2 − E1)

∣∣∣∣ < δε(E2 −E1)
3πmax |g| (60)
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if N ≥ N0. Now for N ≥ N0, we get (with error terms |ηi| < ε/3)

1
E2 − E1

∫ E2

E1

g(γ(N,E)) dE =
1

E2 − E1

π/δ∑
n=1

∫
In(N)

g(γ(N,E)) dE

=
1

E2 − E1

π/δ∑
n=1

g(nδ)|In(N)| + η1

=
δ

π

π/δ∑
n=1

g(nδ) + η1 + η2

=
1
π

∫ π

0

g(γ) dγ + η1 + η2 + η3.

�

6 Sparse Perturbations

In this section, we want to show that absolutely continuous spectrum can be
transformed to singular continuous spectrum by a perturbation that tends to
zero. We need a number of technical assumptions. First of all, we assume that
m(E) satisfies the hypotheses of Theorem 5.1 on some interval [E1, E2]. Then,
as usual, we suppose that

sup
n∈N

max
E1≤E≤E2

‖T0(n, E)‖ <∞.

As in the preceding section, let ϕ(n, E) = u(n, E) −m(E)v(n, E). We further
assume that |ϕ| is equicontinuous, i.e., for every ε > 0 there is a δ > 0 so that
for all n ∈ N we have that∣∣|ϕ(n, E)| − |ϕ(n, E′)|∣∣ < ε if |E −E′| < δ.

Note that ϕ has these properties if V0 ≡ 0 or if V0 is periodic.

Theorem 6.1 Under the above assumptions, there is a perturbation V (n) → 0,
so that H0 + V has purely singular continuous spectrum on (E1, E2).

Sketch of the proof. V will be a Pearson type potential (this name refers to [12],
of course). We can take, say,

V (n) =
∞∑
k=1

k−1/2δnxk ,

with xk to be chosen later. The critical features are that the weights k−1/2 are
not square summable and that the xk increase sufficiently rapidly.

The argument follows closely [6, Proof of Theorem 1.6(2)], with Corollary
5.3 as important additional ingredient. We use the generalized Prüfer equations
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(45), (46) with reference solution ϕ as above (so ω(E) = 2b(E)). Clearly, R is
constant on every interval {xk−1 + 1, . . . , xk} and

θ̃k(E) ≡ θ̃(xk, E) = γ(xk, E) + ψk−1(E) (61)

where ψk−1(E) = θ̃(xk−1 + 1, E) − γ(xk−1 + 1, E). Write Rk(E) = R(xk, E),

Uk(E) = U(xk, E) = −|ϕ(xk, E)|2
k1/2b(E)

.

A Taylor expansion shows

lnR2
k+1(E) =

k∑
m=1

(Xm(E) + Ym(E)) +
1
4

k∑
m=1

U2
m(E) +O(1) (k → ∞),

where

Xm(E) = Um(E) sin 2θ̃m(E)

Ym(E) =
1
2
U2
m(E)

(
1
2

cos 4θ̃m(E) − cos 2θ̃m(E)
)
.

The remainder O(1) is uniformly bounded. This follows from the definition of U ,
the usual bound on |ϕ| (see Proposition 3.1(b)), and the fact that min b(E) > 0.

By [7, Theorem 1.2], in order to show σac ∩ (E1, E2) = ∅, it suffices to
find a subsequence yn → ∞ so that limn→∞R(yn, E) = ∞ for almost every
E ∈ (E1, E2). In the case at hand, we already have a diverging term: Obviously,∑k

m=1 U
2
m(E) ≥ c(E) ln k. So it’s sufficient to prove that

∑k
m=1 Xm(E), Ym(E)

are of order o(ln k) (at least, on a suitable subsequence) for almost every E ∈
(E1, E2).

Write Sk(E) =
∑k
m=1 Xm(E). An elementary probabilistic argument (com-

pare [6, Sect. 6]) shows that if∫ E2

E1

S2
k(E) dE = o(ln2 k) (k → ∞), (62)

then, as desired, Skn(E) = o(lnkn) on a certain subsequence for almost all
E ∈ (E1, E2), and similarly for

∑
Ym.

In order to prove (62), we note that∫ E2

E1

S2
k(E) dE ≤

∫ E2

E1

S2
k−1(E) dE +

∫ E2

E1

X2
k (E) dE + 2

∣∣∣∣∣
∫ E2

E1

Sk−1(E)Xk(E) dE

∣∣∣∣∣ .
(63)

By (61) and the complex representation of the sine, the last term of (63) is a
sum of four contributions of the form∫ E2

E1

k−1∑
m=1

Um(E)Uk(E)e2i(±ψm−1(E)±ψk−1(E)±γ(xm,E))e±2iγ(xk,E) dE

≡
∫ E2

E1

f(E, xk)e±2iγ(xk,E) dE.
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For fixed x1, . . . , xk−1, the family {f(·, xk) : xk ∈ N} is equicontinuous and
uniformly bounded. This is easily inferred from the corresponding properties of
|ϕ| and the continuity of m,ψ, γ.

Now Corollary 5.3 implies that

lim
xk→∞

∫ E2

E1

f(E, xk)e±2iγ(xk,E) dE = 0.

This is shown as follows. Given any ε > 0, pick δ > 0 so that

sup
x∈N

sup
|e−e′|<δ

|f(e, x) − f(e′, x)| < ε

2(E2 − E1)
.

Then (assuming N ≡ (E2 − E1)δ−1 ∈ N)∫ E2

E1

f(E, xk)e±2iγ(xk,E) dE =
N∑
n=1

f(E1 + nδ, xk)
∫ E1+nδ

E1+(n−1)δ

e±2iγ(xk,E) dE + η,

where |η| < ε/2. By Corollary 5.3, the integrals
∫
e±2iγ(xk,E) dE tend to zero

as xk → ∞, and |f(E, x)| ≤ C for all x, E, so the claim follows.
So the last term of (63) can be made arbitrarily small by taking xk large

enough, and the second one can obviously be estimated by Ck−1, so (62) indeed
holds (in fact,

∫
S2
k = O(ln k)). The proof for

∑
Ym is similar.

Finally, non-existence of l2 solutions follows easily by also taking xk suffi-
ciently large. �
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