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ABSTRACT. We present a new approach (distinct from Gel’fand-Levitan) to the theorem of
Borg-Marchenko that the m-function (equivalently, spectral measure) for a finite interval or
half-line Schroédinger operator determines the potential. Our approach is an analog of the
continued fraction approach for the moment problem. We prove there is a representation for
the m-function m(—k?) = —k — fob A(a)e™2%% doy+ O(e=(2b=2)5) " A on [0, a] is a function
of g on [0,a] and vice-versa. A key role is played by a differential equation that A obeys
after allowing z-dependence:

0A 0A @
o=+ [ G A= pa)as

Among our new results are necessary and sufficient conditions on the m-functions for po-
tentials q1 and g2 for ¢1 to equal g2 on [0, a).

§1. Introduction

Inverse spectral methods have been actively studied in the past years both via their
relevance in a variety of applications and their connection to the KdV equation. A major
role is played by the Gel’fand-Levitan equations. Our goal in this paper is to present a
new approach to their basic results that we expect will lead to resolution of some of the
remaining open questions in one-dimensional inverse spectral theory. We will introduce
a new basic object (see (1.24) below), the remarkable equation, (1.28), it obeys and
illustrate with several new results.

To present these new results, we will first describe the problems we discuss. We will
consider differential operators on either L?(0,b) with b < oo or L?(0,00) of the form

d2

(). (1.1)
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2 B. SIMON
If b is finite, we suppose
B = /Ob lq(z)|dz < o0 (1.2)
and place a boundary condition
u'(b) 4+ hu(b) = 0, (1.3)

where h € RU{oo} with A = oo shorthand for the Dirichlet condition u(b) = 0. If b = oo,
we suppose

Y1
/ lg(z)|dz < o0 for all y (1.4)
y
and
y+1
B2 = sup/ max(q(z),0) dx < oo. (1.5)

Under condition (1.5), it is known that (1.1) is limit point at infinity [15].

In either case, for each z € C\[3,00) with —f sufficiently large, there is a unique
solution (up to an overall constant), u(z, z), of —u” + qu = zu which obeys (1.3) at b if
b < oo or which is L? at oo if b = co. The principal m-function m(z) is defined by

m(z) = . (1.6)

We will sometimes need to indicate the g-dependence explicitly and write m(z;q). If
b < 00, “q” is intended to include all of g on (0,b), b, and the value of h.

If we replace b by by = b — zp with o € (0,b) and let g(s) = q(xo + s) for s € (0,b1),
we get a new m-function we will denote by m(z, x¢). It is given by

= 1.7
m(za) = (1.7
m(z,x) obeys the Ricatti equation
d
% =q(z) — z — m?(z,z). (1.8)

Obviously, m(z,z) only depends on g on (z,b) (and on h if b < 00). A basic result of
the inverse theory says that the converse is true:

Theorem 1.1 (Borg [3], Marchenko [12]). m determines q. Explicitly, if q1,q2 are
two potentials and m1(z) = ma(2), then g1 = q2 (including h1 = hs).

We will improve this as follows:
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Theorem 1.2. If (q1,b1,h1), (g2,b1, h2) are two potentials and a < min(by, bs) and if

q1(z) = q2() on (0,a), (1.9)

then as k — o0, )
mi(—k?) — ma(—k?) = O(e™2"*). (1.10)

Conversely, if (1.10) holds, then (1.9) holds.

In (1.10), we use the symbol O defined by f = O(g) as  — z¢ (where lim, ., g(z) =
0) if and only if lim, 4, 6L = 0 for all £ > 0.

From a results point of view, this local version of the Borg-Marchenko uniqueness
theorem is our most significant new result, but a major thrust of this paper are the new
methods. Theorem 1.2 says that ¢ is determined by the asymptotics of m(—x?) as k — .
We can also read off differences of the boundary condition from these asymptotics. We

will also prove that

Theorem 1.3. Let (q1,b1,h1), (g2,b2, he) be two potentials and suppose that

by =by=b< o0, |h|+|he| <00, q(z)=qz) on (0,b). (1.11)
Then
lim e?%mq(—k?) — ma(—k?)| = 4(h1 — ha). (1.12)

Conversely, if (1.12) holds for some b < co with a limit in (0,00), then (1.11) holds.

Remark. That (1.11) implies (1.12) is not so hard to see. It is the converse that is
interesting.

To understand our new approach, it is useful to recall briefly the two approaches to
the inverse problem for Jacobi matrices on £2({0,1,2,...,}) [2,8,18]:

bo ao 0 0
ao bl al 0

A= 0 al bg as

with a; > 0. Here the m-function is just (dg, (4 — 2)~1dp) = m(z) and, more generally,
M (2) = (6n, (A — 2)716,,) with A™ on £2({n,n +1,...,}) obtained by truncating
the first n rows and n columns of A. Here §,, is the Kronecker vector, that is, the vector
with 1 in slot n and 0 in other slots. The fundamental theorem in this case is that
m(z) = mo(z) determines the b,’s and a,’s.

mp(2) obeys an analog of the Ricatti equation (1.8):

1
aimn+1(2) = bn — 2 — W . (113)
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One solution of the inverse problem is to turn (1.13) around to see that
Mu(2)™ = =2+ by — a2mpi1(2) (1.14)
which, first of all, implies that as z — oo, my,(2) = —27! + O(272), so (1.14) implies
Mmu(2)™' = —2+b, +a2271 +0(z72). (1.15)

Thus, (1.15) for n = 0 yields by and a3 and so mi(z) by (1.13), and then an obvious
induction yields successive by, ai, and my41(2).

A second solution involves orthogonal polynomials. Let P, (z) be the eigensolutions of
the formal (A — z)P,, = 0 with boundary conditions P_1(z) = 0, Py(z) = 1. Explicitly,

Poi1(2) = a; ' [(z = by)Pp(2)] — an_1P_1. (1.16)

Let dp(x) be the spectral measure for A and vector g so that

m(z) :/dp_(:r;) (1.17)

T —z

Then one can show that
/Pn(:v)Pm(:v) dp(z) = dpm, n,m=0,1,.... (1.18)

Thus, P,(z) is a polynomial of degree n with positive leading coefficients determined
by (1.18). These orthonormal polynomials are determined via Gram-Schmidt from p and
by (1.17) from m. Once one has the P,, one can determine the a’s and b’s from the
equation (1.16).

Of course, these approaches via Ricatti equation and orthogonal polynomials are not
completely disjoint. The Ricatti solution gives the a,’s and b,’s as continued fractions.
The connection between continued fractions and orthogonal polynomials goes back a
hundred years to Stieltjes’ work on the moment problem [18].

The Gel’fand-Levitan-Marchenko [7,11,12,13] approach to the continuum case is a
direct analog of this orthogonal polynomial case. One looks at solutions U(x, k) of

~U" + q(z)U = k*U(x) (1.19)

obeying U(0) = 1, U'(0) = ik, and proves that they obey a representation
Ulx, k) = e + K (z,y)e™ dy, (1.20)

the analog of P,(z) = c2"+ lower order. One defines s(z,k) = (2ik) U (z, k) —
U(z, —k)] which obeys (1.19) with s(0) =0, s'(0) = 1.
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The spectral measure dp associated to m(z) by dp(\) = limg|o[(2m) ™! Im m(A+ig) d)]
obeys

/ s(, k) s(y, k) dp(k?) = 8z — y), (1.21)

at least formally. (1.20) and (1.21) yield an integral equation for K depending only on
dp and then once one has K, one can find U and so ¢ via (1.19) (or via another relation
between K and q).

Our goal in this paper is to present a new approach to the continuum case, that is, an
analog of the Ricatti equation approach to the discrete inverse problem. The simple idea
for this is attractive but has a difficulty to overcome. m(z,z) determines g(x) at least if
q is continuous by the known asymptotics ([4]):

m(—k%z) = —K — % +o(rk™h). (1.22)
We can therefore think of (1.8) with ¢ defined by (1.22) as an evolution equation for m.
The idea is that using a suitable underlying space and uniqueness theorem for solutions
of differential equations, (1.8) should uniquely determine m for all positive x, and so q(x)
by (1.22).

To understand the difficulty, consider a potential ¢(x) on the whole real line. There are
then functions u (x, z) defined for z € C\[f3, 00) which are L? at +00 and two m-functions
u!y (z,2)
ut(z,2) "
(0,00) while m_(0, z) has the same relation to ¢ on (—o0,0). Put differently, m (0, 2)
determines m (z, z) for z > 0 but not at all for x < 0. m_ is the reverse. So uniqueness
for (1.8) is one-sided and either side is possible! That this does not make the scheme
hopeless is connected with the fact that m_ does not obey (1.22), rather

m_(—k*x) =K+ % +o(k™h). (1.23)
We will see the one-sidedness of the solubility is intimately connected with the sign of
the leading +x term in (1.22/1.23).

The key object in this new approach is a function A(«) defined for a € (0,b) related
to m by

my(z,x) = Both obey (1.8), yet m4 (0, z) determines and is determined by ¢ on

m(—k?) = —k — /Oa A(a)e™2%% dor + O(e™2%) (1.24)

as Kk — 0o. We have written A(«) as a function of a single variable but we will allow
similar dependence on other variables. Since m(—#&?, ) is also an m-function, (1.24) has
an analog with a function A(«,z). We will also sometimes consider the ¢g-dependence
explicitly, using A(a, x;q) or for A real and ¢ fixed A(a,z;A) = A(a,x;\q). If we are
interested in ¢-dependence but not z, we will sometimes use A(a; A). The semicolon and
context distinguish between A(«, z) and A(a; \).

By uniqueness of inverse Laplace transforms (see Theorem A.2.2 in Appendix 2),
(1.24) and m near —oo uniquely determine A(«).

Not only will (1.24) hold but, in a sense, A(«a) is close to g(a). Explicitly, in Section 3
we will prove that
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Theorem 1.4. Let m be the m-function of the potential q. Then there is a function
A(a) € LY(0,b) if b < oo and A(a) € LY(0,a) for all a < oo if b = co so that (1.24)
holds for any a < b with a < oco. A(a) only depends on q(y) for y € [0,a]. Moreover,
A(a) = q(a) + E(a) where E(a) is continuous and obeys

B < ([ law) dy)gexp(a [ lawlay). (1.25)

Restoring the xz-dependence, we see that A(a, x) = ¢(a + x) + E(o, x) where

lim sup |F(a,z)] =0
al0 0<z<a

for any a > 0, so
lim A(a, ) = q(x), (1.26)
al0
where this holds in general in L! sense. If ¢ is continuous, (1.26) holds pointwise. In
general, (1.26) will hold at any point of right Lebesgue continuity of g.
Because F is continuous, A determines any discontinuities or singularities of q. More
is true. If ¢ is C*, then E is C**2? in «, and so A determines k*" order kinks in g. Much
more is true. In Section 7, we will prove

Theorem 1.5. g on [0,a] is only a function of A on [0,a]. Explicitly, if q1,q2 are two
potentials, let Ay, Ay be their A-functions. If a < by, a < be, and Ai1(a) = Asz(a) for
a € [0,al, then q1(x) = q2(z) for x € [0, al.

Theorems 1.4 and 1.5 immediately imply Theorem 1.2. For by Theorem A.2.2; (1.10)
is equivalent to A;(a) = Az(a) for a € [0,a]. Theorems 1.4 and 1.5 says this holds if
and only if ¢1(x) = g2(x) for x € [0, al.

As noted, the singularities of ¢ come from singularities of A. A boundary condition
is a kind of singularity, so one might hope that boundary conditions correspond to very
singular A. In essence, we will see that this is the case — there are delta-function and
delta-prime singularities at o = b. Explicitly, in Section 5, we will prove that

Theorem 1.6. Let m be the m-function for a potential ¢ with b < oo. Then for a < 2b,
m(—r?) = —k — / A(a)e 2% do — A1ke 2 — Bie 2% 4 O(e20%), (1.27)
0

where
(a) If h =00, then Ay =2, By = —2 fob q(y) dy
(b) If |h] < oo, then Ay = =2, Bi=2[2h+ [\ q(y)dy].

As we will see in Section 5, this implies Theorem 1.3.
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The reconstruction theorem, Theorem 1.5, depends on the differential equation that
A(a, z) obeys. Remarkably, ¢ drops out of the translation of (1.8) to the equation for A:

0A(a,x)  0A(a, ) N

/04 A(B,z)A(a — B, x) dB. (1.28)

Ox oo 0

If ¢ is C'', the equation holds in classical sense. For general ¢, it holds in a variety
of weaker senses. Either way, A(«,0) for a € [0,a] determines A(a, x) for all x, « with
a>0and 0 < z+a <a. (1.26) then determines ¢(z) for x € [0,a). That is the essence
of where uniqueness comes from.

Here is a summary of the rest of this paper. In Section 2, we start the proof of
Theorem 1.4 by considering b = oo and ¢ € L'(0,00). In that case, we prove a version
of (1.24) with no error, namely, A(«a) is defined on (0, 00) obeying

[A(e) = q(e)] < [lgllT exp(allq]1)

and if k > |\g||1, then
m(—k?) = —k — / Ala)e™?*" da. (1.29)
0

In Section 3, we use this and localization estimates from Appendix 1 to prove Theorem 1.4
in general. Section 4 is an aside to study implications of (1.24) for asymptotic expansions.
In particular, we will see that

m(—k?) = —k — /Oa q(@)e 2 da + o(k™ 1), (1.30)

which is essentially a result of Atkinson [1]. In Section 5, we turn to proofs of Theorem 1.6
and Theorem 1.3. Indeed, we will prove an analog of (1.27) for any a < co. If a < nb,
then there are terms > _ (A,ke ™2™ + B,,e~2™) with explicit A, and By,.

In Section 6, we prove (1.28), the evolution equation for A. In Section 7, we prove
the fundamental uniqueness result, Theorem 1.5. Section 8 includes various comments
including the relation to the Gel’fand-Levitan approach and a discussion of further ques-
tions raised by this approach.

I thank P. Deift, I. Gel’fand, R. Killip, and especially F. Gesztesy for useful comments,
and M. Ben-Artzi for the hospitality of Hebrew University where part of this work was
done.

§2. Existence of A: The L' Case

In this section, we prove that when ¢ € L', then (1.29), which is a strong version of
(1.24), holds. Indeed, we will prove
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Theorem 2.1. Let ¢ € L'(0,00). Then there exists a function A(a) on (0,00) with

A — q continuous, obeying
[A(a) = g(@)] < Q(a)® exp(aQ(a)),

where

Q) = / el dy

and so that if k > 3|q|l1, then

Moreover, if ¢, are both in L', then

[Aasq) = A(e; )] < llg = dll1[Q(a) + Q)] exp(a[Q(a) + Q(a)).

(2.1)

(2.2)

(2.4)

We begin the proof with several remarks. First, since m(—x2) is analytic in C\[3, 00),
we need only prove (2.3) for all sufficiently large . Second, since m(—x?2; q,) — m(—r?;q)
as n — oo if ||gn, — ¢||1 — 0, we can use (2.4) to see that it suffices to prove the theorem
if ¢ is a continuous function of compact support, which we do henceforth. So suppose ¢

is continuous and supported in [0, B].
We will prove the following:

Lemma 2.2. Let q be a continuous function supported on [0, B]. For A € R, let m(z; \)

be the m-function for A\q. Then for any z € C with dist(z, [0,00)) > Al¢||co,
m(z;\) = —k — Z My (25 ¢) A",
n=1

where for k >0,
nB
M, (—kK?%;q) = / Ap(a)e™ 2" da,
0
where
A (o) = q(a)

and for n > 2, A, (a) is a continuous function obeying

n—2

(n—2)!"

[An(a@)] < Q(a)"

Moreover, if G is a second such potential and n > 2,

0477“72

An(a0) — An(s @)] < (Q(a) + Q)™ [ / ") — )l dy

(n—2)!"

(2.5a)

(2.5b)

(2.6)

(2.7)
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Proof of Theorem 2.1 given Lemma 2.2. By (2.7),

/ Z |Ap(a)|e™ 2 da < oo
0 n=2

if K > 1||g|l;. Thus in (2.5a) for A = 1, we can interchange the sum and integral to get
the representation (2.3). (2.7) then implies (2.1) and (2.8) implies (2.4). O

Proof of Lemma 2.2. Let Hy be —j—; + Aq(x) on L?(0,00) with u(0) = 0 boundary
conditions at 0. Then [|(Hy — 2)7!|| = dist(z, [0,00)) L. So, in the sense of L? operators,
if dist(z,[0,00)) > Al|¢q||co, the expansion

(Hx—2)"' =) (~1)"(Ho — 2) "' [Ma(Ho — 2)~']" (2.9)

n=0

is absolutely convergent.
As is well known, G)\(x,y; 2), the integral kernel of (H) — z)~!, can be written down
in terms of the solution u which is L? at infinity, and the solution w of
—w" +qu = zw (2.10)
obeying w(0) =0, w’(0) =1

u(max(z,y))

Ga(z,y; z) = w(min(z,y)) w(0) (2.11)
In particular,
. 0°G
m(z) = }jlgl/ 920y (2.12)

yl0

From this and (2.9), we see that (using 8(%0 (, y)‘xzo =e W)

m(—k% ) = —k — A/e%yq(y) dy + X {pn, (Hx + &%) ),

where ¢, (y) = q(y)e Y. Since ¢, € L?, we can use the convergent expansion (2.9) and
so conclude that (2.5a) holds with (for n > 2)

Mn(_ﬁg; Q) =

(=1t /6le(Qh)Go(:Iq,:Ez)q(:vg)...Go(:lzn1,xn)q(:1;n)e’“" dzy ...dz,,.
(2.13)



10 B. SIMON

Now use the following representation for Gg:

sinh(k min(z, y))

GO (.CE, y; _HQ) _ e F max(z,y)
K
1 [*tY
= —/ e " de (2.14)
2 |z —yl
to write
Mn(_HQ;Q) =
(_1)7171 —2a(x1,2n,0 L )R
Toni q(z1)...q(zn)e Lt —UR doy o depdly . dly 1, (2.15)
Ry

where « is shorthand for the linear function
1 n—1
a=g (:1;1 + iz, + Zej) (2.16)
j=1
and R,, is the region
Ry, ={(z1,...,on01,... . ln1) ER*" V| 0< 2, <Bfori=1,...,n;
]acz- —:1;1-+1] <t <zi4+xiqfori—1,...,n— 1}.

In the region R,,, notice that

1 n—1 n
o< 5(5171 +x, + Zl(.flij —l—.fl?j+1)) = lej <nB.
J= J=

Change variables by replacing ¢,,_1 by « using the linear transformation (2.16) and
use ¢,,_1 for the linear function

n—2
lp_1(z1, 20,01, 2, ) =200 — 21 — Ty, — Zﬁj. (2.17)
j=1

Thus, (2.5b) holds where

(!

A (o) = 3 /R “ q(z1)...q(zy)dzy ... deydly ... dl,_o. (2.18)

2"~ has become 2" 72 because of the Jacobian of the transition from ¢, 1 to a. R,(«)
is the region
Ro(a) = {(z1,..., 20, l1,... ., by o) ER*™2|0<2; < Bfori=1,...,n;
|.CI?Z' —.CI?Z'+1’ <l <zi+wxipg fori=1,...,n—2;
’.Clinfl + .CBn’ < gnfl(:l?l, vy Ty by, b o, Oé) < Tp_1+ .Cljn} (2.19)
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with £,,_1 the functional given by (2.17).
We claim that
n—2

0<uz<a; EiEO;Z&gQa}.
i=1

(2.20)

Rn(Oé) C Rn(a) = {(2171,... ,il?n,gl,... ,gnfg) € R2n—2

Accepting (2.20) for a moment, we note by (2.18) that

1
1A, ()| < 2712/~ lq(a1)] . .. Jq(zn)| do1 . . . dln—o

- ([ liar) 2

since fZ Ji—biys >0 dy; ...dy, = % by a simple induction. This is just (2.7).

To prove (2.8), we note that

|An(c; @) — An(a, §)] < 2”2/ lg(z1) ... q(zn) — G(z1) ... G(zn)|dxy ... dlp—o

Ry (o)
< P Q| [l - awlay] Qe
§=0

Since 377", /b7 < 37T (T)alb™ I = (a +b)™, (2.8) holds.
Thus, we need only prove (2.20). Suppose (z1,...,Zn,l1,...,ln—2) € R,(a). Then
2rm < ’-771 _xm’ + ’xn _xm’ +x1+ T
n—1
<zt ant Y |7 —
j=1
n—2
S 1+ Ty + Zgj —i—gn,l(:l?l,... ,il?n,gl,...,gnfg;&) =2«
j=1
so 0 < x; < «, proving that part of the condition (z1,¢,—2) C f{n(a). For the second
part, note that
n—2
Zﬁj =20 —x1 —Zp —lp1(T1,. . Ty b1,y ln—2) < 2a0
j=1
since 1, &y, and ¢, _ are non-negative on R, («). O
We want to say more about the smoothness of the functions A, (a) and A, (o, x)
defined for x > 0 and n > 2 by
(_1)7171

Ap (o, ) = n—3

/ g(x+x1)...q9(x +xp)dry ... depdly ... dl,_o (2.21)
Ry, (o)

so that A(a,z) = Y07 ) A, (a, x) is the A-function associated to m(—~x?,z). We begin
with o smoothness for fixed x.
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Proposition 2.3. A, («a,x) is a C"2-function in a and obeys for n > 3

dJAn(Oé) 1 —2—j .
. " " =1,...,n— 2. 2.22
daj — (n _ 2 _ j)! « Q(a) ) j ) 777’ ( )
Proof. Write
(=)
Ay (a) = BT /R q(z1)...q(zy) (5(204 — T — Ty — Z Ei) dry...dxndl;...dl,_q.
n m=1

Thus, formally,

di A, _1)»—19J . nt
do;a) — ( 2212 / q(z1)...q(zy) 5 (2a — X1 — Ty — Z Ei) dry...dl,_1.
Ry

m=1
(2.23)
Since 7 +1 < n — 1, we can successively integrate out ¢,,_1,0p—2,...,{,—;j—1 using
/ =0 dl =6 e—a)—6"(c—b) (2.24)
and )
/ d(c—£)dl = X(q,p)(C). (2.25)
Then we estimate each of the resulting 27 terms as in the previous lemma, getting
&’ Ay () 27 (2c)n—7 72
. < e
dor | = 32 Q) =

which is (2.22).

(2.24), (2.25), while formal, are a way of bookkeeping for legitimate movement of
hyperplanes. In (2.25), there is a singularity at ¢ = a and ¢ = b, but since we are
integrating in further variables, these are irrelevant. [

Proposition 2.4. If ¢ is C™, then A,(a) is C"+(27=2),

Proof. Write R,, as n! terms with orderings x,(1) < -+ < Tz(n). For jo = 2n — 2, we
integrate out all 2n — 1, ¢ and x variables. We get a formula for % as a sum of

products of ¢’s evaluated at rational multiples of a. We can then take m additional
derivatives. [

Theorem 2.5. If q is C™ and in L'(0,00), then A(a) is C™ and A(a) —q(a) is C™F2.

Proof. By (2.2), we can sum the terms in the series for Z;‘} and & E;‘XIQ) forj =0,1,...,m
and 7 =0,1,...,m — 2, respectively. With this bound and the fundamental theorem of

calculus, one can prove the stated regularity. [J

Now we can turn to x-dependence.
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Lemma 2.6. If ¢ is C* and of compact support, then A,(a,x) for a fived is C* in x,
and forn>2,5=1,...k,

< Q)OI (o] o i;! , (2.26)

dxy

where .
a J

Pla)= [ >

0 m=0

Proof. In (2.21), we can take derivatives with respect to . We get a sum of terms with
derivatives on each ¢, and using values on these terms and the argument in the proof of
Lemma 2.2, we obtain (2.26). O

d™q
—_— dy.
o )] dy

Theorem 2.7. If q is C* and of compact support, then A(a,x) for a fized is C* in x

and ,
d’m

(—K?, 1) = —/ vA (o, w)e 2 da
0
for k large and 7 =1,2,... k.

Proof. This follows from the estimates in Lemma 2.6 and Theorem 2.1. [

§3. Existence of A: General Case

By combining Theorem 2.1 and Theorem A.1.1, we immediately have

Theorem 3.1. Let b < oo, ¢ € L'(0,b), and h € RU {occ} or else let b = oo and let q
obey (1.4), (1.5). Fiz a < b. Then, there exists a function A(c) on L'(0,a) obeying

[A(a) — gqa)| < Q(a) exp(aQ(a)), (3.1)

where

Qo) = / el dy (3.2)

so that as kK — o0,
m(—k?) = —k — / A(a)e™2%% dor + O(e™2%), (3.3)
0

Moreover, A(a) on [0,a] is only a function of ¢ on [0, a).

Proof. Let b = oo and §(z) = ¢(x) for # € [0,a] and §(z) = 0 for # > a. By Theo-
rem A.1.1, m —m = O(e~2%%), and by Theorem 2.1, 7 has a representation of the form
(3.3). O
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84. Asymptotic Formula

While our interest in the representation (1.24) is primarily for inverse theory and, in a
sense, it provides an extremely complete form of asymptotics, the formula is also useful
to recover and extend results of others on more conventional asymptotics.

In this section, we will explain this theme. We begin with a result related to Atkinson
[1] (who extended Everitt [5]).

Theorem 4.1. For any q (obeying (1.2)—(1.5)), we have that
b
m(—k?) = —k — / q(z)e " dx 4+ o(k ™). (4.1)
0

Remarks. 1. Atkinson’s “m” is the negative inverse of our m and he uses k = ik, and so
his formula reads ((4.3) in [1])

b
maek(k?) = ik~ + kg/ ek q(x) da + o(|k|™3).
0

2. Atkinson’s result is stronger in that he allows cases where ¢ is not bounded below
(and so he takes |z| — oo staying away from the negative real axis also). [10] will extend
(4.1) to some such situations.

3. Atkinson’s method breaks down on the real x axis where our estimates hold, but
one could use Phragmén-Lindelof methods and Atkinson’s results to prove Theorem 4.1.

Proof. By Theorem 3.1, (A—¢q) — 0 as a | 0so [ e 2*(A(a) — g(a))da = o(k™!).
Thus, (3.3) implies (4.1). O

Corollary 4.2.

m(—k?) = —k +o(1)
Proof. Since g € L', dominated convergence implies that fé) q(x)e %% dx = o(1). O
Corollary 4.3. Iflim,|oq(x) = a (indeed, if % fos q(z)dx — a as s | 0), then

ey o(k™1).

m(—k?) = —k — 5

Corollary 4.4. If q(z) = cx™ + o(z™ %) for 0 < a < 1, then
m(—k?) = —k — c[2°71T(1 — )]~ +o(k*71).

We can also recover the result of Danielyan and Levitan [4]:
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Theorem 4.5. Let g(x) € C™[0,9) for some § > 0. Then as k — oo, for suitable
Bo, - -, Bn, we have that

m(—k?) = —K — Z Bik IOk Y. (4.2)

m=0

Remarks. 1. Our m is the negative inverse of their m.

2. Our proof does not require that ¢ is C™. It suffices that ¢(z) has an asymptotic
series Y " _ amz™ + o(z™) as z | 0.
Proof. By Theorems 3.1 and 2.5, A(«) is C™ on [0,6). It follows that A(a) = >0 _ bjad
+o(a?). Since f(;S ale 2% do = kI71279 7114 O(e2%%), we have (4.2) 8; = 297 15lb; =
2718 4(q=0). O

Later we will prove that A obeys (1.28). This immediately yields a recursion formula
for §;(x), viz:

J
Ba(@) = 5 25 4 LS @)y ela), G20
£=0
ol = 5 (),

see also [9, Sect. 2].

§5. Reading Boundary Conditions

Our goal in this section is to prove Theorem 1.6 and then Theorem 1.3. Indeed, we
will prove the following stronger result:

Theorem 5.1. Let m be the m-function for a potential ¢ with b < co. Then there exists
a measurable function A(a) on [0,00) which is L' on any finite interval [0, R], so that
for each N =1,2,... and any a < 2Nb,

a N N
m(—k?) = —k — / Ala)e™ " do — ZAj/ie*%bj - ZBj€72K’bj +O(e2%%), (5.1)
0

j=1 j=1
where

(a) If h =00, then A; =2 and B; = —2j fob q(y) dy.

(b) If |h| < oo, then A; = 2(—1)7 and B; = 2(—1)7T1j[2h + fob q(y) dy].

Remarks. 1. The combination 2h + fé) q(y) dy is natural when |h| < oco. It also enters
into the formula for eigenvalue asymptotics [11,13].
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2. One can think of (5.1) as saying that
m(—k?) = —k — / A(a)e2%% do + O(e™22%)
0

for any a where now A is only a distribution of the form A(a) = A(a)+ 4 >y Ao (a—
jb) + 37721 Bjd(ar — jb) where ¢' is the derivative of a delta function.

3. As a consistency check on our arithmetic, we note that if ¢(y) — ¢(y) + ¢ and
k? — Kk? — ¢ for some ¢, then m(—~x?) should not change. k?> — k? — ¢ means Kk — K — o
and so ke 2r% — ke 2r0 4 chje2M% + O(k~1) terms. That means that under ¢ — q¢+c,

we must have that B; — B; — cbjA;, which is the case.

Proof. Consider first the free Green’s function for —j—; with Dirichlet boundary condi-
tions at 0 and h-boundary condition at b. It has the form

sinh(kx) uy (y)
G = 5.2
0(.fl?,y) /£u+(0) ) <y ( )
where u (y; k, h) obeys —u” = —k?u with boundary condition
u'(b) + hu(b) = 0. (5.3)
Write
uy(y) = e + ae 20y (5.4)
for « = a(h, k). Plugging (5.4) into (5.3), one finds that
-1 h = o0 (5.5)
a = —h/kK — '
S = 1- 20 O(k72) || < oo,

Now one just follows the arguments of Section 2 using (5.2) in place of (2.14). All terms
of order 2 or more in A\? contribute to locally L! pieces of A(a). The exceptions come
from the order 0 and order 1 terms. The order 0 term is

I - —
o "1+ ae2r

PGolr,y)  Wp(0)  [1—ae "
z<y—0  0z0y uy (0)

-e

Now 172 =1+2Y 2 (—=1)"2", so

00
Q =k — 2% Z(_l)nanebemz
n=1
{ — Kk — 92k 220:1 ebemz

s =26 3007 (—1mem R — 43 (1) nhe T2 o regular, (5.6)



INVERSE SPECTRAL THEORY: FUNDAMENTAL FORMALISM 17

where regular means a term which is a Laplace transform of a locally L! function, and
we used (by (5.5)) that if & is finite, then

=1-"—+0(k?
K (H )7
where kO(k?) in this context is regular.

The first-order term is
/b lm(y)r
= - qly
o a0

Now (Zi—goyg)Q = (14 ae=2%)72[e=" + ae~#(2b=¥)]2_ In expanding the last square, e~2"¥

and e2%(20=Y) yield regular terms but the cross term is not regular, that is,

b
g :‘U a(y) dy} 206 20(1 + ae ™)~ 4 regular.
0

Now
2(142)72=—2 4 (1+2)7t=—2 4 i(—l)”z” = i(—l)”“nz
dz dz — =

and so using @ = (=1)" if h = co and o™ = 1+ O(k ™) if h < co, we see that

25" ne2nRb| y) dy] + regular, h = o0
237 [ (—1)"ne= 20| fo y) dy] + regular, |h| < oco.
Combining (5.6) and (5.7), we see that (with I = fo ) dy),
P40 { —K—2KY 00 e 2R 4 257 nle 2" 4 regular
L 23000 (1) 2R 1 2357 (—1)"n[] 4 2h]e~ 225 4 regular.

(5.8)
This is precisely what conclusion (a), (b) of Theorem 5.1 asserts. [

Proof of Theorem 1.3. The direct assertion follows from Theorem 5.1 and the fact that
A on [0,0] is only a function of ¢ there. We consider the converse part. By Theorems 5.1
and 3.1, for each ¢; we have for any a < oo,

mi(—kK?) = —k — / Aj(a)e™2% do + O(e=2r),
0

where A(a) is an L'(0,a) function plus a possible finite sum of § and ¢’ terms. Take a =
2b. (1.12) and the fundamental expansion on uniqueness of inverse Laplace transforms
(see Theorem A.2.2) imply that (A; — As)(«) is supported on [b, 2b]. If by, by > b, then
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the limit (1.12) is zero, so hy # ho implies either by or be is b. If only one is b, then the
difference has a ¢’ term and the limit in (1.12) is infinite. Therefore, by = by = b.

Since A; = As on [0,b], Theorem 1.2 implies that ¢ (z) = ¢g2(z) on [0,8]. If both hy
and ho are infinite, then the limit is zero. If only one is infinite, then there is a ¢’ term
and the limit is infinite. Thus, a limit on (0,00) implies hy and hy are both finite and
so, by Theorem 5.1, the limit is 4(h1 — h2) as claimed. O

6. The A-Equation

In this section, we will prove equation (1.28). We begin with the case where q is C*. In

general, given ¢ (i.e., q, b, and h if b < o0), we can define m(z,z) = Zigig for = € [0,b)

and z € C\[, 00) for suitable § € R. By Theorem 3.1, there is a function A(«, z) defined
for (a,x) € {(a,2) ER? |0< 2 <b; 0 < aw<b—x} =S so that for any a < b — =,

m(—k%2) = —K — / Ao, 2)e™2%% dor 4+ O(e29%). (6.1)
0
Moreover, m obeys the Ricatti equation (1.8), and by (3.1) if we define g, (z) on [0, b] by

ga(z) = A, 2) if v <b—a«
=0 ifb—a<z<b.

Then

litn g (2) = g() (6:2)

in L'(0,a) for any a < b.

In (6.2), there is a potential difficulty in that A(a,x) is a priori only defined for a.e. «
for each z, so that go(z) is not well-defined for all &. One can finesse this difficulty by
interpreting (6.2) in essential sense (i.e., for all @ < b and € > 0, there is a A so that for
almost every a with 0 < a < A, we have [ [ga(z) — q(z)|dz < £). Alternatively, one
can pick a concrete realization of ¢ and then use the fact that A — ¢ is continuous to
define A(x,a) — q(x + «) for all x,« and then (6.2) holds in traditional sense. Indeed, if
q is continuous, it holds pointwise.

Theorem 6.1. If q is C', then A is jointly C* on S and obeys
0A 0A «
— == A Ala — dg. 6.3
=t | A0 - paas (63
Proof. That A is jointly C'* when ¢ is C'* of compact support follows from the arguments
in Section 2 (and then the fact that A on [0,a) is only a function of ¢ on [0,a) lets us
extend this to all C! ¢’s). Moreover, by Theorem 2.7,

0 T 0A _
6—7: (—/{2,:1:) = —/0 o (a,:z;)e*%‘” do + O(eiga“) (6.4)



INVERSE SPECTRAL THEORY: FUNDAMENTAL FORMALISM 19

for all a < b —x. Now in (6.1), square m to see that

m(z, —k?)? = k? + / B(a, z)e 2 da + 2/ Ao, 2)ke 2% da 4+ O(e™2%%),  (6.5)
0 0

where B(a, z) fo B,x)A(a — B,x)dB. In the cross term in (6.5), write 2ke 2" =
—d‘fx(e*%‘”) and mtegra,te by parts
¢ —2ak —2akK : “0A —2ak
2 [ Ala,z)ke doa = —A(a,x)e +1lim A(a, z) + (a,x)e do.
0 alO 0 (904

By (6.2), lim, o A(a, z) = g(z) so (6.5) becomes

—m2 4 K24 q= / (Z—A - B) —2 doy + O(e20%), (6.6)
a

The Ricatti equation (1.8), (6.4), (6.6), and the uniqueness of inverse Laplace transforms
(Theorem A.2.2) then imply that (6.3) holds pointwise. [

There are various senses in which (6.3) holds for general q. We will state three. All
follow directly from the regularity results in Section 2, the continuity expressed by (3.4),
and Theorem 6.1.

Theorem 6.2. For general q, (6.3) holds in distributional sense.

Theorem 6.3. For general q, define C(v,x) on {(y,z) € R? | x <y < b)} by

C(v,z) = A(y — z, ).

Then, if v1 < o < 7y, we have that for all (v, x),

Cly,2) = Cly,a1) + / - dy[ / TCOM)C — Aty AL (6.7)

1

Theorem 6.4. If q is continuous, then F(a,z) = Ao, 1) — q(a + x) is jointly C' and
obeys
oF  OF

oz da / A(B,2)A(a — B,x) dp.

§7. The Uniqueness Theorem

In this section, we will prove Theorem 1.5 and therefore, as already noted in the
introduction, Theorem 1.2. Explicitly,
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Theorem 7.1. Let g1 and g2 be two potentials and let a < min(by,b2). Suppose A1(a,0)
= As(a,0) for a € [0,a]. Then ¢1 = q2 for a.e. for x in [0,a).

Proof. We will use (6.7) and an elementary Gronwall’s equality to conclude that A; (v, x)
= As(a,7) on S = {(z,a) € R? | x + a < a}, and then conclude that q; = g2 on [0, a]
by (6.2). Pick an explicit realization of ¢; and g2 and then since A;(c, x) — gj(a + x) is
continuous, an explicit realization of A;(a,x) in which

g(z) = /0 A1 (,7) — As(a, z)| da

is continuous. Moreover, in this realization,

D = sup / [1A1(a, )| + [A2(ev, 2)|] da < o0
0

0<z<a

since the integral is also continuous. By (6.7) for 0 < z; < x2 < a,

o) < 9()+ D [ oty ()
Letting h(z) = supg<, <, 9(¥), (7.1) implies

B(x) < ha) + D/xQ h(a2) dy

so if D(ze — 1) < 1 and h(z1) = 0, then h(z2) = 0. By hypothesis, h(0) = 0. So using
this argument a finite number of times, h(z) = 0 for x € [0, al, that is, A; = A2 on S. O

§8. Complements and Open Questions

In this final section, we make a number of remarks about the ideas and results of the
earlier sections as well as focus on some open questions and conjectures that we hope to
address. We will also mention some results in a forthcoming paper with F. Gesztesy [10]
that will study the objects of this paper.

1. Our reconstruction procedure is one-sided, as it must be since m(z, x) is a function
of ¢ on [z,b] and totally independent of ¢ on [0, x]. The one-sidedness comes from the
fact that the differential equation for A begins % = %, not % = —%. If one took an
m_ function defined from the left of an interval and normalized so the Ricatti equation
(1.8) still holds, then m_(—~x?) has leading asymptotics + rather than —x, and that
leads precisely to leading asymptotics % = —% + .-+ consistent with the one-sidedness

in the other direction.
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2. We owe to Gel’fand [6] the remark that our basic results extend easily to matrix
valued ¢’s (and thus to some higher-order systems). One defines u as a matrix and
m(z) = u'(0,2)u(0,2z)~1, in which case m obeys the matrix equation

m =q—z—m>

A is matrix valued. Everything goes through without significant changes.

3. One can ask about the relation of our A-function to the kernel K of Gel’fand-
Levitan (see 13]). In terms of the Gel’fand-Levitan kernel K (z,y) (defined if |y| < x),
one can define new kernels K¢, Kg defined on 0 < y < z (and built out of K(x,+y)) so
that there are solutions C, S of —u” 4+ qu = —k?u of the form,

C(z,k) = cosh(k, x) +/ K¢ (x,y)cosh(ky) dy
0

sinh(kx r sinh(x
(o) = Ty [ () P gy,

C, S are normalized so that uy = C'+m4.S, and so defining u by the boundary condition
at b, one gets

_ hC(b,k) = C'(b, k)
-~ S/(b,k) — hS(b,K)

m4 (k) (8.1)

Now,
b
2e " (~C" 4+ hC) = -k +h + /s/ Bi(a)e 2" da
0
b ~
= —H(l + / B(a)e 2" daO(eQb“))
0
for suitable B defined in terms of K and h and its derivatives. Similarly,
b ~
2e (8" — hS) =1+ / D(a)e™2%F da + O(e=2)),
0

By Theorem A.2.3, (1+f0b D(a)e™2%" da)~! has the form 1+f0b E(a)e 2% 4O (e=20%)
and so we can deduce a representation

my (k) = —5(1 + /Ob F(a)e 2" da + O(egb“)) .

More careful analysis shows that F'(0) = 0 and F' can be differentiated so that m, (k) =
—K — fob Al)e 2% da+ O(...).
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That is, one can discover the existence of our basic representation from the Gel’fand-
Levitan representation; indeed, we first found it this way. Because of the need to invert
(1+ fob D(a)e™22" da), the formula relating A to K is extremely complicated. Subsequent
to the preparation of this paper, Gesztesy and I [10] found a simple relation between A
and the second Gel’fand-Levitan kernel, L, related to K by 1+ L = (1 + K)~ 1.

4. The discrete analog of A is just the Taylor coefficients of the discrete m-function
at infinity. There is, of course, a necessary and sufficient condition for such a Taylor
series to come from a discrete Jacobi matrix m-function. For these Taylor coefficients
are precisely the moments of the spectral measure, and there are a set of positivity
conditions such moments have to obey. This suggests that A must obey some kind
of positivity conditions. What are they? Is there perhaps a beautiful theorem that the
differential equation obeyed by the A-function has a solution with a given initial condition
if and only if these positivity conditions are obeyed? Subsequent to the preparation of this
paper, Gesztesy and I [10] found a simple relation between A and the spectral measure,
which is the analog of the Taylor coefficient,

Ala) = =2 /000 d)\pl_(/);) sin(2av/)),

where the divergent integral has to be interpreted as an Abelian limit.

5. The sequence of § and ¢’ singularities that occur when b < oo must be intimately
related to the distribution of eigenvalues of the associated H via some analog of the
Poisson summation formula.

6. There must be an analog of the approach of this paper to inverse scattering theory.
Find it!

7. In [10], Gesztesy and I will compute the A-function in case ¢(x) = —v for some
v > 0. Then

A0) = Y 1 207)

where [; is the standard Bessel function denoted by I;(-). Since

Li(z) = lzi 7(12 )k
P RNk 1)

the % bounds in (2.7) are not good as n — oo if ¢ is bounded. This is discussed further

in [10].

Appendix 1: Localization of Asymptotics

Our goal in this appendix is to prove one direction of Theorem 1.2, viz:
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Theorem A.1.1. If (q1,b1,h1), (g2, b2, ha) are two potentials and a < min(by, by) and if
@1 (z) = q2(x) on (0,a), (A.1.1)

then as k — o0,

mi(—k?) — ma(—k?) = O(e™2"*). (A.1.2)

While we know of no explicit reference for this form of the result, the closely re-
lated Green’s function bounds have long been in the air, going back at least to ideas of
Donoghue, Kac, and McKean over thirty years ago. A basic role in our proof will be
played by the Neumann analog of the Dirichlet relation (2.2). Explicitly, if GP (x,y; 2, q)
and G (z,y; 2, q) are the integral kernels of (H —z)~! with H = —dd—; +q(x) on L?(0, 00)
with «(0) = 0 (Dirichlet) and u/(0) = 0 (Neumann) boundary conditions, respectively,
then

. 0*GP
m(z) = }}151/ 9207 (A.1.3)
yl0
and
m(z) = [-GN(0,0;2,¢)] " . (A.1.4)

To see this, let u be the solution L? at oo (or which obeys the boundary condition at
b) and let w obey —w"” + qw = zw with w(0) = 1, @w'(0) = 0 boundary conditions. Then

u(max(z,y))

o (A.15)

GN(:I:, Y;2,q) = —w(min(z,y))

from which (A.1.4) is immediate.
We will begin the proof of Theorem A.1.1 by considering the case where b; = by = 0.

Proposition A.1.2. Let q1,q2 be defined on (0,00) and obey (1.4)/(1.5). Then
GN(0,0; =K%, q) =k +o(k7Y) (A.1.6)
and if (A.1.1) holds, then
GN(0,0; —k2,q1) — GN(0,0; —k2, g2) = O(e™2"2). (A.1.7)

Remark. (A.1.4), (A.1.6), and (A.1.7) imply (A.1.2) in this case.

Proof. Let P(x,y;t,q) be the integral kernel of e=* on L?(R,dx) where H = —j—; +
q(|z]). The method of images implies that for x,y > 0,

GN(z,y; —K>,q) =/ [P(z,y;t,q) + P(x, —y;t,q)le ™" dt. (A.1.8)
0
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Simple path integral estimates (see [16]) imply that
P(0,0;t,q) = (4nt) 214+ 0(1)]  ast |0 (A.1.9)

and if (A.1.1) holds, then for any € > 0, there exists C. > 0 (depending only on the (2
for q1,¢2), so that

|P(0,0;t,q1) — P(0,0;t,q2)| < Ccexp(—(1 —€)a?/t). (A.1.10)

(A.1.9) implies (A.1.6) since [~ 2(4mt) V2Rt dt = 1 [ ()" 2erdt = k7L
To obtain (A.1.7), we use (A.1.8), (A.1.10), and

’P(O, 0; t, q]')’ S CleDt

since

1 1
2, .2 _ o—1/2 17282
/ e? /te K = e 2&(1/ e (a Kt/ %) dt
0 0

— (672I<,a).

O

Next, we consider a situation where b < oo, ¢ is given in L'(0,b), and h is 0 or oc.
Define ¢ on R by requiring that

G(z + 2mb) = ¢(z) m=0,%£1,+2,...,allz e R
d(—z) = q(x) all z € R
i(z) = q(x) x € [0,0]

which uniquely defines ¢ (since each orbit {£x + 2mb} contains one point in [0, b]). Let
GWNN) and GV-P) be the Green’s functions of —dd—; + q(x) on L%(0,b) with u/(0) = 0
boundary conditions at zero and u/(b) = 0 ((IN,N) case) or u(b) = 0 ((IV,D) case)
boundary conditions at b. Let G be the Green’s function for —j—; + G on L*(R). Let P

be the corresponding integral kernels for e,
By the method of images for =,y € [0, b]:
GNN (=) = > Gla,im(y); —K?) (A.1.11)
GWND) (g, y; —k?) = Z G (2, im (y); —K2) (A.1.12)

m=—0oo
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where
im(y) =y +mb m=0,42,+---
=—y+mb+b m==+1,43,+--
o = —1 m=1256,9,10,...,-2 -3,—6,—7,...
=1 otherwise

(i.e., oy, = —1, if and only if m = 1,2 mod 4).
By a simple path integral (or other) estimate on P and Laplace transform, we have

|Gz, y; —K2)| < Coerlz—yl(i=e) (A.1.13)
for any € > 0 and & sufficiently large. Since the images of 0 are £2b, £4b,..., (A.1.11)
and (A.1.2) imply
Proposition A.1.3.

|C;(N7N)(07 0; —k?2) — G(0,0; —K?)| = O(e*%“) (A.1.14)

and similarly for |GN-2)(0,0; —k2) — G(0,0; —2)|.

Remark. (A.1.14) and (A.1.6) imply (A.1.2) for the pairs g1 = ¢, by = o0 and ¢z = ¢,
by = b, and he =0 or oc.
Finally, we compare b < oo fixed for any two finite values of h:

Proposition A.1.4. Let ¢ € L'(0,b). For h < oo, let G" be the integral kernel for
(—j—; +q — 2)71 with boundary conditions u(0) = 0 and u’(b) + hu(b) = 0. Then

1G"(0,0; —k2) — G"=0(0,0; —k?)| = O(e~2"%). (A.1.15)

Proof. Let H be the h = 0 operator and H}, the operator for A < co. By the analysis of
rank one perturbations (see, e.g., [17]),

H;y, = H+h(5b, ‘)5b7

where §, € H_1(H) is the function (dy, g) = g(b).
Again, by the theory of rank one perturbations [17], let F(z,h) = G"(b,b; z). Then

F(z,0)

F@h) =15 50.0)

and

G"(0,0;2) — G"=9(0,0; 2) = —hG"=°(0,b; 2)G"=° (b, 0; 2)[1 — hF(z, h)]

 hGM(0. b )= (b, 0: )1 hF(z 0yt )
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Now F(—+2%,0) = k=1 + o(k™1) (this is essentially (A.1.6)) while (A.1.11) and (A.1.13)
imply that )
G"=0(0,b;2) = O(e™"?). (A.1.17)

(A.1.16) and (A.1.17) imply (A.1.15). O

Transitivity and Propositions A.1.2-A.2.4 imply Theorem A.1.1.

We close the appendix with two remarks:

1. Do not confuse the Laplace transform in (1.24) (which is in 2x) with that in (A.1.8)
(which is k?).

2. We used path integrals above. As long as g(z) = O(ebl?l) for some b < co, one can
instead use more elementary Green’s function estimates.

Appendix 2: Some Results on Laplace Transforms

In this paper, I need some elementary facts about Laplace transforms. While I'm sure
that these facts must be in the literature, I was unable to locate them in the precise form
needed, so I will give the simple proofs below.

Lemma A.2.1. Let f € L*(0,a). Suppose that g(z) = [\ f(y)e ¥ dy obeys
g(x) = O(e™ %) (A.2.1)
as x — oo. Then f =0.

Proof. Suppose first that f is real-valued. g(z) is an entire function which obeys

l9(2)] < [ fllrette=),

where Re_ (2) is the negative part of Re z. Moreover, along the real axis, g obeys (A.2.1).
Because of this,

h(w) = /000 g(x)e™* da

is an analytic function of w in the region Imw > —a. Now for r > 0:

h(ir) = /000 g(x)e " dx

-/ N ( / e dy) da

[,

A2.2
il ( )

where the interchange of integration variables is easy to justify. (A.2.2) implies that

h(w) = a@dy (A.2.3)
0 Y—iw
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holds for w with Imw > 0 and then allows analytic continuation into the region C\{is |
s < 0}. (A.2.3) and the reality of f implies that for a.e. 7 € (0,a), f(r) = lim.|o 5 [h(e—
ir) — h(—e — ir)], so the analyticity of A in Imw > —a implies that f = 0. For general
complex valued f, consider the real and imaginary parts separately. [J

An immediate consequence of this is the uniqueness of inverse Laplace transforms.

Theorem A.2.2. Suppose that f,g € L'(0,a) and for some b < a, foa fy)e™™¥ dy —
[5 g(y)e=¥ dy = O(e™"*). Then f =g on [0,b).

The other fact we need is that the set of Laplace transforms has a number of closure
properties. Let £, be the set of functions, f, analytic in some region {z | |Arg(z)| <
e} = R. obeying

f(z) =1+ /Oa gla)e” “* da + O(e*aRez)

in that region for some g € L1(0,a). Denote g by Z(f).
Theorem A.2.3. If f,h € L, so are fh, f+h—1, and f~1.

Proof. f+ h — 1 is trivial. fh is elementary; indeed,
T(ih(e) = T(7)(@) + T + [ T(OBTH) (@ 5)ds.
For the inverse, we start by seeking k obeying (where g = Z(f))

9(a) + k(o) + / " 4B k(B)gla— B) = 0.

0

This Volterra equation always has a solution (by iteration). Let h(z) = 14 [ k(a)e™** dav.
Then

fh=1+0(e F)

and so

ffl _ h(l _}_O~(efaRe(z)))fl
= h + O(e™?Re(2))

as required. [J
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