
A NEW APPROACH TO INVERSE SPECTRAL THEORY,

I. FUNDAMENTAL FORMALISM

Barry Simon

Division of Physics, Mathematics, and Astronomy
California Institute of Technology

Pasadena, CA 91125

December 18, 1997

Abstract. We present a new approach (distinct from Gel’fand-Levitan) to the theorem of

Borg-Marchenko that the m-function (equivalently, spectral measure) for a finite interval or

half-line Schrödinger operator determines the potential. Our approach is an analog of the

continued fraction approach for the moment problem. We prove there is a representation for

the m-function m(−κ2) = −κ− ∫ b
0

A(α)e−2ακ dα + O(e−(2b−ε)κ). A on [0, a] is a function

of q on [0, a] and vice-versa. A key role is played by a differential equation that A obeys
after allowing x-dependence:

∂A

∂x
=

∂A

∂α
+

∫ α

0
A(β, x)A(α − β, x)dβ.

Among our new results are necessary and sufficient conditions on the m-functions for po-

tentials q1 and q2 for q1 to equal q2 on [0, a].

§1. Introduction

Inverse spectral methods have been actively studied in the past years both via their
relevance in a variety of applications and their connection to the KdV equation. A major
role is played by the Gel’fand-Levitan equations. Our goal in this paper is to present a
new approach to their basic results that we expect will lead to resolution of some of the
remaining open questions in one-dimensional inverse spectral theory. We will introduce
a new basic object (see (1.24) below), the remarkable equation, (1.28), it obeys and
illustrate with several new results.

To present these new results, we will first describe the problems we discuss. We will
consider differential operators on either L2(0, b) with b < ∞ or L2(0,∞) of the form

− d2

dx2
+ q(x). (1.1)
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If b is finite, we suppose

β1 ≡
∫ b

0

|q(x)| dx < ∞ (1.2)

and place a boundary condition

u′(b) + hu(b) = 0, (1.3)

where h ∈ R∪{∞} with h = ∞ shorthand for the Dirichlet condition u(b) = 0. If b = ∞,
we suppose ∫ y+1

y

|q(x)| dx < ∞ for all y (1.4)

and

β2 ≡ sup
y>0

∫ y+1

y

max(q(x), 0)dx < ∞. (1.5)

Under condition (1.5), it is known that (1.1) is limit point at infinity [15].
In either case, for each z ∈ C\[β,∞) with −β sufficiently large, there is a unique

solution (up to an overall constant), u(x, z), of −u′′ + qu = zu which obeys (1.3) at b if
b < ∞ or which is L2 at ∞ if b = ∞. The principal m-function m(z) is defined by

m(z) =
u′(0, z)
u(0, z)

. (1.6)

We will sometimes need to indicate the q-dependence explicitly and write m(z; q). If
b < ∞, “q” is intended to include all of q on (0, b), b, and the value of h.

If we replace b by b1 = b − x0 with x0 ∈ (0, b) and let q(s) = q(x0 + s) for s ∈ (0, b1),
we get a new m-function we will denote by m(z, x0). It is given by

m(z, x) =
u′(x, z)
u(x, z)

. (1.7)

m(z, x) obeys the Ricatti equation

dm

dx
= q(x) − z − m2(z, x). (1.8)

Obviously, m(z, x) only depends on q on (x, b) (and on h if b < ∞). A basic result of
the inverse theory says that the converse is true:

Theorem 1.1 (Borg [3], Marchenko [12]). m determines q. Explicitly, if q1, q2 are
two potentials and m1(z) = m2(z), then q1 ≡ q2 (including h1 = h2).

We will improve this as follows:
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Theorem 1.2. If (q1, b1, h1), (q2, b1, h2) are two potentials and a < min(b1, b2) and if

q1(x) = q2(x) on (0, a), (1.9)

then as κ → ∞,
m1(−κ2) − m2(−κ2) = Õ(e−2κa). (1.10)

Conversely, if (1.10) holds, then (1.9) holds.

In (1.10), we use the symbol Õ defined by f = Õ(g) as x → x0 (where limx→x0 g(x) =
0) if and only if limx→x0

|f(x)|
|g(x)|1−ε = 0 for all ε > 0.

From a results point of view, this local version of the Borg-Marchenko uniqueness
theorem is our most significant new result, but a major thrust of this paper are the new
methods. Theorem 1.2 says that q is determined by the asymptotics of m(−κ2) as κ → ∞.
We can also read off differences of the boundary condition from these asymptotics. We
will also prove that

Theorem 1.3. Let (q1, b1, h1), (q2, b2, h2) be two potentials and suppose that

b1 = b2 ≡ b < ∞, |h1| + |h2| < ∞, q1(x) = q2(x) on (0, b). (1.11)

Then
lim

κ→∞ e2bκ|m1(−κ2) − m2(−κ2)| = 4(h1 − h2). (1.12)

Conversely, if (1.12) holds for some b < ∞ with a limit in (0,∞), then (1.11) holds.

Remark. That (1.11) implies (1.12) is not so hard to see. It is the converse that is
interesting.

To understand our new approach, it is useful to recall briefly the two approaches to
the inverse problem for Jacobi matrices on `2({0, 1, 2, . . . , }) [2,8,18]:

A =




b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a2 . . .

. . . . . . . . . . . . . . .




with ai > 0. Here the m-function is just (δ0, (A − z)−1δ0) = m(z) and, more generally,
mn(z) = (δn, (A(n) − z)−1δn) with A(n) on `2({n, n + 1, . . . , }) obtained by truncating
the first n rows and n columns of A. Here δn is the Kronecker vector, that is, the vector
with 1 in slot n and 0 in other slots. The fundamental theorem in this case is that
m(z) ≡ m0(z) determines the bn’s and an’s.

mn(z) obeys an analog of the Ricatti equation (1.8):

a2
nmn+1(z) = bn − z − 1

mn(z)
. (1.13)
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One solution of the inverse problem is to turn (1.13) around to see that

mn(z)−1 = −z + bn − a2
nmn+1(z) (1.14)

which, first of all, implies that as z → ∞, mn(z) = −z−1 + O(z−2), so (1.14) implies

mn(z)−1 = −z + bn + a2
nz−1 + O(z−2). (1.15)

Thus, (1.15) for n = 0 yields b0 and a2
0 and so m1(z) by (1.13), and then an obvious

induction yields successive bk, a2
k, and mk+1(z).

A second solution involves orthogonal polynomials. Let Pn(z) be the eigensolutions of
the formal (A − z)Pn = 0 with boundary conditions P−1(z) = 0, P0(z) = 1. Explicitly,

Pn+1(z) = a−1
n [(z − bn)Pn(z)] − an−1Pn−1. (1.16)

Let dρ(x) be the spectral measure for A and vector δ0 so that

m(z) =
∫

dρ(x)
x − z

. (1.17)

Then one can show that∫
Pn(x)Pm(x)dµ(x) = δnm, n,m = 0, 1, . . . . (1.18)

Thus, Pn(z) is a polynomial of degree n with positive leading coefficients determined
by (1.18). These orthonormal polynomials are determined via Gram-Schmidt from ρ and
by (1.17) from m. Once one has the Pn, one can determine the a’s and b’s from the
equation (1.16).

Of course, these approaches via Ricatti equation and orthogonal polynomials are not
completely disjoint. The Ricatti solution gives the an’s and bn’s as continued fractions.
The connection between continued fractions and orthogonal polynomials goes back a
hundred years to Stieltjes’ work on the moment problem [18].

The Gel’fand-Levitan-Marchenko [7,11,12,13] approach to the continuum case is a
direct analog of this orthogonal polynomial case. One looks at solutions U(x, k) of

−U ′′ + q(x)U = k2U(x) (1.19)

obeying U(0) = 1, U ′(0) = ik, and proves that they obey a representation

U(x, k) = eikx +
∫ x

−x

K(x, y)eiky dy, (1.20)

the analog of Pn(z) = czn+ lower order. One defines s(x, k) = (2ik)−1[U(x, k) −
U(x,−k)] which obeys (1.19) with s(0) = 0, s′(0) = 1.
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The spectral measure dρ associated to m(z) by dρ(λ) = limε↓0[(2π)−1 Im m(λ+iε)dλ]
obeys ∫

s(x, k)s(y, k)dρ(k2) = δ(x − y), (1.21)

at least formally. (1.20) and (1.21) yield an integral equation for K depending only on
dρ and then once one has K, one can find U and so q via (1.19) (or via another relation
between K and q).

Our goal in this paper is to present a new approach to the continuum case, that is, an
analog of the Ricatti equation approach to the discrete inverse problem. The simple idea
for this is attractive but has a difficulty to overcome. m(z, x) determines q(x) at least if
q is continuous by the known asymptotics ([4]):

m(−κ2, x) = −κ − q(x)
2κ

+ o(κ−1). (1.22)

We can therefore think of (1.8) with q defined by (1.22) as an evolution equation for m.
The idea is that using a suitable underlying space and uniqueness theorem for solutions
of differential equations, (1.8) should uniquely determine m for all positive x, and so q(x)
by (1.22).

To understand the difficulty, consider a potential q(x) on the whole real line. There are
then functions u±(x, z) defined for z ∈ C\[β,∞) which are L2 at ±∞ and two m-functions

m±(z, x) = u′
±(x,z)

u±(x,z) . Both obey (1.8), yet m+(0, z) determines and is determined by q on
(0,∞) while m−(0, z) has the same relation to q on (−∞, 0). Put differently, m+(0, z)
determines m+(x, z) for x > 0 but not at all for x < 0. m− is the reverse. So uniqueness
for (1.8) is one-sided and either side is possible! That this does not make the scheme
hopeless is connected with the fact that m− does not obey (1.22), rather

m−(−κ2, x) = κ +
q(x)
2κ

+ o(κ−1). (1.23)

We will see the one-sidedness of the solubility is intimately connected with the sign of
the leading ±κ term in (1.22/1.23).

The key object in this new approach is a function A(α) defined for α ∈ (0, b) related
to m by

m(−κ2) = −κ −
∫ a

0

A(α)e−2ακ dα + Õ(e−2aκ) (1.24)

as κ → ∞. We have written A(α) as a function of a single variable but we will allow
similar dependence on other variables. Since m(−κ2, x) is also an m-function, (1.24) has
an analog with a function A(α, x). We will also sometimes consider the q-dependence
explicitly, using A(α, x; q) or for λ real and q fixed A(α, x;λ) ≡ A(α, x;λq). If we are
interested in q-dependence but not x, we will sometimes use A(α;λ). The semicolon and
context distinguish between A(α, x) and A(α;λ).

By uniqueness of inverse Laplace transforms (see Theorem A.2.2 in Appendix 2),
(1.24) and m near −∞ uniquely determine A(α).

Not only will (1.24) hold but, in a sense, A(α) is close to q(α). Explicitly, in Section 3
we will prove that
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Theorem 1.4. Let m be the m-function of the potential q. Then there is a function
A(α) ∈ L1(0, b) if b < ∞ and A(α) ∈ L1(0, a) for all a < ∞ if b = ∞ so that (1.24)
holds for any a ≤ b with a < ∞. A(α) only depends on q(y) for y ∈ [0, α]. Moreover,
A(α) = q(α) + E(α) where E(α) is continuous and obeys

|E(α)| ≤
(∫ α

0

|q(y)| dy

)2

exp
(

α

∫ α

0

|q(y)| dy

)
. (1.25)

Restoring the x-dependence, we see that A(α, x) = q(α + x) + E(α, x) where

lim
α↓0

sup
0≤x≤a

|E(α, x)| = 0

for any a > 0, so
lim
α↓0

A(α, x) = q(x), (1.26)

where this holds in general in L1 sense. If q is continuous, (1.26) holds pointwise. In
general, (1.26) will hold at any point of right Lebesgue continuity of q.

Because E is continuous, A determines any discontinuities or singularities of q. More
is true. If q is Ck, then E is Ck+2 in α, and so A determines kth order kinks in q. Much
more is true. In Section 7, we will prove

Theorem 1.5. q on [0, a] is only a function of A on [0, a]. Explicitly, if q1, q2 are two
potentials, let A1, A2 be their A-functions. If a < b1, a < b2, and A1(α) = A2(α) for
α ∈ [0, a], then q1(x) = q2(x) for x ∈ [0, a].

Theorems 1.4 and 1.5 immediately imply Theorem 1.2. For by Theorem A.2.2, (1.10)
is equivalent to A1(α) = A2(α) for α ∈ [0, a]. Theorems 1.4 and 1.5 says this holds if
and only if q1(x) = q2(x) for x ∈ [0, a].

As noted, the singularities of q come from singularities of A. A boundary condition
is a kind of singularity, so one might hope that boundary conditions correspond to very
singular A. In essence, we will see that this is the case — there are delta-function and
delta-prime singularities at α = b. Explicitly, in Section 5, we will prove that

Theorem 1.6. Let m be the m-function for a potential q with b < ∞. Then for a < 2b,

m(−κ2) = −κ−
∫ a

0

A(α)e−2ακ dα − A1κe−2κb −B1e
−2κb + Õ(e−2aκ), (1.27)

where

(a) If h = ∞, then A1 = 2, B1 = −2
∫ b

0 q(y)dy

(b) If |h| < ∞, then A1 = −2, B1 = 2[2h +
∫ b

0
q(y)dy].

As we will see in Section 5, this implies Theorem 1.3.
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The reconstruction theorem, Theorem 1.5, depends on the differential equation that
A(α, x) obeys. Remarkably, q drops out of the translation of (1.8) to the equation for A:

∂A(α, x)
∂x

=
∂A(α, x)

∂α
+

∫ α

0

A(β, x)A(α − β, x)dβ. (1.28)

If q is C1, the equation holds in classical sense. For general q, it holds in a variety
of weaker senses. Either way, A(α, 0) for α ∈ [0, a] determines A(α, x) for all x, α with
α > 0 and 0 < x + α < a. (1.26) then determines q(x) for x ∈ [0, a). That is the essence
of where uniqueness comes from.

Here is a summary of the rest of this paper. In Section 2, we start the proof of
Theorem 1.4 by considering b = ∞ and q ∈ L1(0,∞). In that case, we prove a version
of (1.24) with no error, namely, A(α) is defined on (0,∞) obeying

|A(α) − q(α)| ≤ ‖q‖2
1 exp(α‖q‖1)

and if κ > 1
2‖q‖1, then

m(−κ2) = −κ −
∫ ∞

0

A(α)e−2ακ dα. (1.29)

In Section 3, we use this and localization estimates from Appendix 1 to prove Theorem 1.4
in general. Section 4 is an aside to study implications of (1.24) for asymptotic expansions.
In particular, we will see that

m(−κ2) = −κ −
∫ a

0

q(α)e−2ακ dα + o(κ−1), (1.30)

which is essentially a result of Atkinson [1]. In Section 5, we turn to proofs of Theorem 1.6
and Theorem 1.3. Indeed, we will prove an analog of (1.27) for any a < ∞. If a < nb,
then there are terms

∑n
m=1(Amκe−2mκb + Bme−2mκb) with explicit Am and Bm.

In Section 6, we prove (1.28), the evolution equation for A. In Section 7, we prove
the fundamental uniqueness result, Theorem 1.5. Section 8 includes various comments
including the relation to the Gel’fand-Levitan approach and a discussion of further ques-
tions raised by this approach.

I thank P. Deift, I. Gel’fand, R. Killip, and especially F. Gesztesy for useful comments,
and M. Ben-Artzi for the hospitality of Hebrew University where part of this work was
done.

§2. Existence of A: The L1 Case

In this section, we prove that when q ∈ L1, then (1.29), which is a strong version of
(1.24), holds. Indeed, we will prove
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Theorem 2.1. Let q ∈ L1(0,∞). Then there exists a function A(α) on (0,∞) with
A − q continuous, obeying

|A(α) − q(α)| ≤ Q(α)2 exp(αQ(α)), (2.1)

where
Q(α) ≡

∫ α

0

|q(y)| dy (2.2)

and so that if κ > 1
2
‖q‖1, then

m(−κ2) = −κ −
∫ ∞

0

A(α)e−2ακ dα. (2.3)

Moreover, if q, q̃ are both in L1, then

|A(α; q) − A(α; q̃)| ≤ ‖q − q̃‖1[Q(α) + Q̃(α)] exp(α[Q(α) + Q̃(α)]). (2.4)

We begin the proof with several remarks. First, since m(−κ2) is analytic in C\[β,∞),
we need only prove (2.3) for all sufficiently large κ. Second, since m(−κ2; qn) → m(−κ2; q)
as n → ∞ if ‖qn − q‖1 → 0, we can use (2.4) to see that it suffices to prove the theorem
if q is a continuous function of compact support, which we do henceforth. So suppose q
is continuous and supported in [0, B].

We will prove the following:

Lemma 2.2. Let q be a continuous function supported on [0, B]. For λ ∈ R, let m(z;λ)
be the m-function for λq. Then for any z ∈ C with dist(z, [0,∞)) > λ‖q‖∞,

m(z;λ) = −κ −
∞∑

n=1

Mn(z; q)λn, (2.5a)

where for κ > 0,

Mn(−κ2; q) =
∫ nB

0

An(α)e−2κα dα, (2.5b)

where
A1(α) = q(α) (2.6)

and for n ≥ 2, An(α) is a continuous function obeying

|An(α)| ≤ Q(α)n αn−2

(n − 2)!
. (2.7)

Moreover, if q̃ is a second such potential and n ≥ 2,

|An(α; q) − An(α; q̃)| ≤ (Q(α) + Q̃(α))n−1

[∫ α

0

|q(y) − q̃(y)| dy

]
αn−2

(n − 2)!
. (2.8)
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Proof of Theorem 2.1 given Lemma 2.2. By (2.7),

∫ ∞

0

∞∑
n=2

|An(α)|e−2κα dα < ∞

if κ > 1
2‖q‖1. Thus in (2.5a) for λ = 1, we can interchange the sum and integral to get

the representation (2.3). (2.7) then implies (2.1) and (2.8) implies (2.4). �

Proof of Lemma 2.2. Let Hλ be − d2

dx2 + λq(x) on L2(0,∞) with u(0) = 0 boundary
conditions at 0. Then ‖(H0 − z)−1‖ = dist(z, [0,∞))−1 . So, in the sense of L2 operators,
if dist(z, [0,∞)) > λ‖q‖∞, the expansion

(Hλ − z)−1 =
∞∑

n=0

(−1)n(H0 − z)−1[λq(H0 − z)−1]n (2.9)

is absolutely convergent.
As is well known, Gλ(x, y; z), the integral kernel of (Hλ − z)−1, can be written down

in terms of the solution u which is L2 at infinity, and the solution w of

−w′′ + qw = zw (2.10)

obeying w(0) = 0, w′(0) = 1

Gλ(x, y; z) = w(min(x, y))
u(max(x, y))

u(0)
. (2.11)

In particular,

m(z) = lim
x<y
y↓0

∂2G

∂x∂y
. (2.12)

From this and (2.9), we see that (using ∂G0
∂x (x, y)

∣∣
x=0

= e−κy)

m(−κ2;λ) = −κ − λ

∫
e−2κyq(y)dy + λ2〈ϕκ, (Hλ + κ2)−1ϕκ〉,

where ϕκ(y) = q(y)e−κy . Since ϕκ ∈ L2, we can use the convergent expansion (2.9) and
so conclude that (2.5a) holds with (for n ≥ 2)

Mn(−κ2; q) =

(−1)n−1

∫
e−κx1q(x1)G0(x1, x2)q(x2) . . . G0(xn−1, xn)q(xn)e−κxn dx1 . . . dxn.

(2.13)
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Now use the following representation for G0:

G0(x, y;−κ2) =
sinh(κ min(x, y))

κ
e−κ max(x,y)

=
1
2

∫ x+y

|x−y|
e−`κ d` (2.14)

to write

Mn(−κ2; q) =

(−1)n−1

2n−1

∫
Rn

q(x1) . . . q(xn)e−2α(x1,xn,`1,...,`n−1)κ dx1 . . . dxnd`1 . . . d`n−1, (2.15)

where α is shorthand for the linear function

α =
1
2

(
x1 + xn +

n−1∑
j=1

`j

)
(2.16)

and Rn is the region

Rn = {(x1, . . . , xn,`1, . . . , `n−1) ∈ R2n−1 | 0 ≤ xi ≤ B for i = 1, . . . , n;

|xi − xi+1| ≤ `i ≤ xi + xi−1 for i − 1, . . . , n − 1}.
In the region Rn, notice that

α ≤ 1
2

(
x1 + xn +

n−1∑
j=1

(xj + xj+1)
)

=
n∑

j=1

xj ≤ nB.

Change variables by replacing `n−1 by α using the linear transformation (2.16) and
use `n−1 for the linear function

`n−1(x1, xn, `1, . . . , `n−2, α) = 2α − x1 − xn −
n−2∑
j=1

`j . (2.17)

Thus, (2.5b) holds where

An(α) =
(−1)n−1

2n−2

∫
Rn(α)

q(x1) . . . q(xn)dx1 . . . dxnd`1 . . . d`n−2. (2.18)

2n−1 has become 2n−2 because of the Jacobian of the transition from `n−1 to α. Rn(α)
is the region

Rn(α) = {(x1, . . . , xn, `1, . . . , `n−2) ∈ R2n−2 | 0 ≤ xi ≤ B for i = 1, . . . , n;

|xi − xi+1| ≤ `i ≤ xi + xi+1 for i = 1, . . . , n − 2;

|xn−1 + xn| ≤ `n−1(x1, . . . , xn, `1, . . . , `n−2, α) ≤ xn−1 + xn} (2.19)
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with `n−1 the functional given by (2.17).
We claim that

Rn(α) ⊂ R̃n(α) =
{

(x1, . . . , xn, `1, . . . , `n−2) ∈ R2n−2

∣∣∣∣0 ≤ xi ≤ α; `i ≥ 0;
n−2∑
i=1

`i ≤ 2α

}
.

(2.20)
Accepting (2.20) for a moment, we note by (2.18) that

|An(α)| ≤ 1
2n−2

∫
R̃n(α)

|q(x1)| . . . |q(xn)| dx1 . . . d`n−2

=
(∫ α

0

|q(x)| dx

)n
αn−2

(n − 2)!

since
∫
∑

yi=b;yi≥0 dy1 . . . dyn = bn

n! by a simple induction. This is just (2.7).
To prove (2.8), we note that

|An(α; q) − An(α, q̃)| ≤ 2−n−2

∫
R̃n(α)

|q(x1) . . . q(xn) − q̃(x1) . . . q̃(xn)| dx1 . . . d`n−2

≤ αn−2

(n − 2)!

n−1∑
j=0

Q(α)j

[∫ α

0

|q(y) − q̃(y)| dy

]
Q̃(α)n−j−1.

Since
∑m

j=0 ajbm−j ≤ ∑m
j=0

(
m
j

)
ajbm−j = (a + b)m, (2.8) holds.

Thus, we need only prove (2.20). Suppose (x1, . . . , xn, `1, . . . , `n−2) ∈ Rn(α). Then

2xm ≤ |x1 − xm| + |xn − xm|+ x1 + xn

≤ x1 + xn +
n−1∑
j=1

|xj+1 − xj |

≤ x1 + xn +
n−2∑
j=1

`j + `n−1(x1, . . . , xn, `1, . . . , `n−2;α) = 2α

so 0 ≤ xj ≤ α, proving that part of the condition (x1 , `n−2) ⊂ R̃n(α). For the second
part, note that

n−2∑
j=1

`j = 2α − x1 − xn − `n−1(x1, . . . , xn, `1, . . . , `n−2) ≤ 2α

since x1, xn, and `n−2 are non-negative on Rn(α). �
We want to say more about the smoothness of the functions An(α) and An(α, x)

defined for x ≥ 0 and n ≥ 2 by

An(α, x) =
(−1)n−1

2n−2

∫
Rn(α)

q(x + x1) . . . q(x + xn)dx1 . . . dxnd`1 . . . d`n−2 (2.21)

so that A(α, x) =
∑∞

n=0 An(α, x) is the A-function associated to m(−κ2, x). We begin
with α smoothness for fixed x.
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Proposition 2.3. An(α, x) is a Cn−2-function in α and obeys for n ≥ 3∣∣∣∣djAn(α)
dαj

∣∣∣∣ ≤ 1
(n − 2 − j)!

αn−2−jQ(α)n ; j = 1, . . . , n − 2. (2.22)

Proof. Write

An(α) =
(−1)n−1

2n−1

∫
Rn

q(x1) . . . q(xn) δ

(
2α − x1 − xn −

n−1∑
m=1

`i

)
dx1 . . . dxnd`j . . . d`n−1.

Thus, formally,

djAn(α)
dαj

=
(−1)n−12j

2n−2

∫
Rn

q(x1) . . . q(xn) δ(j)

(
2α − x1 − xn −

n−1∑
m=1

`i

)
dx1 . . . d`n−1.

(2.23)
Since j + 1 ≤ n − 1, we can successively integrate out `n−1, `n−2, . . . , `n−j−1 using∫ b

a

δj(c − `)d` = δj−1(c − a) − δj−1(c − b) (2.24)

and ∫ b

a

δ(c − `)d` = χ(a,b)(c). (2.25)

Then we estimate each of the resulting 2j terms as in the previous lemma, getting∣∣∣∣djAn(α)
dαj

∣∣∣∣ ≤ 2j

2n−2
Q(α)n (2α)n−j−2

(n − j − 2)!

which is (2.22).
(2.24), (2.25), while formal, are a way of bookkeeping for legitimate movement of

hyperplanes. In (2.25), there is a singularity at c = a and c = b, but since we are
integrating in further variables, these are irrelevant. �
Proposition 2.4. If q is Cm, then An(α) is Cm+(2n−2).

Proof. Write Rn as n! terms with orderings xπ(1) < · · · < xπ(n). For j0 = 2n − 2, we

integrate out all 2n − 1, ` and x variables. We get a formula for dj0An(α)
dαj0 as a sum of

products of q’s evaluated at rational multiples of α. We can then take m additional
derivatives. �
Theorem 2.5. If q is Cm and in L1(0,∞), then A(α) is Cm and A(α)− q(α) is Cm+2.

Proof. By (2.2), we can sum the terms in the series for djA
dαj and dj(A−q)

dαj for j = 0, 1, . . . ,m
and j = 0, 1, . . . ,m − 2, respectively. With this bound and the fundamental theorem of
calculus, one can prove the stated regularity. �

Now we can turn to x-dependence.
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Lemma 2.6. If q is Ck and of compact support, then An(α, x) for α fixed is Ck in x,
and for n ≥ 2, j = 1, . . . , k,

∣∣∣∣djAn(α, x)
dxj

∣∣∣∣ ≤ Q(α)max(0,n−j)[Pj(α)]min(j,n) αn−2

(n − 2)!
, (2.26)

where

Pj(α) =
∫ α

0

j∑
m=0

∣∣∣∣ dmq

dxm
(y)

∣∣∣∣ dy.

Proof. In (2.21), we can take derivatives with respect to x. We get a sum of terms with
derivatives on each q, and using values on these terms and the argument in the proof of
Lemma 2.2, we obtain (2.26). �
Theorem 2.7. If q is Ck and of compact support, then A(α, x) for α fixed is Ck in x
and

djm

dxj
(−κ2, x) = −

∫ ∞

0

∂jA

∂xj
(α, x)e−2ακ dα

for κ large and j = 1, 2, . . . , k.

Proof. This follows from the estimates in Lemma 2.6 and Theorem 2.1. �

§3. Existence of A: General Case

By combining Theorem 2.1 and Theorem A.1.1, we immediately have

Theorem 3.1. Let b < ∞, q ∈ L1(0, b), and h ∈ R ∪ {∞} or else let b = ∞ and let q
obey (1.4), (1.5). Fix a < b. Then, there exists a function A(α) on L1(0, a) obeying

|A(α) − q(α)| ≤ Q(α) exp(αQ(α)), (3.1)

where

Q(α) ≡
∫ α

0

|q(y)| dy (3.2)

so that as κ → ∞,

m(−κ2) = −κ −
∫ a

0

A(α)e−2ακ dα + Õ(e−2aκ). (3.3)

Moreover, A(α) on [0, a] is only a function of q on [0, a].

Proof. Let b̃ = ∞ and q̃(x) = q(x) for x ∈ [0, a] and q̃(x) = 0 for x > a. By Theo-
rem A.1.1, m− m̃ = Õ(e−2aκ), and by Theorem 2.1, m̃ has a representation of the form
(3.3). �
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§4. Asymptotic Formula

While our interest in the representation (1.24) is primarily for inverse theory and, in a
sense, it provides an extremely complete form of asymptotics, the formula is also useful
to recover and extend results of others on more conventional asymptotics.

In this section, we will explain this theme. We begin with a result related to Atkinson
[1] (who extended Everitt [5]).

Theorem 4.1. For any q (obeying (1.2)–(1.5)), we have that

m(−κ2) = −κ −
∫ b

0

q(x)e−2xκ dx + o(κ−1). (4.1)

Remarks. 1. Atkinson’s “m” is the negative inverse of our m and he uses k = iκ, and so
his formula reads ((4.3) in [1])

mAtk(k2) = ik−1 + k−2

∫ b

0

e2ikxq(x)dx + o(|k|−3).

2. Atkinson’s result is stronger in that he allows cases where q is not bounded below
(and so he takes |z| → ∞ staying away from the negative real axis also). [10] will extend
(4.1) to some such situations.

3. Atkinson’s method breaks down on the real x axis where our estimates hold, but
one could use Phragmén-Lindelöf methods and Atkinson’s results to prove Theorem 4.1.

Proof. By Theorem 3.1, (A − q) → 0 as α ↓ 0 so
∫ a

0 e−2aκ(A(α) − q(α))dα = o(κ−1).
Thus, (3.3) implies (4.1). �

Corollary 4.2.
m(−κ2) = −κ + o(1)

Proof. Since q ∈ L1, dominated convergence implies that
∫ b

0
q(x)e−2κx dx = o(1). �

Corollary 4.3. If limx↓0 q(x) = a (indeed, if 1
s

∫ s

0
q(x)dx → a as s ↓ 0), then

m(−κ2) = −κ − a

2
κ−1 + o(κ−1).

Corollary 4.4. If q(x) = cx−α + o(x−α) for 0 < α < 1, then

m(−κ2) = −κ − c[2a−1Γ(1 − α)]κα−1 + o(κα−1).

We can also recover the result of Danielyan and Levitan [4]:
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Theorem 4.5. Let q(x) ∈ Cn[0, δ) for some δ > 0. Then as κ → ∞, for suitable
β0, . . . , βn, we have that

m(−κ2) = −κ−
n∑

m=0

βjκ
−j−1 + O(κ−n−1). (4.2)

Remarks. 1. Our m is the negative inverse of their m.
2. Our proof does not require that q is Cn. It suffices that q(x) has an asymptotic

series
∑n

m=0 amxm + o(xn) as x ↓ 0.

Proof. By Theorems 3.1 and 2.5, A(α) is Cn on [0, δ). It follows that A(α) =
∑n

m=0 bjα
j

+o(αj). Since
∫ δ

0 αje−2ακ dα = κ−j−12−j−1j!+Õ(e−2δκ), we have (4.2) βj = 2j−1j!bj =
2j−1 ∂jA

∂αj (α = 0). �
Later we will prove that A obeys (1.28). This immediately yields a recursion formula

for βj(x), viz:

βj+1(x) =
1
2

∂βj

∂x
+

1
2

j∑
`=0

β`(x)βj−`(x), j ≥ 0

β0(x) =
1
2

q(x),

see also [9, Sect. 2].

§5. Reading Boundary Conditions

Our goal in this section is to prove Theorem 1.6 and then Theorem 1.3. Indeed, we
will prove the following stronger result:

Theorem 5.1. Let m be the m-function for a potential q with b < ∞. Then there exists
a measurable function A(α) on [0,∞) which is L1 on any finite interval [0, R], so that
for each N = 1, 2, . . . and any a < 2Nb,

m(−κ2) = −κ−
∫ a

0

A(α)e−2ακ dα −
N∑

j=1

Ajκe−2κbj −
N∑

j=1

Bje
−2κbj + Õ(e−2aκ), (5.1)

where
(a) If h = ∞, then Aj = 2 and Bj = −2j

∫ b

0 q(y)dy.
(b) If |h| < ∞, then Aj = 2(−1)j and Bj = 2(−1)j+1j[2h +

∫ b

0
q(y)dy].

Remarks. 1. The combination 2h +
∫ b

0
q(y)dy is natural when |h| < ∞. It also enters

into the formula for eigenvalue asymptotics [11,13].
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2. One can think of (5.1) as saying that

m(−κ2) = −κ −
∫ a

0

Ã(α)e−2ακ dα + Õ(e−2aκ)

for any a where now Ã is only a distribution of the form Ã(α) = A(α)+ 1
2

∑∞
j=1 Ajδ

′(α−
jb) +

∑∞
j=1 Bjδ(α − jb) where δ′ is the derivative of a delta function.

3. As a consistency check on our arithmetic, we note that if q(y) → q(y) + c and
κ2 → κ2 − c for some c, then m(−κ2) should not change. κ2 → κ2 − c means κ → κ− c

2κ

and so κe−2κbj → κe−2κbj +cbje−2κbj +O(κ−1) terms. That means that under q → q+c,
we must have that Bj → Bj − cbjAj , which is the case.

Proof. Consider first the free Green’s function for − d2

dx2 with Dirichlet boundary condi-
tions at 0 and h-boundary condition at b. It has the form

G0(x, y) =
sinh(κx)u+(y)

κ u+(0)
, x < y (5.2)

where u+(y;κ, h) obeys −u′′ = −κ2u with boundary condition

u′(b) + hu(b) = 0. (5.3)

Write
u+(y) = e−κy + αe−κ(2b−y) (5.4)

for α ≡ α(h, κ). Plugging (5.4) into (5.3), one finds that

α =

{
−1 h = ∞
1−h/κ
1+h/κ = 1 − 2h

κ + O(κ−2) |h| < ∞.
(5.5)

Now one just follows the arguments of Section 2 using (5.2) in place of (2.14). All terms
of order 2 or more in λ2 contribute to locally L1 pieces of Ã(α). The exceptions come
from the order 0 and order 1 terms. The order 0 term is

lim
x<y→0

∂2G0(x, y)
∂x∂y

=
u′

+(0)
u+(0)

= −κ

[
1 − αe−2bκ

1 + αe−2bκ

]
≡ Q.

Now 1−z
1+z = 1 + 2

∑∞
n=1(−1)nzn, so

Q = −κ − 2κ
∞∑

n=1

(−1)nαne−2bκn

=
{ −κ − 2κ

∑∞
n=1 e−2bκn

−κ − 2κ
∑∞

n=1(−1)ne−2bκn − 4
∑∞

n=1(−1)n+1nhe−2bκn + regular, (5.6)
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where regular means a term which is a Laplace transform of a locally L1 function, and
we used (by (5.5)) that if h is finite, then

αn = 1 − 2nh

κ
+ O(κ−2),

where κO(κ−2) in this context is regular.
The first-order term is

P ≡ −
∫ b

0

q(y)
[

u+(y)
u+(0)

]2

dy.

Now (u+(y)
u+(0) )

2 = (1+αe−2bκ)−2[e−κy +αe−κ(2b−y)]2. In expanding the last square, e−2κy

and e−2κ(2b−y) yield regular terms but the cross term is not regular, that is,

P = −
[∫ b

0

q(y)dy

]
2αe−2κb(1 + αe−2κb)−2 + regular.

Now

z(1 + z)−2 = −z
d

dz
(1 + z)−1 = −z

d

dz

( ∞∑
n=0

(−1)nzn

)
=

∞∑
n=1

(−1)n+1nzn

and so using αn = (−1)n if h = ∞ and αn = 1 + O(κ−1) if h < ∞, we see that

P =

{
2
∑∞

n=1 ne−2nκb[
∫ b

0
q(y)dy] + regular, h = ∞

2
∑∞

n=1(−1)nne−2nκb[
∫ b

0
q(y)dy] + regular, |h| < ∞.

(5.7)

Combining (5.6) and (5.7), we see that (with I =
∫ b

0
q(y)dy),

P + Q =
{ −κ − 2κ

∑∞
n=1 e−2bκn + 2

∑∞
n=1 nIe−2bκn + regular

−κ − 2κ
∑∞

n=1(−1)ne−2bκn + 2
∑∞

n=1(−1)nn[I + 2h]e−2bκh + regular.
(5.8)

This is precisely what conclusion (a), (b) of Theorem 5.1 asserts. �
Proof of Theorem 1.3. The direct assertion follows from Theorem 5.1 and the fact that
A on [0, b] is only a function of q there. We consider the converse part. By Theorems 5.1
and 3.1, for each qj we have for any a < ∞,

mj(−κ2) = −κ −
∫ a

0

Ãj(α)e−2κα dα + Õ(e−2κa),

where Ã(α) is an L1(0, a) function plus a possible finite sum of δ and δ′ terms. Take a =
2b. (1.12) and the fundamental expansion on uniqueness of inverse Laplace transforms
(see Theorem A.2.2) imply that (A1 − A2)(α) is supported on [b, 2b]. If b1, b2 > b, then
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the limit (1.12) is zero, so h1 6= h2 implies either b1 or b2 is b. If only one is b, then the
difference has a δ′ term and the limit in (1.12) is infinite. Therefore, b1 = b2 = b.

Since A1 = A2 on [0, b], Theorem 1.2 implies that q1(x) = q2(x) on [0, b]. If both h1

and h2 are infinite, then the limit is zero. If only one is infinite, then there is a δ′ term
and the limit is infinite. Thus, a limit on (0,∞) implies h1 and h2 are both finite and
so, by Theorem 5.1, the limit is 4(h1 − h2) as claimed. �

§6. The A-Equation

In this section, we will prove equation (1.28). We begin with the case where q is C1. In

general, given q (i.e., q, b, and h if b < ∞), we can define m(z, x) = u′
+(x,z)

u+(x,z) for x ∈ [0, b)
and z ∈ C\[β,∞) for suitable β ∈ R. By Theorem 3.1, there is a function A(α, x) defined
for (α, x) ∈ {(α, x) ∈ R2 | 0 ≤ x < b; 0 < α < b − x} ≡ S so that for any a < b − x,

m(−κ2, x) = −κ −
∫ a

0

A(α, x)e−2ακ dα + Õ(e−2aκ). (6.1)

Moreover, m obeys the Ricatti equation (1.8), and by (3.1) if we define gα(x) on [0, b] by

gα(x) = A(α, x) if x < b − α

= 0 if b − α ≤ x < b.

Then
lim
α↓0

gα(x) = q(x) (6.2)

in L1(0, a) for any a < b.
In (6.2), there is a potential difficulty in that A(α, x) is a priori only defined for a.e. α

for each x, so that gα(x) is not well-defined for all α. One can finesse this difficulty by
interpreting (6.2) in essential sense (i.e., for all a < b and ε > 0, there is a Λ so that for
almost every α with 0 < α < Λ, we have

∫ a

0
|gα(x) − q(x)| dx < ε). Alternatively, one

can pick a concrete realization of q and then use the fact that A − q is continuous to
define A(x, α) − q(x + α) for all x, α and then (6.2) holds in traditional sense. Indeed, if
q is continuous, it holds pointwise.

Theorem 6.1. If q is C1, then A is jointly C1 on S and obeys

∂A

∂x
=

∂A

∂α
+

∫ α

0

A(β, x)A(α − β, x)dβ. (6.3)

Proof. That A is jointly C1 when q is C1 of compact support follows from the arguments
in Section 2 (and then the fact that A on [0, a) is only a function of q on [0, a) lets us
extend this to all C1 q’s). Moreover, by Theorem 2.7,

∂m

∂x
(−κ2, x) = −

∫ a

0

∂A

∂x
(α, x)e−2ακ dα + Õ(e−2aκ) (6.4)
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for all a < b − x. Now in (6.1), square m to see that

m(x,−κ2)2 = κ2 +
∫ a

0

B(α, x)e−2ακ dα + 2
∫ a

0

A(α, x)κe−2ακ dα + Õ(e−2ακ), (6.5)

where B(α, x) =
∫ α

0
A(β, x)A(α − β, x)dβ. In the cross term in (6.5), write 2κe−2ακ =

− d
dα(e−2ακ) and integrate by parts

2
∫ a

0

A(α, x)κe−2ακ dα = −A(a, x)e−2aκ + lim
α↓0

A(α, x) +
∫ a

0

∂A

∂α
(α, x)e−2ακ dα.

By (6.2), limα↓0 A(α, x) = q(x) so (6.5) becomes

−m2 + κ2 + q =
∫ a

0

(
∂A

∂α
+ B

)
e−2ακ dα + Õ(e−2ακ). (6.6)

The Ricatti equation (1.8), (6.4), (6.6), and the uniqueness of inverse Laplace transforms
(Theorem A.2.2) then imply that (6.3) holds pointwise. �

There are various senses in which (6.3) holds for general q. We will state three. All
follow directly from the regularity results in Section 2, the continuity expressed by (3.4),
and Theorem 6.1.

Theorem 6.2. For general q, (6.3) holds in distributional sense.

Theorem 6.3. For general q, define C(γ, x) on {(γ, x) ∈ R2 | x < γ < b)} by

C(γ, x) = A(γ − x, x).

Then, if x1 < x2 < γ, we have that for all (γ, x),

C(γ, x2) = C(γ, x1) +
∫ x2

x1

dy

[ ∫ γ

y

C(λ, y)C(γ − λ + y, y)dλ

]
. (6.7)

Theorem 6.4. If q is continuous, then F (α, x) ≡ A(α, x) − q(α + x) is jointly C1 and
obeys

∂F

∂x
=

∂F

∂α
+

∫ α

0

A(β, x)A(α − β, x)dβ.

§7. The Uniqueness Theorem

In this section, we will prove Theorem 1.5 and therefore, as already noted in the
introduction, Theorem 1.2. Explicitly,
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Theorem 7.1. Let q1 and q2 be two potentials and let a < min(b1, b2). Suppose A1(α, 0)
= A2(α, 0) for α ∈ [0, a]. Then q1 = q2 for a.e. for x in [0, a].

Proof. We will use (6.7) and an elementary Gronwall’s equality to conclude that A1(α, x)
= A2(α, x) on S = {(x, α) ∈ R2 | x + α < a}, and then conclude that q1 = q2 on [0, a]
by (6.2). Pick an explicit realization of q1 and q2 and then since Aj(α, x) − qj(α + x) is
continuous, an explicit realization of Aj(α, x) in which

g(x) =
∫ a−x

0

|A1(α, x) − A2(α, x)| dα

is continuous. Moreover, in this realization,

D = sup
0≤x<a

∫ a−x

0

[|A1(α, x)| + |A2(α, x)|] dα < ∞

since the integral is also continuous. By (6.7) for 0 ≤ x1 < x2 < a,

g(x2) ≤ g(x1) + D

∫ x2

x1

g(y)dy. (7.1)

Letting h(x) = sup0≤y≤x g(y), (7.1) implies

h(x2) ≤ h(x1) + D

∫ x2

x1

h(x2)dy

so if D(x2 − x1) < 1 and h(x1) = 0, then h(x2) = 0. By hypothesis, h(0) = 0. So using
this argument a finite number of times, h(x) ≡ 0 for x ∈ [0, a], that is, A1 = A2 on S. �

§8. Complements and Open Questions

In this final section, we make a number of remarks about the ideas and results of the
earlier sections as well as focus on some open questions and conjectures that we hope to
address. We will also mention some results in a forthcoming paper with F. Gesztesy [10]
that will study the objects of this paper.

1. Our reconstruction procedure is one-sided, as it must be since m(z, x) is a function
of q on [x, b] and totally independent of q on [0, x]. The one-sidedness comes from the
fact that the differential equation for A begins ∂A

∂x = ∂A
∂α , not ∂A

∂x = −∂A
∂α . If one took an

m− function defined from the left of an interval and normalized so the Ricatti equation
(1.8) still holds, then m−(−κ2) has leading asymptotics +κ rather than −κ, and that
leads precisely to leading asymptotics ∂A

∂x = −∂A
∂α + · · · consistent with the one-sidedness

in the other direction.
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2. We owe to Gel’fand [6] the remark that our basic results extend easily to matrix
valued q’s (and thus to some higher-order systems). One defines u as a matrix and
m(z) = u′(0, z)u(0, z)−1 , in which case m obeys the matrix equation

m′ = q − z − m2.

A is matrix valued. Everything goes through without significant changes.

3. One can ask about the relation of our A-function to the kernel K of Gel’fand-
Levitan (see 13]). In terms of the Gel’fand-Levitan kernel K(x, y) (defined if |y| ≤ x),
one can define new kernels KC ,KS defined on 0 ≤ y ≤ x (and built out of K(x,±y)) so
that there are solutions C,S of −u′′ + qu = −κ2u of the form,

C(x, κ) = cosh(κ, x) +
∫ x

0

KC(x, y)cosh(κy)dy

S(x, κ) =
sinh(κx)

κ
+

∫ x

0

KS(x, y)
sinh(κy)

κ
dy.

C, S are normalized so that u+ = C+m+S, and so defining u+ by the boundary condition
at b, one gets

m+(κ) =
hC(b, κ) −C ′(b, κ)
S ′(b, κ) − hS(b, κ)

. (8.1)

Now,

2e−κb(−C ′ + hC) = −κ + h + κ

∫ b

0

B1(α)e−2ακ dα

= −κ

(
1 +

∫ b

0

B(α)e−2ακ dαÕ(e−2bκ)
)

for suitable B defined in terms of K and h and its derivatives. Similarly,

2e−κb(S ′ − hS) = 1 +
∫ b

0

D(α)e−2ακ dα + Õ(e−2bκ)).

By Theorem A.2.3, (1+
∫ b

0
D(α)e−2ακ dα)−1 has the form 1+

∫ b

0
E(α)e−2ακ+Õ(e−2bκ)

and so we can deduce a representation

m+(κ) = −κ

(
1 +

∫ b

0

F (α)e−2ακ dα + Õ(e−2bκ)
)

.

More careful analysis shows that F (0) = 0 and F can be differentiated so that m+(κ) =
−κ − ∫ b

0
A(α)e−2ακ dα + Õ(. . . ).
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That is, one can discover the existence of our basic representation from the Gel’fand-
Levitan representation; indeed, we first found it this way. Because of the need to invert
(1+

∫ b

0
D(α)e−2ακ dα), the formula relating A to K is extremely complicated. Subsequent

to the preparation of this paper, Gesztesy and I [10] found a simple relation between A
and the second Gel’fand-Levitan kernel, L, related to K by 1 + L = (1 + K)−1.

4. The discrete analog of A is just the Taylor coefficients of the discrete m-function
at infinity. There is, of course, a necessary and sufficient condition for such a Taylor
series to come from a discrete Jacobi matrix m-function. For these Taylor coefficients
are precisely the moments of the spectral measure, and there are a set of positivity
conditions such moments have to obey. This suggests that A must obey some kind
of positivity conditions. What are they? Is there perhaps a beautiful theorem that the
differential equation obeyed by the A-function has a solution with a given initial condition
if and only if these positivity conditions are obeyed? Subsequent to the preparation of this
paper, Gesztesy and I [10] found a simple relation between A and the spectral measure,
which is the analog of the Taylor coefficient,

A(α) = −2
∫ ∞

0

dρ(λ)
λ1/2

sin(2α
√

λ),

where the divergent integral has to be interpreted as an Abelian limit.

5. The sequence of δ and δ′ singularities that occur when b < ∞ must be intimately
related to the distribution of eigenvalues of the associated H via some analog of the
Poisson summation formula.

6. There must be an analog of the approach of this paper to inverse scattering theory.
Find it!

7. In [10], Gesztesy and I will compute the A-function in case q(x) = −γ for some
γ > 0. Then

A(α) =
√

γ

α
I1 (2α

√
γ) ,

where I1 is the standard Bessel function denoted by I1( · ). Since

I1(z) = 1
2 z

∞∑
k=0

(1
4z2)k

k!(k + 1)!
,

the 1
n! bounds in (2.7) are not good as n → ∞ if q is bounded. This is discussed further

in [10].

Appendix 1: Localization of Asymptotics

Our goal in this appendix is to prove one direction of Theorem 1.2, viz:



INVERSE SPECTRAL THEORY: FUNDAMENTAL FORMALISM 23

Theorem A.1.1. If (q1, b1, h1), (q2, b2, h2) are two potentials and a < min(b1, b2) and if

q1(x) = q2(x) on (0, a), (A.1.1)

then as κ → ∞,
m1(−κ2) − m2(−κ2) = Õ(e−2κa). (A.1.2)

While we know of no explicit reference for this form of the result, the closely re-
lated Green’s function bounds have long been in the air, going back at least to ideas of
Donoghue, Kac, and McKean over thirty years ago. A basic role in our proof will be
played by the Neumann analog of the Dirichlet relation (2.2). Explicitly, if GD(x, y; z, q)
and GN (x, y; z, q) are the integral kernels of (H−z)−1 with H = − d2

dx2 +q(x) on L2(0,∞)
with u(0) = 0 (Dirichlet) and u′(0) = 0 (Neumann) boundary conditions, respectively,
then

m(z) = lim
x<y
y↓0

∂2GD

∂x∂y
(A.1.3)

and
m(z) = [−GN(0, 0; z, q)]−1 . (A.1.4)

To see this, let u be the solution L2 at ∞ (or which obeys the boundary condition at
b) and let w̃ obey −w̃′′ + qw̃ = zw̃ with w̃(0) = 1, w̃′(0) = 0 boundary conditions. Then

GN (x, y; z, q) = −w̃(min(x, y))
u(max(x, y))

u′(0)
, (A.1.5)

from which (A.1.4) is immediate.
We will begin the proof of Theorem A.1.1 by considering the case where b1 = b2 = ∞.

Proposition A.1.2. Let q1, q2 be defined on (0,∞) and obey (1.4)/(1.5). Then

GN (0, 0;−κ2, qi) = κ−1 + o(κ−1) (A.1.6)

and if (A.1.1) holds, then

GN (0, 0;−κ2, q1) − GN (0, 0;−κ2, q2) = Õ(e−2κa). (A.1.7)

Remark. (A.1.4), (A.1.6), and (A.1.7) imply (A.1.2) in this case.

Proof. Let P (x, y; t, q) be the integral kernel of e−tH on L2(R, dx) where H = − d2

dx2 +
q(|x|). The method of images implies that for x, y ≥ 0,

GN (x, y;−κ2, q) =
∫ ∞

0

[P (x, y; t, q) + P (x,−y; t, q)]e−κ2t dt. (A.1.8)
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Simple path integral estimates (see [16]) imply that

P (0, 0; t, q) = (4πt)−1/2[1 + o(1)] as t ↓ 0 (A.1.9)

and if (A.1.1) holds, then for any ε > 0, there exists Cε > 0 (depending only on the β2

for q1, q2), so that

|P (0, 0; t, q1) − P (0, 0; t, q2)| ≤ Cε exp(−(1 − ε)a2/t). (A.1.10)

(A.1.9) implies (A.1.6) since
∫ ∞
0

2(4πt)−1/2e−κ2t dt = κ−1
∫ ∞
0

(πt)−1/2eκ dt = κ−1.
To obtain (A.1.7), we use (A.1.8), (A.1.10), and

|P (0, 0; t, qj)| ≤ C1e
Dt

since

∫ 1

0

ea2/te−κ2t dt = e−2κa

∫ 1

0

e−(a−1/2−κt1/2)2 dt

= O(e−2κa).

�

Next, we consider a situation where b < ∞, q is given in L1(0, b), and h is 0 or ∞.
Define q̃ on R by requiring that

q̃(x + 2mb) = q̃(x) m = 0,±1,±2, . . . , all x ∈ R
q̃(−x) = q̃(x) all x ∈ R

q̃(x) = q(x) x ∈ [0, b]

which uniquely defines q̃ (since each orbit {±x + 2mb} contains one point in [0, b]). Let
G(N,N) and G(N,D) be the Green’s functions of − d2

dx2 + q(x) on L2(0, b) with u′(0) = 0
boundary conditions at zero and u′(b) = 0 ((N,N) case) or u(b) = 0 ((N,D) case)
boundary conditions at b. Let G̃ be the Green’s function for − d2

dx2 + q̃ on L2(R). Let P

be the corresponding integral kernels for e−tH .
By the method of images for x, y ∈ [0, b]:

G(N,N)(x, y;−κ2) =
∞∑

m=−∞
G̃(x, im(y);−κ2) (A.1.11)

G(N,D)(x, y;−κ2) =
∞∑

m=−∞
σmG̃(x, im(y);−κ2) (A.1.12)
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where

im(y) = y + mb m = 0,±2,± · · ·
= −y + mb + b m = ±1,±3,± · · ·

σm = −1 m = 1, 2, 5, 6, 9, 10, . . . ,−2,−3,−6,−7, . . .

= 1 otherwise

(i.e., σm = −1, if and only if m = 1, 2 mod 4).
By a simple path integral (or other) estimate on P and Laplace transform, we have

|G̃(x, y;−κ2)| ≤ Cεe
−κ|x−y|(1−ε) (A.1.13)

for any ε > 0 and κ sufficiently large. Since the images of 0 are ±2b,±4b, . . . , (A.1.11)
and (A.1.2) imply

Proposition A.1.3.

|G(N,N)(0, 0;−κ2) − G̃(0, 0;−κ2)| = Õ(e−2bκ) (A.1.14)

and similarly for |G(N,D)(0, 0;−κ2) − G̃(0, 0;−κ2)|.
Remark. (A.1.14) and (A.1.6) imply (A.1.2) for the pairs q1 = q̃, b1 = ∞ and q2 = q,
b2 = b, and h2 = 0 or ∞.

Finally, we compare b < ∞ fixed for any two finite values of h:

Proposition A.1.4. Let q ∈ L1(0, b). For h < ∞, let Gh be the integral kernel for
(− d2

dx2 + q − z)−1 with boundary conditions u(0) = 0 and u′(b) + hu(b) = 0. Then

|Gh(0, 0;−κ2) − Gh=0(0, 0;−κ2)| = Õ(e−2bκ). (A.1.15)

Proof. Let H be the h = 0 operator and Hh the operator for h < ∞. By the analysis of
rank one perturbations (see, e.g., [17]),

Hh = H + h(δb, · )δb,

where δb ∈ H−1(H) is the function (δb, g) = g(b).
Again, by the theory of rank one perturbations [17], let F (z, h) = Gh(b, b; z). Then

F (z, h) =
F (z, 0)

1 + hF (z, 0)

and

Gh(0, 0; z) − Gh=0(0, 0; z) = −hGh=0(0, b; z)Gh=0(b, 0; z)[1 − hF (z, h)]

= −hGh=0(0, b; z)Gh=0(b, 0; z)[1 + hF (z, 0)]−1.
(A.1.16)
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Now F (−κ2, 0) = κ−1 + o(κ−1) (this is essentially (A.1.6)) while (A.1.11) and (A.1.13)
imply that

Gh=0(0, b; z) = Õ(e−κb). (A.1.17)

(A.1.16) and (A.1.17) imply (A.1.15). �
Transitivity and Propositions A.1.2–A.2.4 imply Theorem A.1.1.
We close the appendix with two remarks:
1. Do not confuse the Laplace transform in (1.24) (which is in 2κ) with that in (A.1.8)

(which is κ2).
2. We used path integrals above. As long as q(x) = O(eb|x|) for some b < ∞, one can

instead use more elementary Green’s function estimates.

Appendix 2: Some Results on Laplace Transforms

In this paper, I need some elementary facts about Laplace transforms. While I’m sure
that these facts must be in the literature, I was unable to locate them in the precise form
needed, so I will give the simple proofs below.

Lemma A.2.1. Let f ∈ L1(0, a). Suppose that g(z) ≡ ∫ a

0
f(y)e−zy dy obeys

g(x) = Õ(e−ax) (A.2.1)

as x → ∞. Then f ≡ 0.

Proof. Suppose first that f is real-valued. g(z) is an entire function which obeys

|g(z)| ≤ ‖f‖1e
aRe−(z),

where Re− (z) is the negative part of Re z. Moreover, along the real axis, g obeys (A.2.1).
Because of this,

h(w) =
∫ ∞

0

g(x)eiwx dx

is an analytic function of w in the region Im w > −a. Now for r > 0:

h(ir) =
∫ ∞

0

g(x)e−rx dx

=
∫ ∞

0

(∫ a

0

f(y)e−x(y+r) dy

)
dx

=
∫ a

0

f(y)
y + r

dy, (A.2.2)

where the interchange of integration variables is easy to justify. (A.2.2) implies that

h(w) =
∫ a

0

f(y)
y − iw

dy (A.2.3)
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holds for w with Imw > 0 and then allows analytic continuation into the region C\{is |
s < 0}. (A.2.3) and the reality of f implies that for a.e. r ∈ (0, a), f(r) = limε↓0 1

2πi [h(ε−
ir) − h(−ε − ir)], so the analyticity of h in Imw > −a implies that f ≡ 0. For general
complex valued f , consider the real and imaginary parts separately. �

An immediate consequence of this is the uniqueness of inverse Laplace transforms.

Theorem A.2.2. Suppose that f, g ∈ L1(0, a) and for some b ≤ a,
∫ a

0 f(y)e−xy dy −∫ a

0
g(y)e−xy dy = Õ(e−bx). Then f ≡ g on [0, b).

The other fact we need is that the set of Laplace transforms has a number of closure
properties. Let La be the set of functions, f , analytic in some region {z | |Arg(z)| <
ε} ≡ Rε obeying

f(z) = 1 +
∫ a

0

g(α)e−αz dα + Õ(e−aRe z)

in that region for some g ∈ L1(0, a). Denote g by I(f).

Theorem A.2.3. If f, h ∈ La so are fh, f + h − 1, and f−1.

Proof. f + h − 1 is trivial. fh is elementary; indeed,

I(fh)(α) = I(f)(α) + I(h)(α) +
∫ α

0

I(f)(β)I(h)(α − β)dβ.

For the inverse, we start by seeking k obeying (where g = I(f))

g(α) + k(α) +
∫ α

0

dβ k(β)g(α − β) = 0.

This Volterra equation always has a solution (by iteration). Let h(z) = 1+
∫ a

0
k(α)e−αz dα.

Then
fh = 1 + Õ(e−aRe(z))

and so

f−1 = h(1 + Õ(e−aRe(z)))−1

= h + Õ(e−aRe(z))

as required. �
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