A NEW APPROACH TO INVERSE SPECTRAL
THEORY, II. GENERAL REAL POTENTIALS AND
THE CONNECTION TO THE SPECTRAL MEASURE

FRITZ GESZTESY! AND BARRY SIMON?

ABSTRACT. We continue the study of the A-amplitude associ-
ated to a half-line Schrédinger operator, f% + ¢ in L?((0,b)),
b < oo. A is related to the Weyl-Titchmarsh m-function via
m(—k%) = —k — [ A(a)e 20" da+O0(e=22=9)%) for all € > 0. We
discuss five issues here. First, we extend the theory to general ¢ in
L'((0,a)) for all a, including ¢’s which are limit circle at infinity.
Second, we prove the following relation between the A-amplitude
and the spectral measure p: A(a) = —2 [0 A2 sin(20V/X) dp(N)
(since the integral is divergent, this formula has to be properly
interpreted). Third, we provide a Laplace transform representa-
tion for m without error term in the case b < oo. Fourth, we
discuss m-functions associated to other boundary conditions than
the Dirichlet boundary conditions associated to the principal Weyl-
Titchmarsh m-function. Finally, we discuss some examples where
one can compute A exactly.

1. INTRODUCTION

In this paper we will consider Schrédinger operators

——2+q (1.1)

in L?((0,b)) for 0 < b < co or b = oo and real-valued locally integrable
q. There are essentially four distinct cases.
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Case 1. b < oo. We suppose g € L'((0,b)). We then pick h € RU{oco}
and add the boundary condition at b

u'(b-) + hu(b_) =0, (1.2)

where h = oo is shorthand for the Dirichlet boundary condition u(b_) =

0.
For Cases 2-4, b = co and

/ lg(z)] dxr < 0o for all a < oo. (1.3)
0

Case 2. ¢ is “essentially” bounded from below in the sense that

a+1
sup (/ max(—q(z),0) dw) < 0. (1.4)
a>0 a

Examples include ¢(z) = c¢(x + 1)? for ¢ > 0 and all 3 € R or g(z) =
—c(z + 1)P for all ¢ > 0 and 3 < 0.

Case 3. (1.4) fails but (1.1) is limit point at oo (see [6], Ch. 9; [33],
Sect. X.1 for a discussion of limit point/limit circle), that is, for each
z€Cp={z€C|Im(z) >0},

—u" + qu = zu (1.5)

has a unique solution, up to a multiplicative constant, which is L? at
0o. An example is ¢(z) = —c(z + 1)’ for ¢ >0 and 0 < 8 < 2.

Case 4. (1.1) is limit circle at infinity, that is, every solution of (1.5) is
L?((0,00)) at infinity if z € C,. We then pick a boundary condition by
picking a non-zero solution ug of (1.5) for z = i. Other functions u sat-
isfying the associated boundary condition at infinity then are supposed
to satisfy

lim [ug(x)u'(z) — ugp(x)u(z)] = 0. (1.6)

Examples include q(z) = —c(z + 1)? for ¢ > 0 and 3 > 2.

The Weyl-Titchmarsh m-function, m(z), is defined for z € C; as
follows. Fix z € C,. Let u(z, z) be a non-zero solution of (1.5) which
satisfies the boundary condition at b. In Case 1, that means u sat-
isfies (1.2); in Case 4, it satisfies (1.6); and in Cases 2-3, it satisfies
[ |u(z, 2)|*dz < oo for some (and hence for all) R > 0. Then,

(04, 2)

m(z) = W0, 2) (1.7)
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and, more generally,

u'(z, z
m(z,z) = u((a:,z)) (1.8)
m(z, z) satisfies the Riccati equation (with m’ = 22),
m'(z,7) = q(z) — z — m(z, 7). (1.9)
m is an analytic function of z for z € C,, and moreover:
Case 1. m is meromorphic in C with a discrete set Ay < Ay < -+ of

poles on R (and none on (—o0, \1)).

Case 2. For some § € R, m has an analytic continuation to C\[3, co)
with m real on (—oo0, ().

Case 3. In general, m cannot be continued beyond C (there exist ¢’s
where m has a dense set of polar singularities on R).

Case 4. m is meromorphic in C with a discrete set of poles (and zeros)
on R with limit points at both +oco and —oo.

Moreover,
if z € C; then m(z,z) € Cy,

so m satisfies a Herglotz representation theorem,

m(z):c+/R {Al A ]dp()\), (1.10)

— 2 14+ N2

where p is a positive measure called the spectral measure, which satis-

fies
dp(X)
/R1+ P < (1.11)
dp(\) = w-lim 1 Im(m(X + i€)) dA, (1.12)

el0 T
where w-lim is meant in distributional sense.

All these properties of m are well known (see, e.g. [23], Ch. 2).

In (1.10), ¢ (which is equal to Re(m(i))) is determined by the result
of Everitt [10] that for each ¢ > 0,

m(—k*) = —k+0o(1) as || — oo with — g +e < arg(k) < —e < 0.
(1.13)
Atkinson [3] improved (1.13) to read,

m(—k?) = —k + /an q(a)e™ da + o(k™) (1.14)
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again as |k| — oo with —5 + ¢ < arg(k) < —e < 0 (actually, he
allows arg(k) — 0 as |k| — oo as long as Re(k) > 0 and Im(k) >
—exp(—D|k|) for suitable D). In (1.14), a¢ is any fixed ay > 0.

One of our main results in the present paper is to go way beyond the
two leading orders in (1.14).

Theorem 1.1. There exists a function A(a) for a € [0,b) so that
A e L' (0,a)) for all a < b and

m(—k?) = —k — /OaA(oz)e_Qo"’C da + O(e=22r) (1.15)

as |k| — oo with =% + ¢ < arg(k) < —e < 0. Here we say f = O(g) if
g — 0 and for all ¢ > 0, (§)|g|6 — 0 as |k| — oco. Moreover, A — q is
continuous and

(A—q)(a)| < [ | ata) dxrexp (a | |q<x>|da:) o 6)

This result was proven in Cases 1 and 2 in [35]. Thus, one of our
purposes here is to prove this result if one only assumes (1.3) (i.e., in
Cases 3 and 4).

Actually, in [35], (1.15) was proven in Cases 1 and 2 for x real with
|k| — oco. Our proof under only (1.3) includes Case 2 in the general
k-region arg(xk) € (=% + ¢, —¢) and, as we will remark, the proof also
holds in this region for Case 1.

Remark. At first sight, it may appear that Theorem 1.1 as we stated
it does not imply the x real result of [35], but if the spectral measure
p of (1.10) has supp(p) € [a,o00) for some a € R, (1.15) extends to
all k in |arg(k)| < § — €, |k| = a + 1. To see this, one notes by
(1.10) that m/(z) is bounded away from [a, c0) so one has the a priori
bound |m(z)| < C|z| in the region Re(z) < a — 1. This bound and a

Phragmén-Lindelof argument let one extend (1.15) to the real k axis.

Here is a result from [35] which we will need:

Theorem 1.2. (Theorem 2.1 of [35]) Let ¢ € L*((0,00)). Then there
exists a function A(a) on (0,00) so that A—q is continuous and satisfies
(1.16) such that for Re(k) > 3|lq|l1.

m(—k?) = —k — /000 A(a)e 2" da. (1.17)

Remark. In [35], this is only stated for s real with x > 1ll¢|[1, but
(1.16) implies that |A(a) — g(a)| < |q||? exp(allg||1) so the right-hand
side of (1.17) converges to an analytic function in Re(k) > 3|lq||i.
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Since m(z) is analytic in C\|«, 00) for suitable o, we have equality in
{r € C|Re(k) > 3|lg[1} by analyticity.

Theorem 1.1 in all cases follows from Theorem 1.2 and the following
result which we will prove in Section 3.

Theorem 1.3. Let g1, g2 be potentials defined on (0,b;) with b; > a for
Jj = 1,2. Suppose that ¢ = g2 on [0,a]. Then in the region arg(k) €
(=5 +¢&,—¢), |K| = Ko, we have that

Imi(—~K?) — mao(—k?)| < C.sexp(—2a Re(k)), (1.18)

where C. 5 depends only on e, 0, and supOSxSG(fw+6 lg;(y)| dy), where

T

0 > 0 s any number so that a + 96 < b;, 7 =1,2.

Remarks. 1. An important consequence of Theorem 1.3 is that if
¢1(z) = ga2(z) for x € [0, a], then A;(a) = Az(a) for a € [0,a]. Thus,
A(a) is only a function of ¢ on [0, a]. At the end of the introduction,
we will note that g(x) is only a function of A on [0, z].

2. This implies Theorem 1.1 by taking q1 = ¢ and g2 = gx[o,,) and
using Theorem 1.2 on gs.

3. Our proof implies (1.18) on a larger region than arg(k) € (=% +
e, —¢). Basically, we will need Im(x) > —C; exp(—Cs|k|) if Re(k) —
0.

We will obtain Theorem 1.3 from the following pair of results.

Theorem 1.4. Let q be defined on (0,a + 8) and ¢ € L'((0,a + 9)).
Then in any region arg(k) € (=% +¢,—¢), |k| = Ko, we have for all
x € [0,a] that

im(—r%2) + k| < Cep, (1.19)
where C. s depends only on €,0 and Supogzga(f;Jr& lq(y)| dy).

Theorem 1.5. Let ¢ = qo on [0,a] and suppose my and msy obey
(1.19) for x € [0,a]. Then in the same k-region,

|my (—k?) — mao(—k?)| < 205 exp(—(Re(k))(2a — 2C.5)).  (1.20)
We will prove Theorem 1.5 in Section 2 using the Riccati equation
and Theorem 1.4 in Section 3 by following ideas of Atkinson [3].

In Sections 5-9, we turn to the connection between the spectral mea-
sure dp and the A-amplitude. Our basic formula says that

Ala) = =2 /_ Tk sin(2av/\ ) dp(\). (1.21)
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In this formula, if p gives non-zero weight to (—oo, 0], we interpret

1, 2a if A= 0,

A7 sin(20V\ ) = {(_)\)_% sinh(207/=X) if A< 0. (1.22)
consistent with the fact that A~ sin(2av/X ) defined on (0, 00) extends
to an entire function of A.

The integral in (1.21) is not convergent. Indeed, the asymptotics
(1.13) imply that fOR dp(\) ~ %R% so (1.21) is never absolutely con-
vergent. As we will see in Section 9, it is never even conditionally
convergent in case b < oo (and also in many cases with b = 00). So
(1.21) has to be suitably interpreted.

In Sections 5-7, we prove (1.21) as a distributional relation, smeared
in a on both sides by a function f € C5°((0,00)). This holds for all ¢’s
in Cases 1-4. In Section 8, we prove an Abelianized version of (1.21),
Viz.

Y

o

Aa) = —2lim [ e A"z sin(2av A ) dp(N) (1.23)

el J_

at any point, «, of Lebesgue continuity for ¢. (1.23) is only proven for
a restricted class of ¢’s including Case 1, 2 and those ¢’s satisfying

g(x) > —Ca?,  z>R

for some R > 0, C' > 0, which are always in the limit point case at
infinity. We will use (1.23) as our point of departure for relating A(a)
to scattering data at the end of Section 8.

In order to prove (1.21) for finite b, we need to analyze the finite b
case extending (1.15) to all a including @ = oo (by allowing A to have
0 and ¢’ singularities at multiples of b). This was done in [35] for &
real and positive and a < co. We now need results in the entire region
Re(k) > Ky, and this is what we do in Section 4. Explicitly, we will
prove

Theorem 1.6. In Case 1, there are A,, B, forn = 1,2,..., and a
function A(a) on (0, c0) with

(i) [An| <C.
(ii) |B,| < Cn.
(iti) [, |A(@)]da < Cexp(Kolal) so that for Re(k) > 3 Ko:
m(—k?) = —k — Z Apke2mm Z Bpe2rbn / A(a)e™* da.
n=1 n=1

0 (1.24)
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In Section 6, we will use (1.21) to obtain a priori bounds on fi)R dp()\)
as R — oo.

Section 9 includes further discussion of the significance of (1.21) and
the connection between A and the Gel’fand-Levitan transformation
kernel.

Sections 10 and 11 present a few simple examples where one can
compute A explicitly. One of the examples, when combined with a
general comparison theorem, allows us to prove the general bound

[A(@)] < a7 y(a)e* @),

where y(a) = Supgye <, |¢(z)|2 and this lets us extend (1.17) to bounded
q.

In the appendix we discuss analogs of (1.15) for the other m-functions
that arise in the Weyl-Titchmarsh theory.

While we will not discuss the theory in detail in this paper, we end
this introduction by recalling the major thrust of [35] — the connection
between A and inverse theory (which holds for the principal m-function
but not for the m-functions discussed in the appendix). Namely, there
is an A(a, x) function associated to m(z, z) by

m(—k? 1) = —kK — / Ao, x)e 2% da + O(e72") (1.25)
0

for a < b— z. This, of course, follows from Theorem 1.1 by translating
the origin. The point is that A satisfies the simple differential equation
in distributional sense

A A “
o an) = ) [ Aa-poapads (120
This is proven in [35] for ¢ € L'((0,a)) (and some other ¢’s) and so
holds in the generality of this paper since Theorem 1.3 implies A(a, z)
for a + x < a is only a function of ¢(y) for y € [0, al.

Moreover, by (1.16), we have

lai?ol |A(a,z) — qla+2)|=0 (1.27)
uniformly in 2 on compact subsets of the real line, so by the uniqueness
theorem for solutions of (1.26) (proven in [35]), A on [0, a| determines
q on [0,al.

In the limit circle case, there is an additional issue to discuss. Namely,
that m(z,z = 0) determines the boundary condition at co. This is be-
cause, as we just discussed, m determines A which determines ¢ on
[0,00). m(z,z = 0) and g determine m(z,z) by the Riccati equation.
Once we know m, we can recover u(z = i,z) = exp( [, m(z =i,y) dy),
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and so the particular solution that defined the boundary condition at
00.

Thus, the inverse spectral theory aspects of the framework easily
extend to the general case of potentials considered in the present paper.

With the exception of Theorem 2.1 for potentials ¢ € L'((0,00)) of
the first paper in this series [35], whose method of proof we follow in
Section 4, we have made every effort to keep this paper independently
readable and self-contained.

F.G. would like to thank C. Peck and T. Tombrello for the hospitality
of Caltech where this work was done.
2. UsING THE RIcCATI EQUATION

As explained in the introduction, the Riccati equation and a priori
control on m; allow one to obtain exponentially small estimates on
mi1 — my (Theorem 1.5).

Proposition 2.1. Let my(x), mo(z) be two absolutely continuous func-

tions on |a, b] so that for some Q € L*((a,b)),
mii(z) = Q(x) —mj(x)?, j=1,2 x € (a,b). (2.1)
Then

pa(a) = (@) = a9 = mal®) exp (o) + sl )

Proof. Let f(z) = mq(z) — ma(z) and g(z) = my(z) + ma(z). Then
f'(@) = —f(z) g(x),

from which it follows that

0= 10w [ [ o]
]

As an immediate corollary, we have the following (this implies The-
orem 1.3)

Theorem 2.2. Let m;(x, —r?) be functions defined for x € [a,b] and
k € K some region of C. Suppose that for each k in K, m;j is absolutely
continuous in x and satisfies (N.B.: q is the same for my and msy),

ml(z, —K?) = q(z) + K —m;(z, —K*)?, j=12.
Suppose C' is such that for each x € [a,b] and k € K,

imj(x, —k%) + 6| <C, j=1,2 (2.2)
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then
Imi(a, —K%) — ma(a, —k*)| < 20 exp[—2(b — a)[Re(k) — C]].  (2.3)

3. ATKINSON’S METHOD

Theorem 2.2 places importance on a priori bounds of the form (2.2).
Fortunately, by modifying ideas of Atkinson [3], we can obtain esti-
mates of this form as long as Im(x) is bounded away from zero.

Throughout this section, b < oo and ¢ € L'((0,a)) for all a < b.
For each xk with Im(x) # 0 and Re(k) > 0, we suppose we are given a
solution u(z, —k?) of

—u" + qu = —K?u, (3.1)

which satisfies (note that z = —?, so Im(z) = —2Re(k) Im(k))
—Im(k)[Im(v/ (z, —K?) /u(z, —K%))] > 0, (3.2)
where v = %. The examples to bear in mind are firstly b < oo,

q € L*((0,b)), and u satisfies (3.1) with
u'(b_, —k*) +hu(b_,—r*) =0  (|h] < )
or
u(b_, —K*) =0 (h = 00)

and secondly, b = oo, and either ¢ limit point at infinity or ¢ limit
circle with some boundary condition picked at b. Then take u to be
an L? solution of (3.1). In either case, u can be chosen analytic in &
although the bounds in Propositions 3.1, 3.2 below don’t require that.
Atkinson’s method allows us to estimate |m(—~x?) + k| in two steps.

We will fix some a < b finite and define my(—~?) by solving
my(—k2,2) = q(z) + K% — mo(—rK>, 2)?, (3.3a)

mo(—k* a) = —kK (3.3b)

and then setting
mo(—k?) 1= mo(—~r?,04). (3.3¢)

We will prove

Proposition 3.1. There is a C > 0 depending only on q and a uni-
versal constant E > 0 so that if Re(k) > C and Im(k) # 0, then

2
2\ K< E |I{| 72aRe(n)' 4
|m( K ) m(]( K )| = |IH1(KJ)| € (3 )
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In fact, one can take

a . . 2
C' = max (a—lln(G), 4/ |q(z)] dl') ’ b= %
0

Proposition 3.2. There exist constants Dy and Dy (depending only
on a and q), so that for Re(k) > Dy,

|m0(—/$2) + k| < Ds.

Indeed, one can take

Dy =Dy = 2/ lg(x)| dz.
0

These propositions together with Theorem 1.2 yield the following
explicit form of Theorem 1.3.

Theorem 3.3. Let ¢1,q2 be defined on (0,b;) with b; > a for j =1,2.
Suppose that q = g2 on [0,a]. Pick ¢ so that a+¢6 < min(by, be) and let
z+0 . _

1N = SUPo<pcaijer ol ), "1q;(y)| dy). Then if Re(k) > max(4n, 5 In(6))
and Im(k) # 0, we have that

ma(—k?) — ma(—k?)| < 2F (k) exp(—2a[Re(k) — F(k)]),
where
864 2

|I{| 672§Re(x)

F(l{) = 277+ ? |III1(K/)|

Remarks. 1. To obtain Theorem 1.3, we need only note that in the
region arg(k) € (=5 + ¢, —¢), |k| = Ko, F(x) is bounded.

2. We need not require that arg(k) < —e to obtain F' bounded. It
suffices, for example, that Re(k) > | Im(k)| > e~*R®) for some o < 29.

3. For F' to be bounded, we need not require that arg(x) > —% +
e. It suffices that |Im(k)| > Re(k) > aln[|Im(k)|] for some o >
(26)7!. Unfortunately, this does not include the region Im(—x?) =
¢, Re(—K?) — oo, where Re(k) goes to zero as |k|™'. However, as
Re(—k?) — oo, we only need that |Im(—x2)| > 2a|k|In(|x]).

As a preliminary to the proof of Proposition 3.1, we have

Lemma 3.4. Let A,B,C,D € C so that AD — BC =1 and so that
D #0# Im(%). Let f be the fractional linear transformation

_AC+B
CCC+ D

f(€)
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Then f[R U {oo}] is a circle of diameter

)

|D|7? |Im = |[Im(CD)|™*. (3.5)
Remark. 1f |D| = 0 or Im(%) = 0, then f[RU {co}] is a straight line.

Proof. Consider first g(¢) = -~ = —L—+. Then ¢(0) = 0 and ¢/(0) =

aC+1 at+C1°
1, so g[R U {o0}] is a circle tangent to the real axis. The other pomt

on the imaginary axis has ( = W with g(— Re(a)) = —Tm@ 5O
diam(g[R U {o0}]) = m
Now write (using AD — BC' = 1)
¢ B ¢ B
f(Q) = =

W+B_m+5'

Thus letting a = £, g(¢) = and writing D = |D|e”, we have that

a(;+1

F(Q) = D[ 2(0) + 2

D
% is a translation and e~ a rotation, and neither changes the diameter
of a circle. So diam(f[R U {oo}]) = | D|~2 diam(g[R U {oc}]). O

Now let ¢(z, —k?),0(z, —k?) solve (3.1) with

(P(O-i-: _’{/2) = 07 ¥ (O-H -k ): 1 (363)
0(0-{-7 _’{/2) = 17 0/(04-7 - ) O
Define
9(&, _I{Q)C - 9/(a7 _I{Q)
1) == = =g =) (37)
Lemma 3.5. If u solves (3.1) and ul((z :2)) = (, then 15((8’;:22)) = f(Q)
with f given by (3.7).

Proof. Let T = (“"/(“’*”2) 0'(a,~ “ ) Then T(“(O —K )) _ (u’(aﬁr#)) by

ola,—r?) 0(a,—~r? (0,—x2) u(a,—k2)
linearity of (3.1). By constancy of the Wronskian, 7" has determinant

1 and thus
poo (M) o)
—pla, =% ¢'(a,—~?)
and so
u'(0,—x%)  0(a,—rk*)u/(a, —K?) — 0'(a, —K*)u(a, —K?)

u(0, —k2)  —p(a, —k2)u/(a, —k2) + ¢'(a, —k2)u(a, —K2)
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g u'(a, —K?)
B u(a,—k2) )’

Corollary 3.6.

1

m(—k*) —m < — . 3.8

e )
Proof. We consider the case Im(x) < 0. Let my(—r? ) be any solu-
tion of m}(—k? z) = q(x) + K* — m3(—kK?, :c) Then Im(m}(—x? x)) =
2Re(k) Im(k) — 2 Im(my (—k?, z)) Re(my(—k2, x)). Tt follows that at a
point where Im(m1) = 0, that Im(m}) < 0. Thus if Im(m;(—+2,y)) = 0
for y € [0,a], then Im(my(—k?z)) < 0 for * € (y,a]. Thus
Im(my(—~k2 a)) > 0 implies Im(m;(—~2,0)) > 0, so f maps C4 onto a
circle in C. Since mo(—~k?,a) = —k and m(—k? a) are in C, both
points are in C, and so at = = 0, both lie inside the disc bounded by
FIRU {oo}]. By det(T) = 1 and Lemma 3.4, (3.8) holds. O

Proof of Proposition 3.1. By (3.8), we need to estimate ¢(a, —k?).
Define w(z, —£?) = Im( ¢(z, —k2) ¢'(x, —k?)). Then, w(04, —x%) = 0
and by a standard Wronskian calculation, w'(z, —x?) = —Im(—x?)
[ —2) = 2Re() (k) |z, —2)[. Thus,

| Tm( 2@, —#%) ' (a, —#%))| = 2 Re()| Im(x)| / (e, k)P d.
(3.9)

¢(z, —k?) satisfies the following integral equation ([5], Sect. 1.2),

W) = sinh(kx) n /x sinh(k(x —y))

Y K

q()e(y, —k?) dy. (3.10)

Define B(x, —k?) = ke * By (x —k2). Then, by (3.10) and |sinh(k€)|

< el&lRe(m)7 £ eR,
sinh(xkz g Re(k)
()| {supw ] [ attan
|/<| 0<y<z
3 11

90(567_

(p(ﬁ, _’{2) -

K

Moreover, (3.10) becomes

B(x, —K?%) = e B0 ginh (k)

. /m sinh(r(z —y)) oy Re(®) g (4) B(y, —k2) dy,
0

K
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which implies that

Iﬁ@a—ﬁa|él%(Ax;LhKMIW@h—K5V@- (3.12)

||
Pick k so that

K| > 4/ lq(y)| dy. (3.13)
0
Then (3.12) implies

1
sup |B(w, —#%)| <1+ sup |z, —+%)]
0<z<a 0<z<a
so that
4
sup |B(z, —K?)| < 3 (3.14)

0<z<a

Using (3.13) and (3.14) in (3.11), we get

sinh 1 zRe(k)
plz, —%) — (x) <= (3.15)
K 3 k|
Now |sinh(z)| > sinh(| Re(z)|) = £ [elBe@) — e=IRe@I] g0 (3.15) implies
1
lo(x, —K2)| > o] [e7Re(r) _ gz Re(m)] (3.16)
Now suppose
aRe(k) > In(6). (3.17)
Thus for z > £, (3.16) implies |¢(z, —£%)| > 121|H|e””Re(“) and we obtain
“ 1 1
2y 2 du > 2a Re(k) 1—e@ Re(k)
/% |90(y7 K )| y — 288|I{/|2 Re(l{) € [ € ]
1 1
> > 2 Re(r), (3.18)

6 288|x[? Re(k)
Putting together (3.8), (3.9), and (3.18), we see that if (3.13) and (3.17)
hold, then

3 1
Im(—k?) —mo(—k?)] < = x 288|x|? e~ 2aRe(r),

5 | Im(k)|

Proof of Proposition 3.2. Let

nzéﬂawMy (3.19)
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Let z(z,—~k?) solve (3.1) with boundary conditions z(a, —x?%) = 1
2'(a,—K?%) = —k, and let

Then the Riccati equation for mg(—~x?2, a) becomes
v (z, —K?) = q(x) — y(x, —K*)? + 2ky(z, —K?) (3.20)
and we have
v(a, —K?%) = 0. (3.21)

Thus v(x, —k?) satisfies

(=K% = - /z e 00 g(y) — 2(y, —3)] dy. (3.22)
Define I'(z, —k*) = sup,<,<, |7(y, —«?)|. Since Re(x) > 0, (3.22)
implies that
T(z,—k%) <n+ 1 (Re(k)) 'T(z, —r%)> (3.23)
Suppose that
Re(k) > 2n. (3.24)
Then (3.23) implies
U(z,—k%) <n+ 19 'T(z, —k*)> (3.25)

(3.25) implies ['(z, —k?) # 2n. Since T'(a,—k?*) = 0 and T is contin-
uous, we conclude T'(04, —r?) < 21, so |v(04, —k?)| < 27, and hence
|(mo(—k2) + k| < 2n. O

Remark. There is an interesting alternate proof of Proposition 3.2
that has better constants. It begins by noting that mg(—x?) is the
m-function for the potential which is g(x) for z < a and 0 for =z > a.
Thus Theorem 1.2 applies. So using the bounds (1.16) for A, we see
immediately that for Re(x) > 1|q||1,

lal?

|m0(_K/ )+ H| < ||q||1 + [QRG(FC) _ ||Q||1} )

where [|qlly = [; |a(y)| dy.
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4. FINITE b REPRESENTATIONS WITH NO ERRORS

Theorem 1.2 says that if b = oo and ¢ € L'((0,00)), then (1.17)
holds, a Laplace transform representation for m without errors. It is, of
course, of direct interest that such a formula holds, but we are especially
interested in a particular consequence of it — namely, that it implies
that the formula (1.15) with error holds in the region Re(k) > K, with
error uniformly bounded in Im(x); that is, we are interested in

Theorem 4.1. If g € L*((0,00)) and Re(k) > 3||q||1, then for all a:

‘m(—nQ) +/<c+/ A(a)e 2" da
0

(4.1)

lglfel™ T san
< Mgl + e 2Rl
[ 2Re(r) — [lglh
Proof. An immediate consequence of (1.17) and the estimate |A(a) —
q(@)] < llqlf exp(allq]y)- a

Our principal goal in this section is to prove an analog of this result
in case b < co. To do so, we will need to first prove an analog of (1.17)
in case b < oo — something of interest in its own right. The idea
will be to mimic the proof of Theorem 2 from [35] but use the finite
b, ¢9(x) = 0, z > 0 Green’s function where [35] used the infinite b
Green’s function. The basic idea is simple, but the arithmetic is a bit
involved.

We will start with the h = oo case. Three functions for ¢ (z) =
0, = > 0 are significant. First, the kernel of the resolvent (—(Z—QQ +
k%)t with u(04) = u(b_) = 0 boundary conditions. By an elementary
calculation (see, e.g., [35], Section 5), it has the form

sinh(kz.) [e "> — e~H(2b—2>)

0
GEI:)OO (‘Tv Y, _Ii2) = K 1 — ¢—2kb ’ (42)
with 2. = min(z,y), z~ = max(z,y).
The second function is
(0) —RKT —r(2b—x)
(0) 2y — 15 90 hZee 2y € —e
heoo (T, —K™) = lylg)l Dy (x,y, —K") = = (4.3)

and finally (notice that ¢£(2m(0+,—/<52) = 1 and ¢§200 satisfies the
equations —" = —k%) and Y (b_, —k%) = 0):

0 0 K+ /{672'%
Ml () = UL (00 =) = =g (44)

In (4.4), prime means .
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Fix now ¢ € C§°((0,0)). The pair of formulas

> N7
(—w+q+ﬁ)

and

yields the following expansion for the m-function of _jx_22 + ¢ with
u(b_) = 0 boundary conditions.

Proposition 4.2. Let g € C5°((0,b)), b < co. Then

(=) = 3" M%) (4.5)
where )
Mo(—1% q) = my” (—K?), (4.6)
My(—#2: ) /0 (@ _(z, —2)? de, (4.7)
and forn > 2,

b b
My (=2 q) = (—1)" / dy- - / 02 q(ar) .. q(n) X
n—1
< P (@n, =20, —12) [ ] Gl (s s, —K7). (4.8)
j=1

The precise region of convergence is unimportant since we will even-
tually expand regions by analytic continuation. For now, we note it
certainly converges in the region s real with k2 > ||¢|| -

We want to write each term in (4.5) as a Laplace transform. We
begin with (4.6), using (4.4)

2 2k 2
MO(—ﬁ;q):—ﬁ—m:—/{—QﬁZe . (4.9)
Next, note by (4.3) that
}(LOZ)OO :c —/<c Zefn(z+2bj Zefn(ij#(be:r))’ (4'10)

7=0
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SO

() (z, —K? Ze 2"”21”) 7+ 1)

h=00
JZO

L3 e 1) 23 e, (h

and hence,

My(—r%q) =2 { /0 (@) dm] i je 2 _ /0 " Ai(a)e 2 da,
Fl (4.12)

where
q(a), 0<a<hb,
Ai(a) = ¢ (n+ 1)g(a—nb) + ng((n+ 1)b —a), nb<a < (n+1)b,
n=12....
(4.13)

To manipulate M,, for n > 2, we first rewrite (4.10) as

o

%200(% k2 = Zqﬁ(om)(% —K?), (4.14)
=0
where
Q/J(O)’(j)(CE, _,{/2) = (_1)9 exp(—/{,Xj(gj))’ (415)
with
bj 1 =0,2,...
Xj(x) _ T+ 0y, ‘ .7 5 &y ) (416)
b—x+bj, 7=13,...,
and then for n > 2
= > Moo=+, (4.17)
7,p=0
where
M, j,(—K?) = / dxq- - / dxy, q(z1) ... q(xn) X
% Q/J(O)v(j)($1’ —K )1/J( (p)( — )H G(O) (l"],l']+17 /{2)' (4'18)

=1



18 F. GESZTESY AND B. SIMON

Next use the representation from [35],

) s L[ e
2 )
|

K z—y|

to rewrite (4.2) as
Tty —kl __ —Kk(2b—2)
(0) 2 1 (& €
Gh:oo(wvya —kK ) - §/| [ 1 — e—2kb :| dt

z—y|

1 1
:—/ aﬂﬂ——/ e " d,
2 St (z,y) 2 S—_(z,y)

where Si(z,y) = Usl,llz — y| + 2nb,z + y + 2nb] and S_(z,y) =
U2, 26(n+1) —z —y,2b(n+ 1) — |z — y|]. Each union is of disjoint
intervals although the two unions can overlap. The net result is that

1 o0
Gggayﬂﬂzﬁ/‘Um%@e“ﬂ, (4.19)
0

where U is +1, —1, or 0. The exact values of U are complicated —
that |U| <1 is all we will need.
Plugging (4. 19) in (4.18), we obtain

n+]+p
Mn,j,p(_'“f) /d$1 /da:n/ dly-- / dl,_; X

X q(l‘l) l’n HU xj7$j+17€j)
j=1
X exp(—kl[ly + -+ b1 + Xj(21) + Xp(2,)]).

Letting a = 2[01 + +++ + lo1 + Xj(21) + X, (2,)] and changing from
dl,, 1 to da (since n > 2, there is an £, ), we see that

Mn,jvp(—/f) = —[ zélw-,p(oz)e_%"'i da, (4.20)
5b(j+p)

where

Amp( a) =

n—|—y+p
/ dl‘l / d$n/ dgl ce dgn,Q X
R(21y--- Ty €1 yeerfn—2)

X H Ul@j @1 4)U(Tn-1, T, 200 = by ool — Xj(@1) — Xp(an)),
j=1

(4.21)
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where R(z1,...,2n, 01, ..., 0, 2) is the region
R(CEl, ce ,$n,€1, e ,gn_g)

= {(61, e ,gn,Q)
(4.22)

In (4.20), the integral starts at $b(j+p) since a > [ X;(z1)+ X, (2,)]
and (4.16) implies that X;(z) > bj. For each value of z, R is contained
in the simplex {(£1,...,0u_2) | £ > 0 and 37— fx < 2a} which has

n—2
gi ZO and X](ZUl)—{—Xp(éUn)—{—ng SQO( .
k=1

volume ((27?1;!2' This fact and |U] < 1 employed in (4.21) imply
b n an—2
gl < ([ lawlae) S (1.23)
Moreover, by (4.20),
Anjp@) =0 ifa<ib(+p). (4.24)

For any fixed a, the number of pairs (j,p) with j,p = 0,1,2... so

that oo > 2b(j +p) is 5([2] 4 1)([22] + 2), and thus,

M, (—K?) = — /000 An(Q)e 2 da, (4.25)
with
Anfa) < | BRI O, 2o

As in [35], we can sum on n from 2 to infinity and justify extending
the result to all ¢ € L*((0,b)). We therefore obtain

Theorem 4.3. (Theorem 1.6 for h = oo0) Let b < 0o, h = oo, and
q € L'((0,b)). Then for Re(k) > %||q||1, we have that

m(—k?) = —Kk — ZAj/fe_Q“bj - Z Bje™2xbi —/0 A(a)e ™ da,
j=1 j=1

(4.27)
where
(i) A; =2.
(i) B; = —27 [ q(x) da.
(iii) |(A(a)) — Ay(a)| < CeACaEI 012 oxp(allg]ly) with Ay given by
4.13). In particular,

/Oa |[A(a)| da < C(b, |gll1)(1 + a®) exp(allg]l1).
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As in the proof of Theorem 4.1, this implies

Corollary 4.4. If g € L*((0,00)) and Re(k) > L||q|1 + &, then for all
€ (0,b), b < 0o, we have that

< C(a, 5)6—2aRe(ﬁ)’

m(—k?) + /<c—l—/ A(a)e " da
0

where C(a,e) depends only on a and € (and ||q||1) but not on Im(k).
Remark. One can also prove results for a > b if b < co but this is the
result we need in the next section.

The case h = 0 (Neumann boundary conditions at b) is almost the
same. (4.2)—(4.4) are replaced by

sinh(kz.) [e™"®> + o—ri(20—>)

0
ng) (m Y, _H2) p 1+ o—2kb ) (428)
e~ he —r(2b—2x)
0 +e
f(L)O(x _li2) 1 + eiQKb ) (429)
—2kb
0 R — RE€

The only change in the further arguments is that U can now take the
values 0, £1, and £2 so |U| < 2. That means that (4.26) becomes

(2a +b)(2a 4 2b) | (20)"
e e

|[Ann=o(@)] < 2

The net result is

Theorem 4.5. (Theorem 1.6 for h = 0) Let b < oo, h = 0, and
q € L*((0,b)). Then for Re(k) > ||q||1, (4.27) holds, where

(i) 4;=2(-1).

(ii) B; = 2(—~1)*j [V q(x

(iii) |A(a) —Ai(a)| < w”qﬂlexp@aﬂqﬂl) with Ay given by

Al,h:O(a) =
q(a)v 0<a<b,
(=D)"[(n+1)g(a —nb) —ng((n+ 1)b—a)], nb<a < (n+ 1),
n=12....

In particular,

/ (A(@)| da < C(b. |lgll) (1 + a) exp(2alq] ).
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An analog of Corollary 4.4 holds, but we will wait for the general
h € R case to state it.
Finally, we turn to general |h| < co. In this case (4.2)—(4.4) become

sinh(kz.)

GOz, y, —K?) = — A a—_ (4.31)
e, —k?) = eﬁiig((h?) _Zibm) (4.32)
mi(—K%) = =k + 26 ¢ i( a h,)n) ;Kb , (4.33)
where
Chor) = S5 (434

To analyze this further, we need Laplace transform formulas for (.

Proposition 4.6. The following formulas hold in the rk-region h +
Re(k) > 0.
(i) C(hyk) =1 —4h [°e 2 dq,

)
(1) (R, )™ = 1+ S, (—1P(5) 2 Jo~ @l e et da,
)
)

(ili) kC(h, k) = Kk — 2h+4h? [ e 5T dq,
m 4h)i+1
(iv) kC(h, k)™ = Kk — 2mh — 42]-:1( 1)/ [( ) +2(y+1) ((J)l fO
xad~le=(542h) 4oy where (mrj_l) is interpreted as (.

Proof. Straightforward algebra. O

Rewriting (4.33) as
mgbo)(_K/Q) = — K+ 2 Z(_l)m—l-l(me—anb

and then using Proposition 4.6(iv), we find that

mELO)(—/fQ) =—Kk—2 Z(—l)mne_zm”b
m=1

o

—4 Z(—l)mﬂmheﬁm”b — /2b Aop(a)e** da, (4.35)
m=1
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where

1 - —2(a—2m -
Aon(a) = 52 "X 2mboo)(@)e 202N (1) x
m=1 j=1

X{(?>+2QZH>MMW“9%??%¥i

Using the crude estimates (4h)7~!(a — 2mb)’ ' xpm, b)( a)/(7 -1 <
exp(4|hla), 37, (m) 2", > (jm ) <2m, and m < 2, we see that

(4.36)

+1
3/«
<= — ) . .3
[Aon(@)] < 5 (57) exp (5 (@) exp(6lhla).  (4.37)
A similar analysis of fo 7)o (x, —Kk?)? do shows that
b b [e'e)
_/ q(:c) f(LO)(l,’ —I€2)2 dr — — (/ q(m) dI) 9 Z(_l)m+1me—2bnm
0 0 m=1

b 00
— / q(a)e ** da — / App(a)e 2 da, (4.38)
0 b
where A, j, satisfies for suitable constants C; and C5

41(0)] < Cy exp(Callh] + 1+ b7 )a) x
X [|[g(a—nb)| +|¢(n+1)b—a)|] fornb<a < (n+1)b. (4.39)

Finally, using (4.31) and Proposition 4.6, we write

=) =5 [ Uwngede @
0
where

\U(x,y,h,0)| < Czexp(Cy(|h] + 1+ b 1)0) (4.41)

for suitable constants C'3 and Cy. From it, it follows that

M,(—k*;q)
/dxl /dxn (1) ...q(x,) X

10(0)(551, K?) ;(lo)(fm— HGEL (). Tj41, —K7)

j=1
——/ An,h(a)e_%o‘ do,
0
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where

aTL—Q

2 -1
|Apn(a)] < Csa®exp(Cs(|h| + 1407 )a) =2

lgllt, n>2.

We conclude

Theorem 4.7. (Theorem 1.6 for general |h| < 00) Let b < oo, |h| <
00, and g € L*((0,b)). Then for Re(k) > iDi[|lgly + |h| + b + 1] for
a suitable universal constant Dy, (4.27) holds, where

(1) A; =2(=1)".

(i) B; = 2(—1)7*j[2h + [ g(x) dz].
(i) |4() — g(@)] < lgl?explalllh) if |a] < b, and for any a >0,

/ |A(0)] da < Da(b, [la]l b) exp(Dralllall + k] + 5~ + 1)).
0

Hence we immediately get

Corollary 4.8. Fir b < oo, ¢ € L*((0,b)), and |h| < co. Fiz a < b.
Then there exist positive constants C' and Ky so that for all compler
with Re(k) > Ko,

‘m(—nz) +/<a—|—/ Ala)e ™ da| < Ce 2"
0

5. THE RELATION BETWEEN A AND p: DISTRIBUTIONAL FORrM, 1.

Our primary goal in the next five sections is to discuss a formula
which formally says that

Ala) = -2 / Tt sin(20v/X ) dp(N), (5.1)

where for A < 0, we define
1 2a lf /\ = 0
A" 2sin(2av ) = S ’
?sin(20VA) {(—A)—% sinh(2av/—X) if A < 0.

In a certain sense which will become clear, the left-hand side of (5.1)
should be A(«) — A( a) + ().
To understand (5.1) at a formal level, note the basic formulas,

m(—r? :—m—/ A(a)e 2™ da, (5.2)

m(—#) = Re(m ””/_J e L

A+ K2
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and
A+ k)= 2/ A2 sin(2aV/\ e 2" da, (5.4)
0

which is an elementary integral if K > 0 and A > 0. Plug (5.4) into
(5.3), formally interchange order of integrations, and (5.2) should only
hold if (5.1) does. However, a closer examination of this procedure
reveals that the interchange of order of integrations is not justified and
indeed (5.1) is not true as a simple integral since, as we will see in

the next section, fOR dp(N\) 2 2R3, which implies that (5.1) is not

absolutely convergent. We will even see (in Section 9) that the integral
sometimes fails to be conditionally convergent.

Our primary method for understanding (5.1) is as a distributional
statement, that is, it will hold when smeared in « for a in (0,b). We
prove this in this section if ¢ € L'((0, 00)) or if b < co. In Section 7, we
will extend this to all ¢ (i.e., all Cases 1-4) by a limiting argument using
estimates we prove in Section 6. The estimates themselves will come
from (5.1)! In Section 8, we will prove (5.1) as a pointwise statement
where the integral is defined as an Abelian limit. Again, estimates from
Section 6 will play a role.

Suppose b < oo or b = oo and ¢ € L*((0,b)). Fix a < b and
f€C((0,a)). Define

Ma(—K?) 1= —K — /Oa Ala)e 2 da (5.5)

for Re(k) > 0. Fix kg real and let

g(y7 Ko, CL) = ma(—(lio + Zy)2)7
with kg, a as real parameters and y € R a variable. As usual, define

the Fourier transform by (initially for smooth functions and then by
duality for tempered distributions [33], Ch. IX)

: 1 —iky I
(k) = o= [emran P - VT [ e Pway. 60
Then by (5.5),

gk, Ko, a) = —V21 kod (k) — V2 §' (k) — g e ™A (k) X(0.2a) ()
(5.7)

Thus, since f(0;) = f/(04) = 0, in fact, f has support away from 0
and a,

2

2 "=

_\/271' 0 J

(20, kg, a)e*™™ f(a) da

| Atersa) da -
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1 2az\

= g(a, Ko, a)e*™ f (%) do

1 .
=—— . Ko, a)F(y, ko) dy, 5.8
\/%Rg(y/o)(y 0) dy (5.8)

where we have used the unitarity of = and

fiomd = [ )

2a(”0+’y a)da. 5.9
——= [ e pa) (5.9)

Notice that
|F(y, ko)| < Ce* @ 90(1 4 |y[*) ! (5.10)

since f is smooth and supported in (0, a — ¢) for some ¢ > 0.
By Theorem 4.1 and Corollary 4.8,

[ma(— (Ko + iy)?) — m(—(ko +iy)*)| < Ce (5.11)

for large ko, uniformly in y. From (5.8), (5.10), and (5.11), one con-
cludes that

Lemma 5.1. Let f € C5°((0,a)) with 0 < a < b and q € L*((0,0)).
Then

/Oa A(a) f(a) da

= lim [—% /R m(—(ko + iy)?) [ /O " e2anoti) f(a) da} dy} . (5.12)

Ko Too

As a function of y, for ko fixed, the alpha integral is O((1 + y?) V)
for all N because f is C'°. Now define

Fug(—K2) = [CR+/A dp(Y) } (5.13)

<R)\+K}2

where cg is chosen so that mrp — m. Because fR Cllp (AQ) < 00, the
R—oo Y

convergence is uniform in y for kg fixed and sufficiently large. Thus in
(5.12) we can replace m by mp and take a limit (first R — oo and then
ko T 00). Since f(04) = 0, the [ dycgda-integrand is zero. Moreover,
we can now interchange the dyda and dp()) integrals. The result is
that

/Oa A(a)f(a)da = lim lim dp(\) x

KkoToo R—o0 A<R
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X [/Oadoze%‘”of(a) {—%/R(Koe:%” (5.14)

In the case at hand, dp is bounded below, say A > —K,. As long as we
take ko > Ky, the poles of (ko +1y)? + A occur in the upper half-plane
Yty = ikg V.

Closing the contour in the upper plane, we find that if A > — K,
1 / 2 dy o 20m sin(2av/\ ) '

(Ko +1y)? + A VA
Thus (5.14) becomes

/A

dp(N).

a in(2av A
— 21lim lim / f(a) sin2ovA)
KkoToo R—o0 A<R \/X

ko has dropped out and the « integral is bounded by C(1 + A\?)~1

we take the limit as R — oo since fR Clli(;\Q < o0o. We have therefore
proven the following result.

Theorem 5.2. Let f € C°((0,a)) with a < b and either b < oo or
q € L*((0,00)) with b = co. Then

/0 " A(0)f(a) da — —2 /R /0 ' f(a)%da] dp(V).  (5.15)

We will need to strengthen this in two ways. First, we want to allow
a>bif b < oco. As long as A is interpreted as a distribution with §
and ¢’ functions at o = nb, this is easy. We also want to allow f to
have a non-zero derivative at a = 0. The net result is

Theorem 5.3. Let f € C°(R) with f(—a) = —f(a), o € R and
either b < oo or q € L'((0,00)) with b = co. Then

o sin(2a\/X) [
—Q/R [/OO f(a) Tda] dp(\) = /oo A(a)f(a)da, (5.16)

where A is the distribution
A(0) = x0.00(0)A0) = X(emy (M A(—0) + 8(a)  (5.17a)
if b =00 and

A(a) = X (0,00 (@) A() = X(-o0,0) (@) A=) + 0'(a)
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+ZB (o — 2bj) — §(a + 2bj)]

+Z Aj[6"(a = 2b7) + &' (o + 2b7)] (5.17b)

if b < oo, where Aj,Bj are h dependent and given in Theorems 4.3,
4.5, and 4.7.

The proof is identical to the argument above. f(0) is still 0 but since
1(0) # 0, we carry it along.

Example. Let b = oo, ¢(z) = 0, > 0. Then dp@(X) = Lx[0,00)(\)
vV Ad\. Thus,

=15 [ | fta) W%f” da] dpO ()
= —% /oc UOO fa) sin(2a\/X)da] dx. (5.18)

Next, change variables by k = 2v/X, that is, A = £ and then change
from [° dk to L [ _dk to obtain (recall f(—a) = —f( )

(5.18) ——/ U fla smakda}kdk

= E/ ik f(k) dk
—f'(0)

_ /Z F()§(a) da

as claimed in (5.16) and (5.17a) since A©(a) =0, a > 0.

6. BOUNDS ON fOide(A)

As we will see, (1.13) implies asymptotic results on f_RR dp()\) and

(5.1) will show that ffoo eV Adp(\) < oo for all b > 0 and more (for
remarks on the history of the subject, see the end of this section). It
follows from (5.3) that

Im(m(ia)) = a/ dp() a > 0.

]R)\Q‘I‘(IQ’
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Thus, Everitt’s result (1.13) (which also follows from our results in
Sections 2 and 3) implies that

lim a%/ dp(A) :2*%.
R

A2 + a?

Standard Tauberian arguments (see, e.g., Sect. I11.10 in [34], which in

this case shows that on even functions R%dp(%) — %71'_1|)\|% d\) then
R—o0

imply

Theorem 6.1.

lim R? /R dp(A) = —. (6.1)

R—o00 R 3T

Remarks. 1. This holds in all cases (1-4) we consider here, including
some with supp(dp) unbounded below.

2. Since we will see ffoo dp is bounded, we can replace ffR by fOR in
(6.1).

We will need the following a priori bound that follows from Propo-
sitions 3.1 and 3.2

Proposition 6.2. Let dp be the spectral measure for a Schréodinger op-
erator in Cases 1—4. Fix a < b. Then there is a constant C,, depending
only on a and [ |q(y)|dy so that

dp(A)
/R e <G (6.2)

Proof. By Propositions 3.1 and 3.2, we can find C; and z; € C, de-
pending only on a and [ |q(y)| dy so that

Im(z1)] < Ch.
Thus,
[ o) ) 0
g (A —Re(21))? + (Im(z1))? Im(z;) — Im(z1) "
Thus,
do _ G [(=Re(z)?+ (m(2)?] _
/R T s Tm(z1) ren 14 A2 = Ca.

O

Our main goal in the rest of this section will be to bound ono g2V A
dp(A) for any a < b and to find an explicit bound in terms of supy<, <41
[—q(y)] when that sup is finite. As a preliminary, we need the following
result from the standard limit circle theory [6], Sect. 9.4.
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Proposition 6.3. Let b = oo and let dp be the spectral measure for a
problem of types 2—4. Let dpr, be the spectral measure for the problem
with b = R < 00, h and potential equal to q(z) for x < R. Then there
exists h(R) so that

dprh(R) Ao dp,

when smeared with any function f of compact support. In particular,

if f >0, then
[0 do < [ 103 dpran ().
R < JRrR

This result implies that we need only obtain bounds for b < oo
(where we have already proven (5.15)).

Lemma 6.4. If p1 has support in [—FEy, o0), Ey > 0, then

’  dp(N)
/ evﬂdpl(A)geWFo(HEg)/ N R (%)

Proof. Trivial. O

Now let f be fixed in C§°((0, 1)) with f > 0 and fo y)dy = 1. Let
fao(@) = fla—ap). Let dps be the spectral measure for some problem
with b > ag + 1 and let dp; be the spectral measure for the problem
with b = ag+1, h = 0o, and the same potential on [0, ap+ 1]. Then, by
Theorem 1.3, A;(a) = Az(a) for a € [0, ag+1] so fOZJOH Jao(@)[A1(a) —
As(a)] da = 0, and thus by Theorem 5.2,

—0o0

/R Goo W1 (N) — dpa(N)] = 0, (6.4)
where
Goo(N) = / " () %da (6.5)

Lemma 6. 5 (i) For A >0, |Gay(N)| < 2(1 + ).
(ii) |GagN)] S A2 L [H 7 ()| du := CoA~2 for A > 0.
(iii) For A g 0, |GayN)| < 2(ag + 1)e 2(ao+1)V=X

(IV) For \ S O, Gao()‘) 2 ﬁ[eQQO\/j o 1}

Proof. (i) Since |sin(x)| < |z|, |sin(2av/A)/vVA| < 2a. Thus, since
Supp(fao) C [QO: O[0+ 1] and f:;o+1 fao(a) dO[ - 17 |GCM0()\)| S 2(1 +a0)
(ii) %)3 %COS(QO&\/X) = sin(2av/\), so this follows upon inte-

(22
grating by parts repeatedly.
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(iii), (iv) For y > 0,

inh 1 [Y

sinh(y) = —/ cosh(u) du
Y Y Jo
SO %e“ < coshu <e" <eY, 0 <wu <y implies

eV —1 < sinh(y) <o,
2y y

This implies (iii) and (iv) given supp(fa,) C [0, 20 + 1], fa,(a) > 0,
and f;:)ﬁl Jao(a)da = 1. O

We can plug in these estimates into (6.4) to obtain

0 1 )
760‘°V_A—1}d N <T+Ty+Ts
/_002\/_—)\[ pa(N) < Ty 2 3;

where,

dp;(X) ,
Tj = max(4(1 + Oé())./ 200) /R m./ ] = 1,2

0
7= [ 2aot DTV dpy (),

—00

and we have used

1 2

< — A
A2 T 14 N2 -
Thus, Propositions 6.2, 6.3 and Lemma 6.4 together with

u 1
e 1 :/ eyu dy 2 e(l—§)u5
0

u
for any u > 0 and any ¢ € R imply

Theorem 6.6. Let p be the spectral measure for some problem of types
2-4. Let
E(ay)

- —inf{ / @) + a@)le(@)2d) \ o € (0,00 4+ 1)),

ap+1
JARECIRES
0

Then for all 6 >0 and ag > 0,

(6.6)
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apd /0 e2(1=0)00v=X 75 })
< {01(1 + ap) + Ca(1 + Elag)?)eXeotDVECo | - (5.7
where Cy, Cy only depend on fol lg(z)| dz. In particular,
/0 PV dp()N) < oo (6.8)

for all B < oo.

As a special case, suppose q(x) > —C(x + 1)2. Then E(ag) >
—C(ap + 2)? and we see that

0
/ eBﬂdp(A) < DyeP?P’, (6.9)

This implies

Theorem 6.7. If dp is the spectral measure for a potential which sat-
isfies

q(z) > —Cx? x> R (6.10)

for some R >0, C' > 0, then for ¢ > 0 sufficiently small,

/0 e~ dp()\) < oo. (6.11)

Remarks. 1. Our proof shows in terms of the Dy of (6.9), one only
needs that € < ﬁ.
2. Our proof implies that if

1
lim — max(0, —g(z)) =0,

r—00 T

then (6.11) holds for all € > 0.

Proof. (6.9) implies that
n2
/ dp(\) < Dye??B’e B,
_(n+1)2

Taking B = ﬁ, we see that

2

n P
/ dp(\) < Dye Pz,

(n+1)?
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Thus,
0 & —n?
/ 678)\ dp()\) < Zea(n+1)2/ dp()\)
—00 n=0 —(n+1)2
oo ‘ 2
< ZDleE("H)Ze_W < 00
n=0
if e < 557 O

Remark. 1f in addition ¢ € L'((0,00)), then the corresponding Schro-
dinger operator is bounded from below and hence dp has compact sup-
port on (—oo,0]. This fact will be useful in the scattering theoretic
context at the end of Section 8.

The estimate (6.8), in the case of non-Dirichlet boundary conditions
at x = 04, appears to be due to Marchenko [26]. Since it is a fundamen-
tal ingredient in the inverse spectral problem, it generated considerable
attention; see, for instance, [12], [18], [19], [20], [22], [27], [28], Sect. 2.4.
The case of a Dirichlet boundary at x = 0, was studied in detail by
Levitan [20]. These authors, in addition to studying the spectral as-
ymptotics of p(A) as A\ | —oo, were also particularly interested in the
asymptotics of p(A) and A T oo and established Theorem 6.1 (and
(A.9)). In the latter context, we also refer to Bennewitz [4], Harris
[16], and the literature cited therein. In contrast to these activities, we
were not able to find estimates of the type (6.7) (which implies (6.8))
and (6.11) in the literature.

7. THE RELATION BETWEEN A AND p: DISTRIBUTIONAL FORM, II
We can now extend Theorem 5.2 to all cases.

Theorem 7.1. Let f € C§°((0,00)) and suppose b = co. Assume q

satisfies (1.3) and let dp be the associated spectral measure and A the
associated A-function. Then (5.16) and (5.17) hold.

Proof. Suppose f € C§°((0,a)). For R > a, we can find h(R) so
dpr.h(r) o dp (by Proposition 6.3) weakly. By Proposition 6.2 we

—00

have uniform bounds on [;(1 4+ A*) ' dpgrur) and by Theorem 6.6
on ffoo e2a(vV=2 dprn(r)- Since the a integral in (5.15) is bounded by
C(1+ X)) for A > 0 and by Ce?™¥ > for A < 0, the right-hand side
of (5.15) converges as R — oo to the dp integral. By Theorem 1.3, A

is independent of R for a € (0,a) and R > a, so the left-hand side of
(5.15) is constant. Thus, (5.15) holds for dp. O
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8. THE RELATION BETWEEN A AND p, III: ABELIAN LIMITS
For f € C§°(R), define for A € R

Q= [ s g, .

and then
7(7) = =2 [ QU)o (8.2)
_ /_ " A()f(a) da. (8.3)

We have proven in (5.16), (5.17) that for f € C§°(R), the two expres-
sions (8.2), (8.3) define the same T'(f). We only proved this for odd
f’s but both integrals vanish for even f’s. We will use (8.2) to extend
to a large class of f, but need to exercise some care not to use (8.3)
except for f € C(R).

Q(f) can be defined as long as f satisfies

[f(@)] < Cre™™laeR (8.4)
for all £ > 0. In particular, a simple calculation shows that
_ (o)t [e-tamaorse _ sinQaovd) .,
fl@) = (re) [ [=enn === (39

We use f(a, ag, ) for the function f in (8.5).
For A > 0, repeated integrations by parts show that

_ a’f
e sca+ i+ |5 [ o
1
where || - ||1 represents the L'(R)-norm. Moreover, essentially by re-
peating the calculation that led to (8.5), we see that for A <0,
QU < Cejerf|| . (8.7)

We conclude

Proposition 8.1. If [, dp(A\)(1 + A*)™! < oo (always truel) and
f?oo e **dp(\) < oo (see Theorem 6.7 and the remark following its
proof), then using (8.2), T(-) can be extended to C3(R)f’s that satisfy

e’ /o0 f € L>*(R) for some eg >0 and gi—é € LY(R), and moreover,
a>f

ri<c]| |
= CllIAl

+ Hea2/60fHOO:| (8.8)
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Next, fix ap and g9 > 0 so that f_ooo e dp(\) < oo. If 0 < & < &y,
fla, ag, €) satisfies ||| f|||z, < 00 so we can define T'(f). Fix g € C§°(R)
with ¢ := 1 on (—2ayp, 209). Then |||f(-, 0,€)(1 —9g)||l;, — 0 as e | 0.
So

lell%lT(f( "5 o, 5)) = lelﬁ)l T(gf( " o, 5))
For gf, we can use the expression (8.3). f is approximately d(a — ayp)
so standard estimates show if aq is a point of Lebesgue continuity of

A(a), then

el0

/_00 fla, ag, 5)g(a)/~l(a) do — fl(ao).

Since A — ¢ is continuous, points of Lebesgue continuity of A exactly
are points of Lebesgue continuity of ¢. We have therefore proven

Theorem 8.2. Suppose either b < oo and ¢ € L*((0,b)) or b = oo,
and then either ¢ € L'((0,00)) or g € L'((0,a)) for all a < oo and

for some R > 0, C > 0. Let oy € (0,b) and be a point of Lebesgue
continuity of q. Then
in(2a0vV A
A(ag) = —2lim / o-orsin(200vA) dp(\). (8.9)
el0 Jgr VA
We briefly illustrate the rate of convergence as € | 0 in (8.9) in the
special case where ¢(©(z) = 0, 2 > 0. Then dp@(X) = 7 x[0,00)(\)
VAd\ and formula 3.9521 of [15] (changing variables to k = v/A > 0)
yield

AV(q) = =271 liﬂ)l e sin(20V/\ ) dA
¢ 0
1 3 a2
= —2ar 2 lime™2 exp (——) =0, a > 0. (8.10)
€l0 g
Finally, we specialize (8.9) to the scattering theoretic setting. As-
suming ¢ € L'((0,00); (1 + x)dx), the corresponding Jost solution
f(z,2) is defined by

f(%, Z) — eiVET _ /moo Sin(\/z\(/é_ x’)) q(ﬁl)f(l'l,z) dw’, Im(\/z()gzllc;
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and the corresponding Jost function, F'(1/z), and scattering matrix,
S(A), A > 0, then read

F(/Z) = (04, 2), (8.12)
S(A) = F(WN)/F(VX), x>0 (8.13)
The spectrum of the Schrodmger operator in L?((0,00)) associated

with the differential expression —d—2 + ¢(z) and a Dirichlet boundary
condition at x = 04 is simple and of the type

{—Ii? < O}jeJ U [0, OO)
Here J is a finite (possibly empty) index set, k; > 0, j € J, and the

essential spectrum is purely absolutely continuous. The corresponding
spectral measure explicitly reads

IF 2V Xd\, A>0
dp(\) = { & [E(VA)VA =" (8.14)
ZjGJCj(;()\+I€)d)\ A <O,
where
cj=lle(- —r)lz%  jed (8.15)
are the norming constants associated with the eigenvalues \; = —h”,? <

0. Here ¢(x, z) (which has been introduced in (3.6a) and (3.10)) and
f(z,2) in (8.11) are linearly dependent precisely for z = —/1?, JjeJ.
Since
K3 1 SN dN
F(VA)| = 1+ -2 —P _ A >
PRI (1 3 e (27 [T525F). a0
JjeJ

where P f denotes the principal value symbol and §(\) the corre-
sponding scattering phase shift, that is, S(\) = exp(2id(A)), 6(X\) o 0,

the scattering data

{7, ci}ier U{S (N }azo
uniquely determine the spectral measure (8.14) and hence A(a). In-

serting (8.14) into (8.9) then yields the following expression for A(a)
in terms of scattering data.

Theorem 8.3. Suppose that ¢ € L'((0,00); (1 + z)dx). Then
=2 Z Cjk; 1 sinh(2axk;)

JjeJ

(8.16)

oo

— 21 im [ e MF(N)| Zsin(2av/ X ) dX
0

€l0

at points a > 0 of Lebesque continuity of q.
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Remark. In great generality |F'(k)| — 1 as k — o0, so one cannot take
the limit in ¢ inside the integral in (8.16). In general, though, one can
can replace |F(vVA)| 2 by (JF(VA)] 72 =1) = X(\) and ask if one can
take a limit there. As long as q is C*((0,00)) with ¢” € L'((0,00)), it
is not hard to see that as A — oo

X(\) = —% +0(\72).

Thus, if q(O) =0, then

=—2 Z Cjk; 1 sinh(2ak;)

JjeJ

— 277! /oo(|F(\/X)|—2 — 1)sin(2av/X) dA

0

(8.17)

The integral in (8.17) is only conditionally convergent if ¢(0) # 0.

We note that in the present case where ¢ € L'((0,00); (1+z) dx), the
representation (1.17) of the m-function in terms of the A(a)-amplitude
was considered in a paper by Ramm [31] (see also [32], p. 288-291).

9. THE RELATION BETWEEN A AND p, IV: REMARKS

Here is a totally formal way of understanding why (5.1) is true. We
start with the basic representation without errors,

m(—k?) = mo(—k?) — /000 A(a)e " da. (9.1)

Pretend we can analytically continue from « real to kK = —ik (at which
point —x? is k* +40). Then

m(k* +i0) = mo(k* + i0) — /oo A(a)e* ™ da. (9.2)

This normally cannot be literally true. In many cases, A(a) — oo at
infinity (although for the case ¢(z) = constant > 0, which we discuss
later, it is true). But this is only a formal argument.
Taking imaginary parts and using for a, ag > 0 that
o 2
/ sin(2ak) sin(2a0k) dk = g 5(a — ap) (9.3)
0

(which follows from [ _e™* dk = 2m6(a)), we conclude that for ag >
0,

Alag) = —% /000 sin(2apk) Im(mo(k* + 40)) dk
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o I A+ d\
= —2/ sin(200V\ ) m(mo(A + 20))}
0

\/X )
which, given (1.12), is just (5.1).

As explained in [35], a motivation for A is the analogy to the m-
function for a tridiagonal Jacobi matrix. For this point of view, the
relation (5.1) is an important missing link. The analog of (1.7) in the
discrete case is

(9.4)

7

00 -
m(z) - ontl’

n=0

(9.5)

The coefficients of v, of the Taylor series at infinity are the analog of
A(a). In this case, the spectral measure is finite and of finite support
(if the Jacobi matrix is bounded) and

m(z):/RipEA; (9.6)

so that (9.5) implies that

%:/R)\” dp()). (9.7)

(5.1) should be then thought of as the analog of (9.7) for the continuum
case.

Perhaps the most important consequence of (9.7) is the implied pos-
itivity condition of the 7’s — explicitly, that

N
Z 7n+mamm 2 0
m,n=0
for all (ag,...,ay) € CN*1,
Recall (see, e.g., Gel’fand-Vilenkin [13], Sect. I1.5) that Krein proved
the following fact:

Theorem 9.1. A continuous even function f on R has the property
that

. [z —y)p(y) p(z) dedy > 0 (9.8)

for all even functions ¢ € CS(R) if and only if there are finite positive
measures dpy and dpg on [0,00) so that [J° e dus(X) < oo for all
a > 0 and so that

f(z) = /000 cos(Ax) duy (M) + /000 cosh(Az) dusa(N). (9.9)
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Using the extension in Gel'fand-Vilenkin to distributional f (cf. [13],
Theorem 5 in Sect. 11.6.3), one obtains

Theorem 9.2. Let A(a) be the distribution of Theorem 5.3. Let B(a)
= —A'(a) be the distributional derivative of A. Then

[ @) | [ etz =aas] da >0 (9.10)

for all even ¢ € C§°(R). Moreover, if A is a distribution related to a
signed measure, dp, by (5.16), then (9.10) is equivalent to the positivity
of the measure dp.

As discussed in [13], the measures dy; in (9.9) may not be unique.
Our theory illuminates this fact. If ¢is in the limit circle case at infinity,
then distinct boundary conditions lead to distinct spectral measures
but the same A-function, so the same A and the same B = A’. Thus, we
have additional examples of non-uniqueness. The growth restrictions
on f which guarantee uniqueness in (9.9) (e.g., [, e‘c‘”2f(m)dm < 00
for all ¢ > 0) are not unrelated to the standard g(z) > —Cz? that leads
to the limit point case at oo for the Schrodinger differential expression

d2
—= +q(7).

Next we turn to the relation between A and the Gel'fand-Levitan
transformation kernel L in [12]. For the function L(z,y) associated to
Dirichlet boundary conditions at x = 0, satisfying (cf. (3.6a), (3.10))

sin{v/zx) _ o(, z) +/ L(z,2")p(a’, 2) da’,
NE; 0
we claim that

Ala) = -2 9 L(2a,y)

5 (9.11)

y=0+

We will first proceed formally without worrying about regularity con-
ditions. Detailed discussions of transformation operators can be found,
for instance, in [11], [21], Ch. 1, [22], [24], [25], [26], [28], Ch. 1, [30],
Ch. VIII, [36], [37], and, in the particular case of scattering theory, in
2], Chs. I and V, [8], and [29]. Let dp(\) be the spectral measure for

—jx—i + g(x) and
dp®'(A) = 77 X[0,00)(A) VA dA (9.12)

the spectral measure for —% (both corresponding to the Dirichlet
boundary condition parameter h = oo at x = 0), and define do =
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dp — dp®. Then L is defined as follows [12]. Let

1 — cos(vVAz)][1 — cos(vAy)]
F(z,y) = /_ N2 do(\) (9.13)
and
0?F > sin(vAz)sin(vAy)
k(z,y) = ——— “=" do (A 14
(@) = G =" [ : oY), (914)
where the final “=” is formal since the integral may not converge ab-
solutely. L satisfies the following non-linear Gel’fand-Levitan equation,
Yy
o) = La)+ [ L) L.o)dd,  (9.15)
0
1 X
L(x,04) =0, L(z,x) = —5/ q(z') dx’. (9.16)
0
Thus, formally by (9.15) and (9.16),
ok oL
Yy y=04 y=0+
and then by (9.14)
k < si A
OF )| o / sin(vAz) do(N), (9.18)
Ay =04 o VA

which, by (5.1), says that (9.11) holds.

Alternatively, one can derive (9.11) as follows. Suppose @ € L*((0, 0))
coincides with ¢ on the interval [0, o], is real-valued, and of compact
support. Denote by fo(z, 2), Fo(y/z), and Lg(x,2’) the Jost solution,
Jost function, and transformation kernel (satisfying (9.15), (9.16)) as-
sociated with @. Then (cf. [5], Sect. V.2),

fQ(xvz) — iVET > 2 )eVET da

Foda) = +/x Lo(7, z) da’, (9.19)
and

ug(z, z) = ;Z((%)) uo(04,2) = 1, (9.20a)

ug( -, z) € L*((0,00)) z € C\R (9.20b)

is the unique Weyl solution association with (). Thus, the normaliza-
tion of ug in (9.20a), (9.19), Lo(04+,04) = 0, and (1.7) then yield

. ’
PPAVEL dl’l.
=04

(9.21)

]

mo(z) = (04, 2) = iv/z + / ) (%Lw',x)
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2

Identifying z = —k*, 2’ = 2a, a comparison with (1.17) then implies

AQ(O[) = —QLQ’y(QOz, 0+)

Since by Theorem 1.3 and the following remark, A(a) only depends on
q(z) = Q(z) for x € [0,a], and L(z,y) depends on ¢(z') = Q(«') for
2 € [0,(x+y)/2] with 0 <y <z < 2a (cf. [5], eq. (IT1.1.11), [28],
p. 19, 20), one concludes (9.11).

Next, we want to note that (5.1) sometimes does not represent a
conditionally convergent integral, that is,

Ala) = -2 Rh_rg)lo ’ Az sin(2av/\ ) dp(\) (9.22)

can fail. Indeed, it even fails in the case b < 0o, h = 0o, and ¢¥ (x) = 0,
0 <z <b. For in that case (see (4.4)),

K + I{G_QKb

1 — e—2rb :

Straightforward residue calculus then implies that

mO(—k?) =

dpO(\) =) wad(E - E,), (9.23a)
n=1
with
m2n?
By = (9.23b)
and
272n?
wn = =5 (9.23¢)
(the reader might want to check that this is consistent with fOR dp())
R:oo %RS/Q)
Thus,

f _1 . ~ (0) 2rn
A7 sin(2av ) dp® () = Z —— sin(2ran/b)

B2
n<bR/2 /r
is not conditionally convergent as R — oc.
Given the known asymptotics for the eigenvalues and weights when
b < oo (cf., e.g., [23], Sect. 1.2), one can see that (9.22) never holds if
b < co. There are also cases with b = oo, where it is easy to easy to
see the integral cannot be conditionally convergent. If

glz)=2", B>0
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then WKB analysis (see, e.g., [38], Sect. 7.1) shows that
Ey = [Cn+ O],

nloo

where v ! =1+ 37! and w, = C’Erlb_l/’g(l +0(1)). As long as 3 > 2,
1

w,En? — o0, and so the integral is not conditionally convergent.

n—oo

Another canonical scenario displaying this phenomenon is provided
by the scattering theoretic setting discussed at the end of Section 8. In
fact, assuming ¢ € L'((0,00); (1 + x) dz), one sees that

|F(k)| o 1+ o(k™) (9.24)

(cf. [5], eq. 11.4.13 and apply the Riemann-Lebesgue lemma. Actually,
one only needs ¢ € L*((0, 00)) for the asymptotic results on F(k) as k |
oo but we will ignore this refinement in the following.) A comparison of
(9.24) and (8.16) then clearly demonstrates the necessity of an Abelian
limit in (8.16). Even replacing dp in (8.9) by do = dp—dp® (cf. (8.10)),
that is, effectively replacing |F(vX)|[72 by [[F(vX)|72 = 1] in (8.16)
still does not necessarily produce an absolutely convergent integral in
(8.16).

The latter situation changes upon increasing the smoothness prop-
erties of ¢ since, for example, assuming ¢ € L'((0,00); (1 + z)dx),
q € L*((0,00)), yields

P 2=1 = Ok )
as detailed high-energy considerations (cf. [14]) reveal. Indeed as we
saw at the end of Section 8, if ¢” € L'((0,00)), then the integral one
gets is absolutely convergent if and only if ¢(0) = 0.

Unlike the oscillator-like cases, though, the integrals in the scattering
theory case are conditionally convergent.

These examples allow us to say something about the following ques-
tion raised by R. del Rio [9]. Does |m(—~r?) + k| stay bounded as
z = —k? moves along the curve Im(z) = ag > 0 with Re(z) — o0o?
In general, the answer is no. The m(—k?) of (4.4) has G(—k?) =
[m(—r?) + k| = 2|k| [e72*|/]1 = €7 so G((5)? + iao) / /| En| — o0

(E, = (mn/b)?, n € N denoting the corresponding eigenvalues) show-
ing |m(—~k?)| is not even bounded by C|k| on the curve. Similarly, in
the case ¢(z) = 27, one infers that |m(—x?) + k|/|x| is unbounded at
E, +iag as long as § > 2.

As a final issue related to the representation (5.1), we discuss the
issue of bounds on A when |¢(x)| < Cz?. We have two general bounds
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on A: the estimate of [35] (see ((1.16)),

4(@) )l < | [ oty |dy} e o [Toawlas]. 02

and the estimate we will prove in the next section (Theorem 10.2),
(@)
A <
AG)] < 1

where [y(a)] = supy<,<, [q(x)[*/* and I1( - ) is the modified Bessel func-
tion of order one (cf., e.g., [1], Ch. 9). Since ([1], p. 375)

0< Li(x) <e”, x>0, (9.27)

1(207(a)), (9.26)

we conclude that
|A(a)| < VT VO (9.28)

if |g(z)] < Cz? This is a pointwise bound related to the integral
bounds on A(«) implicit in Lemma 6.5

10. ExAamPLES, I: CONSTANT g

We begin with the case b = oo, q(z) = qo, = > 0, with ¢o a real
constant. We claim

Theorem 10.1. If b= oo and q(x) = qo, © > 0, then if go > 0,

1

2 1
Ala) = 2 Jy(203), (10.1)
where Jy(+) is the Bessel function of order one (cf., e.g., [1], Ch. 9);
and if qo < 0,
1
3
Aa) = 29 1y o0 (g0}, (10.2)
with I1(+) the corresponding modified Bessel function.

Proof. We use the following formula ([15], 6.6233),

oo d 2 62_
/ WMM);:iiiF—ﬁ,a>QbeR (10.3)
0

00 2_b2_
/ emqudxz—ﬂ—z——f,a>04m<mbeR.(m4)
0 T

From this we see that

3 \/(2m)2+-(2q§)2-2ﬁ

—m—/ooe_Qo"iiJ(QaqO%)d - —K
0 «Q 2
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:_VH2+q0:

which is the m-function for b = oo, ¢(z) = qo, * > 0. By the uniqueness
of inverse Laplace transforms, this proves (10.1) and incidentally a
formula like (1.17) without error term holds. The argument for (10.2)
using (10.4) is similar. O

Remarks. 1. This suggests that a formula like (1.17) holds if ¢ is
bounded. We will prove that below (see Theorem 10.3).

2. Our original derivation of the formula used (5.1), the known
formula for dp(\), and an orgy of Besselology.

This example is especially important because of a monotonicity prop-
erty:

Theorem 10.2. Let |g1(z)| < —qo(x) on [0,a] with a < min(by, be).
Then |Ai(a)| < —Az(a) on [0,a]. In particular, for any q satisfying
SUDg<p<q |¢(7)| < 00, we have that

4] < 1 1y 209(a)), (10.5)
where
) = swp (g(@)]?). (10.6)

In particular, (9.27) implies
|A(a)] < a ty(a)e? (@), (10.7)
and if q is bounded,
1 1
[A(@)] < a7'lgll% exp(2allq[|%)- (10.8)

Proof. Since A(a) is only a function of ¢ on [0, «), we can suppose that
by = by = o0 and ¢1(x) = g2(z) = 0 for x > a. By a limiting argument,
we can suppose that g; are C°([0, a]). We can then use the expansion
of Section 2 of [35],

(=1
—Afa) = —qla)+ ) 77 Jo )q(wl) - q(Tn) X
n=2 n&
X d£E1 ce d.CEn dgl Ca dgn_g,

(10.9)

where R,(a) is a complicated region on {z, ¢} space that is ¢ inde-
pendent (given by (2.19) from [35]). The monotonicity result follows
immediately from this expression. (10.5) then follows from (10.2), and

(10.7), (10.8) from (9.27). O
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Remarks. 1. The expansion

o0 (%Z)Qn-i-l

hie) = Z_; nl(n+1)!

allows one to compute exactly the volume of the region R,(«a) of [35],
viz.,

a2n72

(n—="1)n!

The bounds in [35] only imply |R,(a)| <
than the actual answer for large n!

| Rn(@)] =

n—2
and are much worse
(n 2)!

2. For a small, (10.7) is a poor estimate and one should use (9.25)
which implies that [A(a) < ||q|le + 2||q||%e* N9l

This lets us prove

Theorem 10.3. Let h = co and g € L*=((0,00)). Suppose k* > ||q||oo-
Then

m(—k*) = —k — /OOO A(a)e ** da (10.10)

(with a convergent integral and no error term).

Proof. Let g, = qXpn(z). Let m,, A, be the m-function and A-
amplitude, respectively, for ¢,. Then

(1) m,(2) — m(z) for z € C\[—||¢]|o0, 20)-

(2) An(a) — A(a) pointwise (since A, (o) = A(a) if n > a).
(3) (10.10) holds for g, since g, € L'((0,00)) (see Theorem 1.2).

1 1 o

(4) |An(@)] < a~Vg|[% exp(2allg]l%). This is (10.8).

(5) 14n(0)] < llalloelL + 0]l exp(0 ]l )]- This is (9.25).
The dominated convergence theorem thus implies that (10.10) holds
for ¢ € L*=((0, 00)). O

Remarks. 1. If infsupp(dp) = —Fy with Ey > 0, then m(z) has a
singularity at z = —FEj so we cannot expect that |A(a)| < Ce*Fo—e)a
for any € > 0. Thus, A must grow exponentially as & — oco. One might
naively guess that if inf supp(dp) = Ey with Ey > 0, then A(a) decays
exponentially, but this is false in general For example ifg(z) = qo > 0,

1 1
then by (10.1) for a large, A(a) ~ —1 2gfa 7 cos(2¢2 a +5)+0(a™?)
by the known asymptotics of J; ([1], p. 364).

-

2. For q(z) = qo > 0, A(a) — 0 as a — oo. This leads one to ask
if perhaps A(a) — 0 for all cases where supp(p) C [0,00) or at least
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if ¢(z) > 0. It would be interesting to know the answer even for the
harmonic oscillator.

3. We have proven exponential bounds on A(a) as a — oo for the
cases ¢ € L'((0,00)) and g € L>((0, 00)), but not even for L*((0, 00))+
L>((0,00)). One might guess that sup‘,r>0(fm“ﬁcle lg(y)| dy) suffices for
such a bound.

11. ExAMPLES, II: BARGMANN POTENTIALS

Our second set of examples involves Bargmann potentials (cf., e.g.,
5], Sects. IV.3 and VI.1), that is, potentials ¢ € L'((0, 00); (1 + ) dz)
such that the associated Jost function F'(k) (cf. (8.12)) is a rational
function of k. We explicitly discuss two simple examples and then hint
at the general case.

Case 1. F(k) = (k —ik1)/(k +ir1). Thus, dp(\) = dp®()\) on [0, 00)

and there is a single eigenvalue at energy A = —x?. There is a single
norming constant, ¢;, and it is known (cf. [5], Sect. VI.1) that
(a:)——Qd—21n 1+C—1/x§inh2(/{ )d (11.1)

In (5.1), the A > 0 contribution to A(«) is the same as in the free case,
and so it yields zero contribution to A (cf. (8.10)). Thus,

0
Ala) = 26 / A% sinh(2a/TA)O(A + £2) dA
and hence

201

Ala) = - sinh(2ak;). (11.2)

Note that ¢(0+) = A(04) = 0 (verifying ¢(0+) = A(0+)).

Case 2. F(k) = (k+1iv)/(k+1i8), 5 >0, v > 0. It is known (cf. [5],
p. 87) that

Qa2 B=7 e 20"

The case v = 0 corresponds to q(z) = —23?/ cosh?(Bz) (the one-soliton
potential on its odd subspace).

We claim that

m(—k*) = —k — Ll (11.4)
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for clearly, m(—«?) is analytic in C\[0,c0) and satisfies m(—x?) =
—rk—O(k™!) and at k = —ik (i.e., E = —k? = k? 4 10),

Im(m(k* +i0)) = [k; — % k} =k [

k2+[52] k

B2 IR

consistent with (8.14). Thus, uniqueness of m given dp and the asymp-
totics proves (11.4). Since

1
K+

oo
_ 2/ ef2cm672a'y dOé./
0

(11.4) and uniqueness of the inverse Laplace transform implies that
Ala) = 2(y* — e >, (11.5)

Notice that ¢(0+) = A(0+) = 2(y2 —3?) and the odd soliton (y = 0)
corresponds to A(a) = —23?, a constant.

Remark. Thus, we see that A(a) equal to a negative constant is a
valid A-function. However, A(a) a positive constant, say, Ay > 0, is
not since then Im(m(k + i0)) = k — Ay /k is negative for £ > 0 small.

In the case of a general Bargmann-type potential ¢(z), one considers

a Jost function of the form
k —ik; k k4 ive
F(k) = ,’) . ( : )
(k) [g(k+zmj k + 10 E]e;[ k+ 10,
ki >0, 7€ e, Bo=0, B>0, >0, £ €J,
Be # e, forall 6,0 € J,., v # k; forall L€ J,., jeJ,

: (11.6)

with J. (resp. J;) a finite (possibly empty) index set associated with
the eigenvalues \; = —Ii? < 0 (resp. resonances) of ¢, and Gy > 0 asso-
ciated with a possible zero-energy resonance of g. Attaching norming
constants ¢; > 0 to the eigenvalues \; = —Ii?, J € J. of q, one then
obtains

T HF(WVA) 2 =1VAdA, A >0
e, GO(A+ K2) dA, A <0

_ T ZEEJTU{O} AN+ AdN, A>0
D e CiO(A + K2) dA, A< 0.

dp(N) — dpV(\) = { (11.7)
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Here dp® denotes the spectral measure (9.12) for the free case ¢()(z) =
0,z >0, and vy = 0,

HmeJTU{O}(ﬁrQn - 7@2) H (77% - 7@2)_17 14 € Jr U {0}7 ﬁO > 07
neJ,U{0}

Ag — n#l
l_ImeJT(ﬁ2 2) H (’Yn 7(2)71’ (e JT? ﬁo = 07

neJry
n#l

and AO =0if ﬁo = 0.

Next, observing the spectral representation for the free Green’s func-
tion associated with ¢(®(x) = 0, 2 > 0 and a Dirichlet boundary con-
dition at = = 0, one computes

l/oo sin(vAz) sin(vAy) 1 UNd) = e sinh(~y)
Th VA A AE7 v

T >y.
(11.8)

Taking into account A®(a) = 0, @ > 0 according to (8.10) (hence
subtracting dp® in (11.7) will have no effect on computing A(a) using
(8.16)), the y-derivative of the integral (11.8) at y = 04 combined with
an Abelian limit ¢ | 0 yields precisely the prototype of integral (viz.,
lim,jo, [;° e **sin(2av/A)(A+7%) 71 dA) needed to compute A(a) upon
inserting (11.7) into (8.16). The net result then becomes

= -2 Z cjk; ' sinh(2ak;) — 2 Z Age20m, (11.9)

j€Je LeJrU{0}

The corresponding potential ¢(z) can be computed along the lines in-
dicated in Ch. IV of [5] and is known to be continuous on [0, c0).
Hence (11.9) holds for all @ > 0. More precisely, the condition g €
L*((0,00); (1+2) dz) imposes certain restrictions on the possible choice
of B¢ >0, 7 > 01in (11.6) in order to avoid isolated singularities of the
type 2(x — )2 in g(z). Away from such isolated singularities, (11.7)
inserted into the Gel'fand-Levitan equation yields a C'* potential ¢ (in
fact. a rational function of certain exponential functions and their -
derivatives) upon solving the resulting linear algebraic system of equa-
tions. In particular, one obtains ¢(04) = A(04) = =237, ; 1y Ar-

APPENDIX A. THE B;, FUNCTION

Throughout this paper, we have discussed the principal m-function,
m(z) given by (1.7). This is naturally associated to Dirichlet bound-
ary conditions because the spectral measure dp of (1.10) is a spectral
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measure for an operator H, with u(0;) = 0 boundary conditions. For
h € R, there are subsidiary m-functions, my,(z), associated to

W/(04) + hu(04) = 0 (A1)

boundary conditions. Our goal in this section is to present Laplace
transform asymptotics for mp(z).
One defines my,(z) by

mp(z) = [hm(z) — 1]/[m(2) + h]. (A.2)
That this is associated to the boundary (A.1) is hinted at by the fact
that m(z)+h = 0 if and only if «'(04, z) + hu(04, 2) = 0. The function
 h(—1
- (+h

Fi(€)

satisfies
(i) Fp: C4y — C4, where Cy = {2z € C | Im(2) > 0}.
.o 2
(i) Fu(¢) = h— Lt

(i) F5(¢) — Fiu(Go) = (¢ = ) (¢ + h) " (G + h) ™1
This implies

i) Im(my(z)) >0 if Im(z) > 0. (A.3)
2
(ii) mh(—ﬁ)| = h+ 1+7) + O(k2). (A.4)
K|—00 K
(i) mu(—r?) — m\" (=) T o(k?) (A.5)
and
mp(—kK?) — mgo)(—/f) o O(k?) if q is bounded near = = 0,
(A.6)
where
hk +1
m\”(—k?) = — (A.7)

is the free (i.e., ¢(x) = 0, > 0) my, function (= Fj(—k)). In (A.4)-
(A.6), the asymptotics hold as |k| — oo with —F + & < arg(k) <
—e < 0. On account of (A.3) and (A.4), my(z) satisfies a Herglotz
representation,

mp(z) = h+ /R d)\phi_();), (A.8)
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where, by a Tauberian argument,

R 2
[ ano 20N (A.9)

R R—o0 T

and dpy, is the spectral measure for the Schrodinger operator with (A.1)
boundary conditions.
The appendix of [35] discusses the calculus for functions of the form

1+t / Q(a)e " da + O(e™2™),
0

with @ € L'((0,a)). This calculus and Theorem 1.1 of this paper
immediately imply

Theorem A.1. For any Schrédinger problem of types (1)-(4), we have
a function By(-) in L*((0,a)) so that for any a <b,
1/ .
mu(—+?) = my) (—x%) — — / e~ 2" By(a)da + O(e™2*)  (A.10)
k= Jo
as |k| — oo with —% + ¢ < arg(k) < —e < 0. Moreover, By,(a) — q(a)
is a continuous function which vanishes as o | 0.

Remarks. 1. If m(—«?) has a representation of type (1.17) with no
error term (e.g., if b = oo and ¢ € L'(R) or ¢ € L>(R)), mp,(—~?) has
a representation with no error term, although the new representation
will converge in Re(k) > K}, with K}, dependent on h. Similarly, there
is a formula without error term if b < oo with ¢’ and § singularities at
a = nb.

2. (A.10) implies that if ¢ is continuous at 0., the following asymp-
totics hold:

h2 1 h3 h h4 + h2 _1 0
my(—K?) = h+ il + t + 3 2 7(0) + o(k7?).
|Kk|—00 K K K

(A.11)

Of course, one can derive this from the definition (A.2) of m;(2) and
the known asymptotics of m(z). For systematic expansions of my,(—x?)
as |k| — oo, we refer, for instance, to [7], [17] and the literature cited
therein.

3. Bj(a) is analogous to A(a) but we are missing the local first-
order, g-independent, differential equation that A satisfies. We have
found an equation for Bp(a,z) but it is higher than order one and
contains ¢(z) and ¢'(z).

By following our idea in Sections 5-8, one obtains
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Theorem A.2.
Bi(a) =2 / A2 sin(2av/\ ) don (N, (A.12)
R

where dop(X) = dpp(N) — dpgo)(/\), with dpgo)()\) the spectral measure of

mﬁf) (2); explicitly,

1 JEEARY
Py = { 70 (355 Ak o =0
2014+ B3RSO+ ) + o (V) (345 ) M| A, b >0,

As in Section 5, (A.12) is interpreted in distributional sense.
In analogy to (9.11), one derives
0

Bp(a) = =2 90 Lp(20,,04.)

’

where
cos(vEe) = gn(a.2) + | Lilwaon(e'.2) o
0

with op(x, 2) satisfying ¢} (z, z) = (¢(z) — 2)¢n(x, z) and

‘Ph(0+a Z) = la SD;L(O-{- Z) = h.
Finally, we compute Bj,(«) when ¢(z) =gy >0, 2 >0 and h =0 (a
similar result holds if ¢o < 0 with modified Bessel functions instead).

Theorem A.3. [fb=o00, q(x) =qyo >0, x>0, and h =0, then
qé/2 1 1
Bp—o(a) = o J1(2q¢ ) — 2q0J2(2¢¢ o). (A.13)

In particular ([1], p. 364)

3
2q! 1 1
Bp—o(a) ~ % cos <2q02a—z) +0|—).
a—00 332 4 «Q

Proof. Let us make the gy dependence explicit by writing Bp(a; qo).
We start by noting that
o 1 1
/ e B_o(o; qo) da = K* | = — ————
0 Ko (K% +qo)?

on account of (A.10) (or the version with no error term). Thus,

o Bj— 1 2
/ e_%am (v q0) da = = SR (A.15)
0

(A.14)




INVERSE SPECTRAL THEORY, II 51

Now ([15], 6.6232)
o 20(28)'T (v + 3
/ efo‘”ﬂ],,(ﬁﬂv)ﬂv”+1 dr = 1( BT 23)
0 7-(-5(&2 + 52)1/+§
Taking the derivative with respect of a in (A.16), setting v = —1, and
using J_;(z) = —J1(z), we obtain

(A.16)

o0 1 042
M dx = - . AT
A e 1(Bx)x dx Bt P2 Blaz g ) ( )
On the other hand ([15], 6.6231),
> —Qax 1
(A.15)—(A.18) show that
0 1 1 1
900 Bh—o(a; qo) = Jo(2q5 ) — 2q5 aJ1(2q ). (A.19)
Now ([15], 8.4723)
d
. 2" Jy(x) = 2", (2),
so (A.19) implies that the derivatives of the two sides of (A.13) are
equal. Since both sides vanish at ¢ = 0, (A.13) holds. O
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