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1. Introduction

In this paper we discuss aspects of the spectral theory of half-line
Schrödinger operators

Hu = −u′′ + qu, (1.1)

where q ∈ L1
loc([0,∞)). Indeed, all the q’s considered in this paper

will lie in L1([0,∞), dx). The Weyl m-function m(z) is defined for
Im z > 0 by looking at the solution u(x; z) of −u′′ + qu = zu which
is L2 at infinity (unique up to constants if q is limit point and unique
once a boundary condition at infinity is chosen if q is limit circle) and
setting

m(z) =
u′(0; z)

u(0; z)
. (1.2)

In [10], we considered the fundamental object A(α) associated to q
by the relation

m(−κ2) = −κ −
∫ ∞

0

A(α) e−2ακ dα, (1.3)

where A(α) ∈ L1(0, a) for all a. Formula (1.3) holds in the sense of an
absolutely convergent integral if Re κ is sufficiently large in case q ∈ L1

([10]) or if q ∈ L∞ ([2]). For general q, it holds in the same sense that
a series is asymptotic to a function ([2],[10]).
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2 A. RAMM AND B. SIMON

In [10], it is proven that if q ∈ L1(0,∞), then

|A(α) − q(α)| ≤ ‖q‖2
1 exp(α‖q‖1).

As explained in [10], A is fundamental to an approach to inverse spec-
tral theory. Our goal in this paper is to study A as an interesting
object in its own right and, in particular, using ideas implicit in Ramm
[6] to obtain detailed information on the behavior of A as α → ∞ when
q decays sufficiently fast as x → ∞. Indeed, for potentials decaying
rapidly enough, Ramm [6] stated the representation (1.3), but no proof
was given (nor was there any connection of the function A to the in-
verse problem for q. In [6] the inverse problem of finding the potential
from the knowledge of the m-function has been solved for short-range
potentials. A more detailed discussion of the result in [6] can be found
in [7]).

Throughout this paper, we will suppose that∫ ∞

0

(1 + |x|)|q(x)| dx < ∞. (1.4)

More generally, we will consider for n = 0, 1, 2, . . . , B ≤ 0 and ` ≥ 0,
the space CB,`

n of all functions f with n − 1 classical derivatives and
f (n) ∈ L1(0,∞) so that∫ ∞

0

(1 + |x|)` e−Bx|q(j)(x)| dx < ∞ (1.5)

for j = 0, 1, . . . , n. Thus (1.4) says q ∈ CB=0,`=1
n=0 .

Under condition (1.4), general principles (see, e.g., [5]) imply that
for all κ with Reκ ≥ 0, there is a unique solution f(x, κ) of −f ′′ +
qf = −κ2f so that f(x, κ) = e−κx(1 + o(1)) as x → ∞. We will set
f(κ) ≡ f(x = 0, κ). Except for the change of variables κ = −ik, f(x, κ)
and f(κ) are the standard Jost solution and Jost function. Both f(x, κ)
and f(κ) are analytic in κ in {κ | Re κ > 0}. If q ∈ CB,`

n for any n, `
and B < 0, then f(x, κ) and f(κ) have analytic continuations into the
region Re κ > B/2 (see Section 2 below).

It is easy to see and well known that [5]

(1) The zeros of f in {κ | Re κ > 0} occur precisely at those points κj

with −κ2
j a bound state of the operator H with u(0) = 0 boundary

condition and each zero is simple.
(2) f has no zeros on {κ | Re κ = 0, κ 6= 0}.
(3) If f(0) = 0 and q ∈ CB=0,`=2

n=0 , then f is C1 and f ′(0) 6= 0. If
f(0) = 0, we say that q has a zero energy resonance.

If f can be analytically continued to {κ | Re κ > B/2} for B < 0,
then zeros of f in {κ | Re κ < 0} are called resonances. They occur in
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complex conjugate pairs (since f is real on the real axis). If f ′(κ0) 6= 0
at a zero κ0, we say that κ0 is a simple resonance. Resonances need
not be simple if Re κ0 < 0 although they are generically.

The result stated in [6] can be phrased:

Theorem 1.1. Suppose that q obeys (1.4) (lies in CB=0,`=1
n=0 ) and does

not have a zero energy resonance. Let {−κ2
j}J

j=1 be the negative eigen-
values of H (with u(0) = 0 boundary condition) with κj > 0. Then

A(α) =

J∑
j=1

Bj e2ακj + g(α), (1.6)

where g ∈ L1(0,∞). In particular, if H has no bound states or zero
energy resonance (e.g., if q ≥ 0), then A ∈ L1.

Remarks. 1. The result stated in [6] assumes implicitly that there is
no zero energy resonance. Details can be found in [7].

2. If A ∈ L1, then (1.3) can be analytically continued to the entire
region Re κ ≥ 0.

3. If uj(x) is the eigenfunction for H, at energy −κ2
j , normalized so

that
∫ ∞

0
|uj(x)|2 dx = 1, then

Bj = −|u′
j(0)|2
κj

. (1.7)

This follows from the relation between A and the spectral measure [2]

A(α) = −2

∫ ∞

−∞
λ−1/2 sin(2α

√
λ ) dρ(λ)

and the fact that dρ(λ) � (−∞, 0) =
∑J

j=1 |u′
j(0)|2δ(λ + κ2

j ) dλ.

To handle zero energy resonances, one needs an extra two powers
of decay (just as (1.4) says more or less that |q(x)| is bounded by
O(x−2−ε), the condition in the next theorem says that |q(x)| is more
or less O(x−4−ε)):

Theorem 1.2. Let q ∈ CB=0,`=3
n=0 . Suppose that H (with u(0) = 0

boundary condition) has a zero energy resonance and negative eigen-
values at {−κ2

j}J
j=1 with κj > 0. Then

A(α) = B0 +
J∑

j=1

Bj e2ακj + g(α), (1.8)

where g ∈ L1(0,∞).

These results are special cases of
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Theorem 1.3. Let q ∈ CB=0,`
n where ` ≥ 1 and, if q has a zero energy

resonance, then ` ≥ 3. Then (1.6) (resp. (1.8) if there is a zero energy
resonance) holds where g ∈ CB=0,`−1

n (resp. CB=0,`−3
n ).

Remark. If n ≥ 1, then g′ ∈ L1 so g → 0 pointwise. In gen-
eral, if q is not continuous, then g may not go to zero. For exam-
ple, let q(x) =

∑∞
j=0 χ[n,n+an](x) where an = e−n2

and χ[a,b] is the
characteristic function of [a, b]. Since A(α) − q(α) is continuous, we
are guaranteed that A(α) has jump discontinuities at α = n and so
limA(α) − limA(α) ≥ 1 and thus, limA(α) cannot be zero (since it
cannot exist). In this case, A = g since there are no bound states or
zero energy resonance.

For B < 0, we will prove:

Theorem 1.4. Let q ∈ CB,`=0
n with B < 0. Let B̃ ∈ (B, 0) and let

{−κ2
j}J

j=1 with κj > 0 be the negative eigenvalues, {λj}M
j=1 with λj ≤ 0

the real resonances (a.k.a. anti-bound states) and {µj ± iνj}N
j=1 the

complex resonances with B̃ ≤ µj < 0 with νj > 0. Suppose each
resonance is simple. Then for suitable {Bj}J

j=1, {Cj}M
j=1, {Dj}N

j=1,

{θj}N
j=1, we have that

A(α) =
J∑

j=1

Bj e2ακj +
M∑

j=1

Cj e2αλj +
N∑

j=1

Dj e2µjα cos(2νjα + θj) + g̃(α),

where g̃(α) ∈ C B̃,`=0
n . In particular, if H has no negative eigenvalues,

the rate of decay of A(α) is determined by the resonance with the least
negative value of λ or µ.

In Section 4, we will discuss what happens when there are non-simple
resonances.

We note that in the appendix, we present a result on principal ideals
in the space of Laplace transforms (Corollary A.5) that may be of
interest in its own right.

We thank F. Gesztesy for useful comments.

2. The Levin-Marchenko Representation

The key to the proof of Theorems 1.1–1.4 is the formula

m(−κ2) =

∂f(x,κ)
∂x

∣∣∣
x=0

f(x = 0, κ)
(2.1)
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for the solution f of

−f ′′ + qf = −κ2f (2.2)

with

f(x, κ) = e−κx(1 + o(1)) (2.3)

as x → +∞.
We use a basic Laplace transform representation for f(x, κ) found by

Levin [3] and developed especially by Marchenko [4],[5] and the theory
of Laplace transforms discussed in the appendix.

The Levin-Marchenko representation says that given any q ∈ CB=0,`=1
n=0

= {q | ∫ ∞
0

x|q(x)| dx < ∞}, there is a continuous function K(x, y) de-

fined on {(x, y) | 0 ≤ x ≤ y < ∞} with
∫ ∞

x
|K(x, y)| dy < ∞ for each

x so that

f(x, κ) = e−κx +

∫ ∞

x

K(x, y) e−κy dy. (2.4)

Define

σ(x) =

∫ ∞

x

|q(y)| dy (2.5)

so
∫ ∞
0

x|q(x)| dx < ∞ is equivalent to σ ∈ L1. Then the following
bound on K is known ([5], Lemma 3.1.1):

|K(x, y)| ≤ Cσ

(
x + y

2

)
(2.6)

for some constant C . Indeed, one can take C = 1
2
exp(

∫ ∞
0

σ(y) dy).
Moreover, K is absolutely continuous in each variable. Indeed, if
H(u, v) is defined in {(u, v) | 0 ≤ v ≤ u} by

H(u, v) = K(u − v, u + v) (2.7a)

K(x, y) = H(1
2
(x + y), 1

2
(y − x)), (2.7b)

then H obeys (see [5], proof of Lemma 3.1.2):

∂H

∂u
(u, v) = −1

2
q(u)−

∫ v

0

q(u− β)H(u, β) dβ (2.8)

∂H

∂v
(u, v) =

∫ ∞

u

q(α − v)H(α, v) dα. (2.9)

From these bounds and equations, we have by a straightforward es-
timate that:
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Theorem 2.1. If q ∈ CB,`
n with ` ≥ 1 and B ≤ 0, then

(i) K(x = 0, · ) ∈ CB,`−1
n+1

(ii)
∂K

∂x
(x = 0, · ) ∈ CB,`−1

n .

Remark. In fact, if B < 0, we can replace ` − 1 by `.

3. Proof of the Main Theorems

Theorems 1.3 and 1.4 will follow from Theorem 2.1, formulas (2.1),
(2.4), and the results in the appendix. Let

F (κ) ≡ f(x = 0, κ) = 1 +

∫ ∞

0

K(x = 0, y) e−κy dy. (3.1)

By Theorem 2.1, F ∈ AB,`−1
n+1 with F (∞) = 1. The Banach algebra

AB,`
n is discussed in the appendix. Thus, by Theorem A.8

F (κ)−1 =
J̃∑

`=1

a`

κ − κ̃`

+ G(κ),

where

(i) If B < 0, {κ`}J̃
`=1 are the zeros of F on Re κ > B and G ∈ AB̃,`−1

n+1

for any B̃ > B.
(ii) If B = 0 and F (0) 6= 0, then G ∈ AB=0,`−1

n+1 .

(iii) If B = 0 and F (0) = 0, we need ` ≥ 3 and then G ∈ AB=0,`−3
n+1 .

Remarks. 1. For (i), we suppose all resonances are simple.

2. For (ii), (iii), by general principles, the zeros in Reκ ≥ 0 occur
only for Im κ = 0. Moreover, each such zero is simple (see Lemma 3.1.6
of [5]).

Moreover, since K is C1 in y, by an integration by parts, F (κ) =
1 + K(0, 0)/κ + O(1/κ2), and thus

F (κ)−1 = 1 − K(0, 0)

κ
+ O

(
1

κ2

)
. (3.2)

Indeed, by Theorem A.7,

κF (κ)−1 = κ − K(0, 0) +

J̃∑
`=1

a`κ`

κ − κ`
+ G̃(κ), (3.3)

where G̃ is the same A space as G, except that the number of derivatives
is n, not n + 1. Moreover, G̃(∞) = 0.
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Let

H(κ) ≡ ∂

∂x
f(x, κ)

∣∣∣∣
x=0

= −κ − K(0, 0) −
∫ ∞

0

∂K

∂x
(0, y)

∣∣∣∣
x=0

e−κy dy

≡ −κ + H̃(κ),

where H̃ lies in AB,`−1
n and H̃(∞) = −K(0, 0).

Therefore, by (3.2),

m(−κ2) = −κF (κ)−1 + H̃(κ)F (κ)−1

= −κ +
J̃∑

`=0

b`(κ − κ`)
−1 + M̃(κ), (3.4)

where M̃ (∞) = 0 (since the K(0, 0) terms cancel) and M̃ ∈ AB̃,`0
n with

`0 = ` − 3 (if B = 0 and F (0) = 0), and otherwise `0 = ` − 1 and
B̃ = 0 (if B = 0), and otherwise B̃ ∈ (B, 0). Since (κ − κ`)

−1 =
2
∫ ∞

0
e2κ`te−2κt dt if Re κ > Re κ`, Theorems 1.3 and 1.4 are proven.

4. Extensions and Remarks

It is only for simplicity that we supposed the resonances were simple.
By iterating Theorem A.4 if f ∈ AB,`

n and Re z0 > B and z0 is a zero

of F of order j, then g(z) = F (z)/(z − z0)
j is in AB,`

n+j . Thus, if some
zeros of f(κ) are of order j, (3.4) need only be modified so that there
are terms

J̃∑
`=0

ν̄∑
j=1

bj
`(κ − κ`)

−j ,

where ν̄ = max(order of zeros in the strip). Since

1

(κ − κ`)j
=

2

(j − 1)!

∫ ∞

0

αj−1 e−2ακe2ακ` dα,

we obtain an explicit formula for A like in Theorem 1.4, but Cj e2αλj is
replaced by a polynomial in α times e2αλj and Dj e2µjα cos(2νjα + θj)

is replaced by
∑ν̃

k=0 dj,kα
k eν,α cos(2νjα + θ

(k)
j ).

If q ∈ AB
n=0 for all B, for example, q is compactly supported, it

is known that there are always infinitely many resonances (see [8],
pp. 280–282, [9], [11]). Thus A(α) does not decay faster than exponen-
tially in these cases. It is natural to conjecture that A(α) never decays
faster than exponentially as α → ∞ for q 6≡ 0.
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Appendix A. On the Theory of Laplace Transforms

In this appendix, we present some basic facts about Laplace trans-
forms of functions that we need in the paper itself. Given the vast
literature on Banach algebras, it may be that these results are pre-
sented elsewhere, but since we know of no precise reference, we present
what is needed here.

Definition. A weight is a strictly positive function, w(α), on [0,∞)
that obeys:

(a) w(0) = 1.
(b) log w(α) is concave.
(c) For some α0 and real A0, w(α) ≥ e−A0α for α ≥ α0.

Lemma A.1. Let w be a weight. Then:

(i)

w(α + β) ≤ w(α)w(β) (A.1)

(ii) 1/α log w(α) is monotone decreasing
(iii) A(w) ≡ − infα 1/α log w(α) = − limα→∞ 1/α log w(α) < ∞
(iv) w(α) eA(w)α is monotone increasing; in particular,

w(α) ≥ e−A(w)α (A.2)

for all α.

Proof. (i) By (a) and (b), w(α) ≥ w(α + β)α/α+β and w(β) ≥ w(α +
β)β/α+β. (A.1) results by taking the product of these relations.

(ii) If α < β, then by (a) and (b),

w(α) ≥ w(β)α/β.

(iii) is a consequence of (c).

(iv) Given α < β < γ, we have by (b) that

w(β) ≥ w(α)(γ−β)/(γ−α)w(γ)(β−α)/(γ−α).

By (iii), limγ→∞ w(γ)1/γ = e−A(w) so as γ → ∞, we have that

w(β) ≥ w(α) e−A(β−α), (A.3)

which is the required monotonicity. The final statement is just
w(α) eA(w)α ≥ w(0) eA(w)0.
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Remarks. 1. For many facts below, only (A.1) is critical, but we will
need (A.3) in one place, so requiring log concavity seemed reasonable.

2. The prime example of weights is

wB,`(α) = (1 + α)`e−Bα (A.4)

for any B ∈ R and ` ≥ 0. Notice that A(wA,`) = B.

Definition. Let n be a non-negative integer and w a weight. We define
Cn,w to be those complex valued functions f ∈ L1([0,∞), w(α) dα)
with n distributional derivatives (viewed as distributions on C∞

0 (0,∞))
f ′, . . . , f (n) all in L1([0,∞), w(α) dα) (so Cn=0,w is L1(w dα)). If f ∈
Cn,w with n ≥ 1, then f is Cn−1 in classical sense and limα↓0 f (`)(α)
exists for ` = 0, 1, . . . , n−1 which we denote by f (`)(0). We norm Cn,w

with

‖f‖n,w =
n−1∑
`=0

|f (`)(0)| +
∫ ∞

0

[
n∑

`=0

|f (`)(α)|
]

w(α) dα. (A.5)

We denote Cn,wB,`
by CB,`

n where wB,` is given by (A.4). As usual, the
convolution of two L1

loc functions on [0,∞) is given by

(f ∗ g)(α) =

∫ α

0

f(β)g(α − β) dβ.

By induction, it is easy to see that if f, g ∈ Cn,w, then for 1 ≤ ` ≤ n,

(f ∗ g)(`)(α) =

`−1∑
j=0

f (j)(0)g(`−1−j)(α) + (f (`) ∗ g)(α).

This formula and (A.1) imply that Cn,w ∗ Cn,w ⊂ Cn,w and, by (A.5)

‖f ∗ g‖n,w ≤ ‖f‖n,w‖g‖n,w (A.6)

so that Cn,w is a Banach algebra (without unit) under convolution.

Given µ ∈ C and f ∈ Cn,w, we define the Laplace transform L(µ, f)(z)
for z ∈ D(A(w)) ≡ ∞∪ {z | Re z ≥ A(w)} by

L(µ, f)(z) = µ +

∫ ∞

0

f(α) e−αz dα (z 6= ∞) (A.7)

= µ (z = ∞).

By (A.2), the integral in (A.7) converges absolutely and defines a
function analytic in D(A(w))int and continuous on D(A(w)). We de-
note the set of functions F (z) = L(µ, f)(z) for some f ∈ Cn,w by
An,w. For w = wB,`, we denote An,w by AB,`

n . We norm An,w via
|||L(µ, f)|||n,w = |µ| + ‖f‖n,w. Since

L(µ, f)L(λ, g) = L(µλ, µg + λf + f ∗ g),
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(A.6) shows that An,w is a Banach algebra with unit.

We will need the following result of Wiener type:

Theorem A.2. Suppose F ∈ An,w obeys F (z) 6= 0 for all z in D(A(w)).
Then G(z) ≡ 1/F (z) is also in An,w.

Results of Wiener type are usually proven via the Gelfand theory of
commutative Banach algebras (see [1], Ch. III for a good exposition).
Using those ideas, Theorem A.2 is a direct consequence of

Proposition A.3. Every multiplicative linear functional on An,w is of
the form F 7→ F (z) for z fixed in D(A(w)).

Proof. Let ϕ : An,w → C be a multiplicative linear functional. Since
L(1, 0) is the identity, one has ϕ(L(1, 0)) = 1, so ϕ is determined by
the functional T (f) = ϕ(L(0, f)) on the space Cn,w. We claim that
T is determined by its values on C∞

0 (0,∞) ⊂ Cn,w. If n = 0, this is

obvious since C∞
0 (0,∞) is then dense in Cn,w. But if n > 0, C∞

0 (0,∞)
is not all of Cn,w, so the argument is more subtle.

Indeed, if n ≥ 1, any f in Cn,w is Cn−1 in the classical sense and

f ∈ C∞
0 (0,∞) has f(0) = f ′(0) = · · · = f (n−1)(0) = 0. In fact, it is not

hard to see that C∞
0 (0,∞) has codimension n − 1 in Cn,w.

Now for any g ∈ Cn,w, gn+1 (n+1-fold convolution) vanishes at 0 with

its first n−1 derivative zero, and so it lies in C∞
0 (0,∞). If T (gn+1) = 0,

then T (g) = 0, and if T (gn+1) 6= 0, then T (g) = T (gn+2)/T (gn+1).
Either way, T (g) is determined by T on C∞

0 (0,∞).
The map g 7→ T (g) for g ∈ C∞

0 (0,∞) defines a distribution which
we denote by T (α). Formally, T (f) =

∫ ∞
0

T (α)f(α) dα and

T (α + β)(f(α)g(β)) =

∫ ∞

0

∫ ∞

0

dα dβ T (α + β)f(α)g(β).

The idea of the proof is to derive the functional equation (A.8) for T (α)
and to show that the distribution T (α) is in fact a regular distribution
corresponding to a smooth function. If this is done, then one derives
from (A.8) that T (α) is an exponential. If this is done, the proof is
easy to complete.

The convolution formula for the Laplace transform implies T (f ∗g) =
T (f)T (g). Since T (α + β)(f(α)g(β)) = T (f)T (g) and, since the linear
span of the set of products of functions f(α)g(β) is dense in the set of
functions C∞

0 (R+ ×R+) where R+ := (0,∞), one concludes that

T (α + β) = T (α)T (β) (A.8)
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in distributional sense. If T 6≡ 0, then T (f) 6= 0 for some f ∈ C∞
0 .

Thus,

T (β) =

∫ ∞

0

T (α + β) f(α) dα

/
T (f) (A.9)

so T is a C∞ function. Thus, (A.8) implies that T ′(α)/T (α) is constant
and then that T (α) = e−zα for some z ∈ C (or else T ≡ 0).

Suppose that Re z < A(w). Then w(α) ≤ C1 exp(−1
2
(A(w)+Re z)α)

and thus, f(α) ≡ αnezα lies in Cn,w. But if η ∈ C∞
0 (0,∞), then

T (ηf) =
∫ ∞
0

T (α)η(α)ezααn dα =
∫ ∞

0
αnη(α) dα. Taking η a smoothed

out characteristic function of (δ, δ−1), and taking δ → 0, has ηδf → f
in Cn,w but T (ηδf) → ∞. Thus, Re z ≥ A(w), that is, z ∈ D(A(w)).
Thus every ϕ is an evaluation at some z ∈ D(A(w)). Every such
evaluation clearly defines a multiplicative linear functional.

We also need to know about factoring out zeros.

Theorem A.4. Let z0 ∈ D(A(w))int and let F ∈ An,w obey F (z0) = 0.
Then G(z) = F (z)/(z − z0) lies in An+1,w.

Proof. Suppose first that F (∞) = 0 so F = L(0, f) for some f in Cn,w.

Let Ã = Re z0 +1 > A(w) so f ∈ C Ã
n . Let H(z) = (z−z0)

−1 = L(0, h),
where

h(α) = eαz0

so h ∈ C Ã,`=0
n . Thus in D(Ã), G(z) = L(0, g) with g = h ∗ f , that is,

g(α) =

∫ α

0

h(α − β)f(β) dβ

=

∫ α

0

e(α−β)z0f(β) dρ (A.10)

= −
∫ ∞

α

e(α−β)z0f(β) dβ

since F (z0) = 0 means
∫ ∞
0

e−βz0f(β) dβ = 0.
Thus,∫ ∞

0

|g(α)|w(α) dα ≤
∫ α

0

(∫ ∞

α

e(α−β)Re z0 |f(β)| dβ

)
w(α) dα

=

∫ ∞

0

(∫ β

0

e(α−β)Re z0w(α) dα

)
|f(β)| dβ. (A.11)

By Lemma A.1(iv) for α ≤ β:

e(α−β)Re z0w(α) ≤ e(α−β)Re z0e−A(w)(α−β)w(β)
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= e−(α−β)(A(w)−Re z0)w(β).

Since A(w)Re z0 < 0,∫ β

0

e−(α−β)(A−Re z0) dα =

∫ β

0

e(A−Re z0)γ dγ (A.12)

is bounded by −(A − Re z0)
−1 independent of β so (A.11) shows that∫ β

0

|g(α)|w(α) dα ≤ (Re z0 − A)−1

∫ α

0

|f(β)|w(β) dβ (A.13)

and thus g ∈ L1(w(α) dα).
By (A.6) for 1 ≤ ` ≤ n + 1,

g(`)(α) =
`−1∑
j=0

zj
0f

(`−1−j)(α) + z`
0 g(α). (A.14)

(A.13) and (A.14) therefore show that g ∈ Cn+1,w as required.
For general F with F (∞) = µ, pick z1 with Re z1 < A(w) and define

F0 by

F (z) = µ
z − z0

z − z1
+ F0(z). (A.15)

Since
z − z0

z − z1

= 1 + (z0 − z)

∫ ∞

0

eαz1e−αz dα

and e · z1 ∈ Cn,w for all n, we see F0(z) ∈ An,w with F0(∞) = F0(z0) = 0.
Thus, G(z) = µ(z − z1)

−1 + G0(z) lies in An,w.

This theorem has an interesting corollary (immediate consequence
of Theorem A.2):

Corollary A.5. Let F ∈ An,w be non-vanishing on D(A(w)) except
for zeros at z1, . . . , zm ∈ D(A(w))int of order `1, . . . , `m. Then for any
z0 /∈ D(A(w)),

F (z) = G(z)
m∏

j=1

(
z − zj

z − z0

)`j

,

where G is non-vanishing on all of D(A(w)) and lies in Ak,w. In partic-
ular, G is invertible, and any two such F ’s generate the same principal
ideal.

We will need to know what happens where z0 ∈ ∂D(A(w)). First, we
will consider z0 6= ∞ when we lose some decay of the inverse Laplace
transform.
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Theorem A.6. Let w be a weight and define the weight

w̃(α) = (1 + |α|)w(α). (A.16)

Let Re z0 = A(w) and let F ∈ An,w̃ obey F (z0) = 0. Then G(z) =
F (z)/(z − z0) lies in An+1,w.

Remark. Notice that F ∈ An,w̃ but G ∈ An−1,w with w, not w̃, so we
lose one degree of decay for L−1(F ). For wB,`, this is not surprising.
Since F is analytic in D(A(w))int, dividing by (z − z0) does not lose
smoothness of F but since F is only C` on ∂D(A(w)), we expect the
division to lose one order of smoothness.

Proof. As in the proof of Theorem A.4, (A.15) lets us consider the case
F (∞) = 0 and (A.14) lets us reduce to the case n = 0. In that case,
one follows the proof of Theorem A.4, but since −A(w) = Re z0, (A.12)
becomes ∫ β

0

dα = β,

so (A.13) becomes∫ ∞

0

|g(α)|w(α) dα ≤
∫ ∞

0

|f(β)|β w(β) dβ

≤
∫ ∞

0

|f(β)| w̃(β) dβ.

Finally, we need the case when z0 = ∞ where we need to trade
off some smoothness of L−1(F ) to “divide out” a single zero of F at
infinity.

Theorem A.7. Let F ∈ An,w with n ≥ 1 and suppose that F (∞) = 0.
Then G(z) = zF (z) lies in An−1,w.

Proof. By an integration by parts, if α ∈ D(A(w)) and f ∈ Cn,w, then

z

∫ ∞

0

eαzf(α) dα = f(0) −
∫ ∞

0

eαzf ′(α) dα.

The final result we need is a simple consequence of the earlier theo-
rems. Note that if w is a weight and w̃ is given by (A.16) and F ∈ An,w̃,
then F is C1 on the finite part of ∂D(A(w)). So it makes sense to talk
about a simple zero (i.e., F (z0) = 0, F ′(z0) 6= 0) for z0 ∈ ∂D(A(w)).
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Theorem A.8. Let F ∈ An,w with n ≥ 1. Suppose that the only zeros
of F on D(A(w)) are at z1, . . . , zk all in D(A(w))int and are simple.
Then there is G ∈ An,w and a1, . . . , ak ∈ C so that

F (z)−1 =
k∑

`=1

a`

z − z`
+ G(z). (A.17)

Equivalently for z > max(Re(z`)),

F (z)−1 = F (∞)−1 +

∫ ∞

0

e−αzh(α) dα, (A.18)

where

h(α) = −
k∑

`=1

a`e
αz` + g(α), (A.19)

where g ∈ Cn,w. The result remains true if a single z` has Re z` = A(w)

so long as F ∈ An, ˜̃w with ˜̃w given by

˜̃w(α) = (1 + |α|)2w(α).

We will need

Lemma A.9. Let F ∈ An,w and z0 ∈ D(A(w))int with F (z0) 6= 0.
Then

F (z)

z − z0
=

F (z0)

z − z0
+ G(z)

with G ∈ An+1,w. If Re z0 = A(w) and F ∈ An,w̃ with w̃ given by
(A.16), then G ∈ An+1,w.

Proof of Lemma A.9. Write F (z) = H(z) + F (z0), where H(z0) = 0
and use Theorems A.4 and A.6.

Proof of Theorem A.8. By repeated use of Theorem A.4 and Corol-
lary A.5, we can write

F (z) = H(z)

m∏
j=1

(
z − zj

z − z0

)
,

where H is everywhere non-vanishing (it is because of the z−z0 factors
that G(∞) 6= 0). If all zj lie in D(A(w))int, then H ∈ An+1,w. If one zj

is in D(A(w)) and F ∈ An, ˜̃w, then H ∈ An, ˜̃w.
As a result,

F (z)−1 = H(z)−1

m∏
j=1

[
1 +

z0 − zj

z − zj

]
,
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where H(z)−1 is in An,w (resp. by An,w̃) by Theorem A.2.
By Lemma A.9,(

1 +
z0 − z1

z − z1

)
H(z) =

c1

z − z1
+ H1(z),

where H1 ∈ An,w (resp. An,w̃). Since(
1 +

d1

z − z2

) (
c1

z − z1

)
=

c2

z − z1
+

d2

z − z2

for suitable c2, d2, we obtain the result inductively.

References

[1] I. Gelfand, D. Raikov, and G. Shilov, Commutative Normed Rings, Chelsea,
New York, 1964.

[2] F. Gesztesy and B. Simon, A new approach to inverse spectral theory, II. Gen-
eral real potentials and the connection to the spectral measure, preprint.

[3] B. Ya. Levin, Fourier- and Laplace-type transformations by means of solutions
of a second-order differential equation, Dokl. Akad. Nauk SSSR 106 (1956),
187–190 (Russian).

[4] V.A. Marchenko, Reconstruction of the potential energy from the phases of the
scattered waves, Dokl. Akad. Nauk SSSR 104 (1955), 695–698 (Russian).

[5] V.A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser,
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