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Abstract. We prove a Feynman-Kac formula for Schrödinger operators with

potentials V (x) that obey (for all ε > 0)

V (x) ≥ −ε|x|2 − Cε.

Even though e−tH is an unbounded operator, any ϕ, ψ ∈ L2 with compact
support lie in D(e−tH) and 〈ϕ, e−tHψ〉 is given by a Feynman-Kac formula.

1. Introduction

One of the most useful tools in the study of Schrödinger operators, both concep-
tually and analytically, is the Feynman-Kac formula. All the standard proofs, (see,
e.g., [7]) assume the Schrödinger operator H is bounded below, so the Schrödinger
semigroup e−tH is bounded. This means, for example, that Stark Hamiltonians are
not included.

But the restriction to semibounded H is psychological, not real. We deal with
unbounded H ’s all the time, so why not unbounded e−tH? Once one considers the
possibility, the technical problems are mild, and it is the purpose of this note to
show that.

The form of the Feynman-Kac formula we will discuss is in terms of the Brow-
nian bridge (Theorem 6.6 of [7]). Once one has this, it is easy to extend to the
various alternate forms of the Feynman-Kac formula.

The ν-dimensional Brownian bridge consists of ν jointly Gaussian processes,
{αi(t)}ν

i=1;0≤t≤1 with covariance

E(αi(t)αj(s)) = δij min(t, s)[1 − max(t, s)]

E(αi(t)) = 0.

If b is Brownian motion, then α(s) = b(s) − sb(1) is an explicit realization of the
Brownian bridge.
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For any real function V on Rν and t > 0, define (the expectation may be
infinite):

Q(x, y; V, t) = E

(
exp

(
−

∫ t

0

V
((

1 − s

t

)
x+

s

t
y +

√
t α

(s
t

))
ds

))
.(1.1)

Throughout this paper, let

H0 = −1
2
∆

on L2(Rν), so

e−tH0 (x, y) = (2πt)−ν/2 exp
(
−|x− y|2

2t

)
.(1.2)

The Feynman-Kac formula I’ll start with — one of many in [7] — is

Theorem 1.1. Suppose V is a continuous function on Rν which is bounded
from below. Let H = H0 + V . Then for any t > 0 and ϕ, ψ ∈ L2(Rν):

〈ϕ, e−tHψ〉 =
∫
ϕ(x)ψ(y) e−tH0 (x, y)Q(x, y; V, t).(1.3)

In this paper, we will consider potentials V (x) for which for any ε > 0, there
is Cε so that

V (x) ≥ −ε|x|2 − Cε.(1.4)

It is known (see [5], Theorem X.38) that for such V , H = H0 +V is essentially
self-adjoint on C∞

0 (Rν), so we can use the functional calculus to define e−tH which
might be unbounded. Our main goal here is to prove:

Theorem 1.2. Suppose V is a continuous function which obeys (1.4). Then
for all x, y ∈ Rν , t > 0, (1.1) is finite. Let ϕ, ψ ∈ L2(Rν) have compact support.
Then for all t > 0, ϕ, ψ ∈ D(e−tH) and (1.3) holds.

Remarks. 1. It isn’t necessary to suppose that ϕ, ψ have compact support.
Our proof shows that it suffices that eεx2

ψ, eεx2
ϕ ∈ L2 for some ε > 0. In particular,

ϕ, ψ can be Gaussian.
2. Using standard techniques [1],[3],[7], one can extend the proof to handle

V = V1 + V2 where V1 obeys (1.4) but is otherwise in L1
loc and V2 is in the Kato

class, Kν .
3. If one only has V (x) ≥ −C1 −C2x

2 for a fixed C2, our proof shows that the
Feynman-Kac formula holds for t sufficiently small. It may not hold if t is large
since it will happen if V (x) = −x2 that E(exp(− ∫ t

0
V (α(s)) ds)) will diverge if t is

large.

As for applications of Theorem 1.2, one should be able to obtain various regu-
larity theorems as in [6]. Moreover, forH = −∆+F ·x, one can compute e−tH(x, y)
explicitly and so obtain another proof of the explicit formula of Avron and Herbst
[2].

Dedication. Sergio Albeverio has been a master of using and extending the notion
of path integrals. It is a pleasure to dedicate this to him on the occasion of his 60th
birthday.
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2. A Priori Bounds on Path Integrals

Our goal in this section is to prove

Theorem 2.1. Let V obey (1.4) and let Q be given by (1.1). Then, for each
t > 0 and δ > 0, we have that

Q(x, y; V, t) ≤ D exp(δx2 + δy2),

where D depends only on t, δ and the constants {Cε}.
Lemma 2.2. Let X be a Gaussian random variable. Suppose εExp(X2) < 1

2
.

Then E(exp(εX2)) <∞ (and is bounded by a function of εExp(X2) alone).

Proof. A direct calculation. Alternately, we can normalize X so Exp(X2) =
1. Then E(exp(εX2)) = (2π)−1/2

∫
exp((ε− 1

2)x2) dx <∞.

Proof of Theorem 2.1. Note that if 0 < θ < 1, and x, y, α ∈ Rν , then

|θx+ (1 − θ)y + α|2 ≤ 2|θx+ (1 − θ)y|2 + 2|α|2
≤ 2(x2 + y2 + |α|2).

Thus, by (1.4),

Q(x, y; V, t) ≤ E

(
exp

(
Cεt+ 2εt(x2 + y2) + 2ε

∫ 1

0

t2α(s)2 ds
))

.(2.1)

By Jensen’s inequality,

E

(
exp

(
2

∫ 1

0

εt2α(s)2 ds
))

≤
∫ 1

0

E(exp(2εt2α(s)2) ds).(2.2)

Since E(α(s)2) is maximized at s = 1
2 when it is 1

4 , we see that

RHS of (2.2) ≤ E(exp(2εt2α(1
2
)2))

is finite if εt2 < 1, so we can pick ε = δ0/t
2 with δ0 < 1 and find (using the explicit

value of E(exp(X2)) in that case

Q(x, y; V, t) ≤ √
2 (1 − δ0)−1/2 exp(Cεt+ 2δ0(x2 + y2)/t),

which proves Theorem 2.1.

3. A Convergence Lemma

In this section, we will prove:

Theorem 3.1. Let An, A be self-adjoint operators on a Hilbert space H so that
An → A in strong resolvent sense. Let f be a continuous function on R and ψ ∈ H
with ψ ∈ D(f(An)) for all n. Then

(i) If supn ‖f(An)ψ‖ <∞, then ψ ∈ D(f(A)).
(ii) If supn ‖f(An)2ψ‖ <∞, then f(An)ψ → f(A)ψ.

Remark. Let H = L2(0, 1), ψ(x) ≡ 1, An = multiplication by n1/2 times
the characteristic function [0, 1/n], and A ≡ 0. Then An → A in strong resolvent
sense and supn ‖Anψ‖ <∞, but Anψ does not converge to Aψ so one needs more
than supn ‖f(An)ψ‖ < ∞ to conclude that f(An)ψ → f(A)ψ. The square is
overkill. We need only supn ‖F (f(An))ψ‖ < ∞ for some function F : R → R with
lim|x|→∞ |F (x)|/x = ∞.
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Proof. Suppose that supn ‖f(An)ψ‖ <∞. Let

fm(x) =



m if f(x) ≥ m

f(x) if |f(x)| ≤ m

−m if f(x) ≤ −m.
Then ([4], Theorem VIII.20) for each fixed m, fm(An) → fm(A) strongly. It follows
that

‖fm(A)ψ‖ = lim
n

‖fm(An)ψ‖
≤ sup

n
‖fm(An)ψ‖ ≤ sup

n
‖f(An)ψ‖.

Thus, supm ‖fm(A)ψ‖ <∞, which implies that ψ ∈ D(f(A)).
Now suppose supn ‖f(An)2ψ‖ <∞. Then

‖(f(An) − fm(An))ψ‖ ≤ 1
m

‖f(An)2ψ‖.
Thus fm(An)ψ → f(An)ψ uniformly in n which, given that fm(An)ψ → fm(A)ψ,
implies that f(An)ψ → f(A)ψ.

4. Putting It Together

We are now ready to prove Theorem 1.2. Let V be continuous and obey (1.4).
Let Vn(x) = max(V (x),−n). Then Vn is bounded from below, so Theorem 1.1
applies, and so (1.3) holds. Let ϕ ∈ L2 with compact support. By Theorem 2.1,
we have

sup
n

‖ exp(−tHn)ϕ‖ <∞

for each t positive.
By the essential self-adjointness of H on C∞

0 (Rν) and (Vn − V )η → 0 for
any η ∈ C∞

0 , we see that Hn converges to H in strong resolvent sense. Hence
setting An = Hn, A = H , f(x) = e−tx, and ψ = ϕ, we can use Theorem 3.1
to see that ϕ ∈ D(exp(−tH)) and ‖[exp(−tHn) − exp(−tH)]ϕ‖ → 0. Thus as
n→ ∞, the left-hand side of the Feynman-Kac formula converges. By the a priori
bound in Theorem 2.1 and the dominated convergence theorem, the right-hand side
converges. So Theorem 1.2 is proven.
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