RESONANCES IN ONE DIMENSION
AND FREDHOLM DETERMINANTS

BARRY SIMON

ABSTRACT. We discuss resonances for Schrodinger operators in whole-
and half-line problems. One of our goals is to connect the Fredholm
determinant approach of Froese to the Fourier transform approach of
Zworski. Another is to prove a result on the number of antibound states
— namely, in a half-line problem there are an odd number of antibound
states between any two bound states.

1. INTRODUCTION

In this paper, we want to discuss resonances and antibound states in one
dimension for Schrodinger operators H = Hy + V', where Hj is one of the
following;:

Case 1: —-%; on L?(R)

Case 2: d £ with ©(0) = 0 boundary conditions on L?(0, cc)

Case 3: —-1; with 4/(0) + hu(0) = 0 boundary condition on L*(0, c0)
Case 4: L, 4 00 o5 [2(0,00); £ =1,2,....

We will often consider Case 2 as the £ = 0 case of Case 4. We will normally
suppose V' has compact support, although many of our results only require

/ealwl|V(x)| dx < oo (1.1)

for all @ > 0 (and some only that (1.1) hold for suitable a > 0).

The operator Hy has spectrum [0, 00) except for Case 3 with h < 0 which
has a single eigenvalue at energy —h2. That means that (Hg + x?) ! is a
well-defined operator in the region Re x > 0 (except for a pole at K = —h in

Case 3 with h < 0). Its integral kernel
(Ho+r%) 7! (z,y) = Go(z,y; %)

has an explicit formula in terms of exponential functions in Cases 1 3 and
Bessel functions in Case 4. For example

Go(z,y; k) = 67”|mfy|/2/1 (Case 1) (1.2)
Go(z,y; k) = e "*> sinh(kz<) /k  (Case 2) (1.3)
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where z. = min(z, y) and -~ = max(x, y).

From these explicit formulae, Go(z, y; k) as a function of k has an analytic
continuation to the entire x plane except for a simple pole at k = 0 in Case 1
and at kK = —h, in Case 3 with h > 0.

By the explicit formula for Gy, it can be seen that when (1.1) holds for
all a > O:

K(x)(z,y) = V(@) 2Go(z, y; 1) |V (y) |/ (1.4)

is in L?(R x R, dx dy) for all k (except for the simple pole in Cases 1 and
3) and so defines an analytic Hilbert-Schmidt operator-valued function on
C (or C\{0}, or C\{—h}). In (1.4), V(x)'/? is short for
V(2)Y2=V(z)/|V(z)]? if V(z)#£0
=0 if V(z)=0.
K (k) is called the Birman-Schwinger kernel.
It is well known (see, e.g., [7, 23] that

Birman-Schwinger Principle. Hy + V has —k

Rex > 0) if and only if K (k) has eigenvalue —1.
With this in mind, one defines

Definition. « is called a resonance energy if Rex < 0 and K (k) has eigen-

value —1. The multiplicity of the resonance is the algebraic multiplicity of

the eigenvalue. If Im k = 0 as well, we call k£ an antibound state.
2

2 as an eigenvalue (with

Of course, —k° is really the energy, but since k is the natural parameter,
we will abuse terminology. This definition is the one of Froese [8, 9]. Melrose
and Zworski and their school in numerous papers (e.g., [29, 31]) have defined
resonance in terms of poles of suitable elements of the analytically contained
S-matrix. It follows from our results below (Proposition 2.9 and 2.10) that
the definitions agree and are equivalent to the solution of —u” +Vu = —k?u
with u(z) = e "* (a suitable Hankel function in Case 4) near +o0o obeys the
boundary condition at zero in Cases 2 and 3, is e™* near —oo in Case 1
and decreases as x | 0 in Case 4.

While one has obviously that K (k) is Hilbert-Schmidt, the following is

true:

Theorem 1. K(k) is trace class for all k (except for the poles in Cases 1
and 3).

This is a result of Froese [8] for Cases 1 and 2, but it seems worthwhile
to give an alternate proof that also works in Case 4 (Case 3 is an easy
consequence of Case 2). We do this in Section 2. Once one has Theorem 1,
it is natural to define

d(k) = det(1 4+ K(k)) (1.5)
in which case the resonances or bound states are precisely the zeros of d(k)

(or kd(k) in Case 1 or (k+ h) d(k) in Case 3). Determinants have also been
used by Melrose [20] and Zworski [30] in their work on resonances.
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Our main goals in this paper are the following:

(1) Zworski [29] proved his theorem on counting resonances by realizing the
inverse of a suitable S-matrix element as a Laplace transform. Froese’s
alternate proof directly analyzes the asymptotics of d(k). In this paper,
we link the two methods by showing the Fredholm determinant can be
realized as a Laplace transform. This provides an alternate to using
Melin’s theory [19].

(2) We want to present a new result on counting antibound states. Dur-
ing the final preparation of this manuscript, I received a preprint of
Kargaev-Korotyaev [13] who independently found this result.

To be more specific, in Section 2, we will prove expansion formulae for
the Fredholm determinants d(x) in Cases 1 and 2 (this part also works for
Cases 3 and 4, but we do not state these results explicitly since we will only
handle Cases 1 and 2 in Section 3).

Theorem 2. In Case 2 (half-line with u(0) = 0 boundary conditions):

d(K) =14 dn(k) (1.6)
n=1

with
dn () =
n . h L .
/ V(zy)...V(zy) H stub(r(z; — 25-1)) e "ndxy...dzy,.
ro=0<x1 <" <Tp =1 K

(1.7)

Theorem 3. In Case 1 (Hy = —iﬂ—é on L*(R)):

d(k) =1+ dn(r) (1.8)
n=1

dn (k) :/ o V(zy)...V(zn)

[ﬁ sinh(k(z; — le))] o rlan—1)

K 2K

(1.9)
d:L'l .. .dl‘n.

Jj=2

Notes. 1. The product in (1.9) has n — 1 terms and is empty in case n =1
so that
1

di(k) = %/V(:c) da. (1.10)

2. (1.9) implies that if we look at the problem of AV with a coupling
constant A added

kd(kK) =K+ A / V(z)dz+ NF(\, k)
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with F' analytic near A = k = 0. It follows that if [ V(z)dz < 0, there is a
bound state for small A with energy (—x?) given by —A\%( [ V(z) dz)?+O()\3)
and an antibound state at that energy if [ V(x)dz > 0. This recovers old
results of Landau-Lifshitz [16, Section 45] (see also Simon [25]).

Once we have these expansions, we can use

sinh Ky v
e 2Kk e de
K 0

to obtain the following Laplace transform representations:

Theorem 4. In Case 2, let a = sup(supp(V)). Then
d(k) =1 +/ t(a) e da
0

for a suitable L'-function t on [0, a] with a € supp(t).

Theorem 5. In Case 1, let [a,b] be the convex hull of the support of V.
Then

b b—a
kd(k) = Kk + %/ V(z)dr+ 3 / t(a) e 2" da,
a 0
where b — a € supp(t).

Following Zworski, these Laplace transform formulae allow one to use
Titchmarsh’s theorem [28] to obtain the result of Regge [24] and Zworski
[29] on the density of resonances.

While we will directly write down these Laplace transforms, we could use
a less direct result. As we will show in Section 2, the expansion in Theorem 2
lets us identify d(x) with a Jost function, the value of the Jost solution at
x = 0 (this is not a new result; it is due to Jost-Pais [12]). But Levin [17]
has a Laplace transform formula for the Jost solution as used extensively
by Marchenko [18] and that allows one to prove Theorem 4 from Theorem 2
(the estimate we use to show a € supp(t) is in Marchenko’s book).

Our final results are on a different subject

Theorem 6. In a half-line problem (Cases 2, 3 or 4), suppose h has n
bound states 0 < k1 < -+ < Kp. Then each interval (—Kjt1, —K;) has an
odd number of antibound states and, in particular, at least one antibound
state. In particular, there are at least (n — 1) antibound states.

We will prove Theorems 1, 2, and 3 in Section 2, Theorems 4 and 5 in
Section 3 and Theorem 6 in Section 4. An appendix has a result on finite
determinants that we need in Section 2.

I would like to thank F. Gesteszy, M. Hitrik, K. Makarov, and A. Push-
nitski for useful discussions.
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2. EXPANSION OF THE FREDHOLM DETERMINANT

In this section, we want to first prove that K (k) is trace class for all K € C
(or C\{0}), that is, prove Theorem 1. Then we present an expansion of the
determinant, det(1 + K(k)), in the £ = 0 case (Theorems 2 and 3).

We begin with the whole-line case, so

e~ rlz—yl
K(r)(z,y) = V(x)"/? o V()2

Since V' has compact support, K ()(z,y) is L? in R x R for all & € C\{0}
and the kernel is analytic. Thus,

Proposition 2.1. K(k) is Hilbert-Schmidt for all K € C\{0} and analytic
m K.
For Rek > 0, we can write
K(r) = V'2(@)(p* + &%) |V (2)]/2,

It is a basic fact [26, Theorem 4.1] that if f,g € L?(R), then f(p)g(x) is
Hilbert-Schmidt with

1£(@)g(@) ]2 < (2m) 2| fllallgllo- (2.1)
It follows immediately that

Proposition 2.2. If g,h € L?(R) and f € L'(R), then g(x)f(p)h(z) is
trace class and

lg(z) f(p) ()]l < 2m) " gll2llRll2ll f1]1-

Note next that if | Arg x| € (4, Z)s

0
/WH2| < o [1+ log (| ]/ e,

so we have

Proposition 2.3. For |Argk| € (§, 5), K(k) is trace class with

| [1+1og (| Im~k|/Rer)]|. (2.2)

KGOl < eV | o

Next, we note that

(K (R) — K () () = V() 2O 20D 172

2 cosh(k(z —y
= V2 () 2O )
is a rank 2 operator. It follows that
Proposition 2.4. If Re(k) > 0, K(k) —K) is trace class with

1K (k) — K)|1 < 2/|V e2(Rer)lz] g
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As a result
Proposition 2.5. If Re(k) <0, K(k) is trace class with
1K (k)] < C(1 + log(| Im k), (2.3)
where C' is a constant bounded on each half-annulus {k | Rex < 0, 0 < A <
|k| < B}.
Now given kg with ko = ia, o € R\ {0}, write
m 0\ do
K (ko) :/ K(/—@O—l— gew> —.
_r 2 2

Since ||K (ko + §€®|l; has only logarithmic singularities at § = +%Z, we
conclude

Proposition 2.6. K(k) is trace class on C\{0}.

This is just Theorem 1 in this case.
The proof of Theorem 1 in the £(¢+1)/r? case depends on an eigenfunction
expansion for héO). Let
ue(k, ) = ka jolkr),

where jy is a spherical Bessel function. Then [1],

(Fi) ) = /2 [ wlh.)p(o) do (2.4
is a unitary map of L?(R, dz) to L*(R, dk), that is,
[ 1EwEa= [ e (2.5)
0 0
and
(FehV ) (k) = k2(Fyp) (k). (2.6)

While the usual proof [26] that || f(p)g(z)ll2 = (2m)~Y2||f|l2]lg|l2 comes
from writing f(p) as a convolution operator, here is another proof. Let V'
be the Fourier transform and let My be multiplications by f(x). Then

f(p)g(z) =V MV M,

so since V=1 is unitary ||f(p)g(z)||2 = [|[M§V M,|| but MV M, has integral
kernel:

e~

(MyV M) (p,z) = f(p) Nors g9(z)

from which the Hilbert-Schmidt norm formula is immediate. Similarly,

Proposition 2.7. If f,g € L*(0,00), then f(\/h\") )g(x) is Hilbert-Schmidt

T e

, < C[lfll2llgll2- (2.7)
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Proof. As above,
f( hy ) 9(z) = FE_IMfFfMga
so since Fy is unitary (2.5), we have

(7

and the latter has integral kernel

FR)\/2 us(h, 2)g ()
so (2.7) follows from |u(k,z)| < C1 (see [1]). O

= (1M Fe M|l
2

With (2.7) in hand, the proof of Theorem 1 is essentially identical to the
proof in the whole-line case. The ¢ = 0 situation is identical to the u(0) =0
boundary conditions for the half-line —% case and then the general h bound
condition situation follows from the fact that the difference of the resolvents
is rank 1 when h changes. That completes the proof of Theorem 1.

Once we know K(k) is trace class, we can form d(k) = det(1 + K(k)).
We turn to the expansion of the Fredholm determinant. We will do this for
a general trace class operator, A, with an integral kernel A(x,y) on R (or

[0, 00)) of the form
Alz,y) = V(2)*Go(z, y)|V(y) [V, (2.8)
where G has the form
Go(z,y) = [-(z<) [+(z>), (2.9)
with 2 = min(z,y), x> = max(z, y). We will show that

Proposition 2.8. Let A be a trace class operator of the form (2.8)/(2.9).
Then

o0

det(1+ A) =1 +Z/ V(zy) ... Ve, f(z1) felz,)
n=1 r1<--<ITp
n—1
H[f+(95j+1)f—($j) = f+(zj) f-(zj31)] dxy . . dn.
j=1

(2.10)

Remarks. 1. We are vague about convergence issues since in the appli-
cations we make, they are trivial. In general, it certainly suffices that
JIV@) [ f+(@)] + [f-(2)] + 1] dz < oo

2. Theorems 2 and 3 are immediate corollaries of Proposition 2.8 given
that

e " (2K) et — 7™ (2k) 7L e = kL sinh(k(y — z))
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and

e "k~ sinh(ky) — ek sinh(kz) = £ sinh(k(y — ).

3. While we are interested in the cases given by Theorems 2 and 3 because
of the application in the next section, the proposition applies directly to the
0(€ +1)/x? example; f_ is a Bessel function (of imaginary argument) and
f+ is a suitable Hankel function.

4. Jost-Pais [12] have a related result.

Proof. As shown in [26] (and essentially due to Fredholm)

1 Ti...Tn
det(1+A)—1+;a/A(xlmxn> dzy .. .dz,, (2.11)
where
T1...Tp
A = det([A (2, yj)]i j=1...n)-
(207 = det((A G i)

Since A(iiﬁ”) is symmetric in the x’s, we can remove the n! and integrate
T,
over 1 < - -+ < xp. In that case,

A(ii Z) =V(z1)...V(zn) det(f*(xmin(i,j))f+(xmax(i,j)))'

Determinants of this form are discussed in the appendix where it is shown
that

det(f— (Zmin(i,j)) [+ (Tmax(i,j)))

n—1
= fy(zn) f-(75) H[f+(xj+1)f—(ffj) — fo(zy) f-(zj41)],
j=1
which proves the proposition. O

We close this section by using the expansions in Theorem 2 and 3 to
identify d(x) with quantities related to the Jost function. Consider first the
half-line case. Let d(k,zq) be the d(k)-function for the potential {V(z +
CCO)}xZO- Then, with

sinh(k(y — x))

Flz,y;r) = S22y = 2). (2.12)
K
we have that
d(rz,)
—1+> [ F(0,21; 1)V (20 + 1) F (21, 355 8) ..V (0 + )
=1 J0<ai <<y

e "ndry...dxy,
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o

S ey / Flag, 21 )V (@1) F(z1, 20) - .V (20)
ro<r1<--<Ip

n=1

e " dxy...dx,

by a change of variables. That means if we define

Fla, ) = e d(s, 2), (2.13)
then f obeys
flz, k) = " + Z / F(z,x1;8)V(21)F(x1, 205 K) ...V (2
n=1 Y <1< <Tn

e "rndry...dz,,

(2.14)
so that f obeys the integral equation

fa) =+ [T FapnVe) e dy, (219
which implies that f obeys
—f"4+Vf=—kKf (2.16)
with the boundary condition
flz, k) =" if x > a = sup[suppV]. (2.17)
Thus,
Proposition 2.9. f(z, k) is the Jost solution, that is, solution of (2.16)

which obeys (2.17). In particular, d(k) is the Jost function, that is, f(x =
0, k).

Remark. It is a known result that the Jost function is a Fredholm deter-
minant. See Jost-Pais [12] and Simon [26]. Our proof is related to that of
Jost-Pais. Similarly, Proposition 2.10 below is known; it follows by combin-
ing formulae in Newton [21].

There is a related expression for the whole-line case. First, we need some
notation. Let [a, b] be the convex hull of the support of V. The Jost solutions
f+(z, k) are the solutions of (2.16) that obey the boundary conditions

fr(z, k) =€t for 2 > |a|+1b|. (2.18)

Given two C* functions f, g, we define their Wronskian by
W(f,9)(x) = f(2)g(x) - f(x)g(x). (2.19)
As usual, if f, g obey the same second-order differential equation, W is

constant and we denote its value as W(f, g). Finally, we define the free Jost
solutions

0 (@, k) = eFr,
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Proposition 2.10. In the whole-line case
rd(r) =5 W(f-(+. k). f+(-, K)). (2.20)

Proof. By looking at the expansion (2.14) of the Jost solution fy(zx, k), and
the expansion of d(A) given by Theorem 3, we see that

b
d(k) =1+ i/ eV (z) f+(z, k) dx (2.21)

b
kd(k) = K+ 3 / FO@, 1)V (@) fi (2, K) da. (2.22)

a

But since fy = fj_o) for x > b,

k=3 W 1 0)
and
d

FO@ 0V (@) fo(a,w) = — = WD, 1),

so (2.22) shows that
wd(r) = s W, f1)(a).

But for = < a, fio) = f_,s0

Kd(ﬁ) = %W(f—a f+)(a) = %W(f—a f+)(l')
for all x. O
Remarks. 1. Proposition 2.9 can be rephrased in a form close to (2.20).
Namely, if u(z, k) is the solution of (2.16) obeying u(0, k) = 0, v'(0, k) = 1,
then d(k) = W (u, f).

2. Similarly, in the (¢ + 1)/2? case, if fi(z, k) is the solution of the
equation
—u + @ u+ Vu = ku,
x
which is given by kzh()(kz) if 2 > a = sup(supp(V)) and wuy is the solution

that obeys lim, g k:gx(zgg) =1, then
d(k) = W(u, f).

In the next section, we will need an additional function and a relation
between d and this new function. Let ¢(k) be defined by

re(k) = AW (-, k), fol-, k). (2.23)

Proposition 2.11.

(i) f-Cor)=—c(r) (-, 8) + d(K) f1 (-, —r) (2.24)
(ii) d(k)d(—k) =1+ c(Kk)c(—k) (2.25)
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Proof. (2.23) is a direct consequence of (2.20), (2.23) and

W(f+( " ’i)a f+( i) *K)) = —2K
since fi(x,k) = e "* for x near +oc.
Writing (2.24) for k and —x and

W(f-(or), f (- —R) =2k
(since f_(z, k) = €"" for x near —o0), we have that
2k = —2kc(K)c(—k) + 2kd(k)d(—K).
which implies (2.25). O

3. DETERMINANTS AS LAPLACE TRANSFORMS

Our goal in this section is to prove Theorems 4 and 5. Given the expansion
of Theorems 2 and 3, the argument is similar to part of the construction of
the A-function in [27]. We will use

inh /2
SRS :/ e 2 g (3.1)
K —x/2
:/ ePre 20 g, (3.2)
0

We start with the half-line case. Using (1.7) and (3.2), we have that

d(k) =1+ dn(k) (3.3)
n=1

dn(K) :/ Vi(zy)...V(zn)
0<21 <+ <Tn; 0<by <21, 0<lo <T2 =1, 0<bn <Tn—Tp—1
e 2Xi=1 U8 ey L dan dly ... dly, (3.4)
= /tn(a) 672cm dOt, (35)
where

by () = / V(z1)...V(xy)Ry(z1,...,2p;0)dey .. .dxy,  (3.6)
0<@1 <<

with
Ry(x1,...,2p; Q)

5(2@ — a> dey . ..de,. (3.7)
j=1

/0<€1<x1 ,0<la<w9 —T1,...,0<lp <(Ty,—Tm—1)

Lemma 3.1. (i) R, =0ifa >z,
.. an—1
(i) [Rn| < Gy .

(iii) Forn>2, R, is C' and |5 <2 275
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Proof. (i) By the inequalitites on £;, > ¢; < (x1 + (w2 —x1) + -+ + (T5 —
Tp—1)) = Tp-

.o n an—l

(11) Clea‘rlya |Rn| S f0<el,0<€27---10<£n 5(Zj=1 6] - Oi) dgl .. dﬁn = m by

induction.
(iii)
o :/ 5’(2@—@) dts ... dt,
s

n—1
:/5(Zej_a> dey ...dby_y
S\

n—1
/ 5(Z£ja(xng;nl)>d£1...den1.
S\ &

Now use the estimation method of (ii). O

Proposition 3.2. Let a = sup(supp(V)).
(i)
d(r) =1 +/ t(a) e 2 da (3.8)
0

with t(a) a continuous function.
(ii) t is an absolutely continuous function with

)+ Vi< | V) dy. (3.9)

(iii) The convex hull of the support of d(a) + t(e) is [0, a].
Proof. By (3.6) and (ii) of Lemma 3.1, we have that

el < s | [ W] = ([ vera) N

= Z tn(a)
n=1

converges and we can justify the interchange of sum and integral to obtain
(3.8).

Similarly, by (iii) of Lemma 3.1, >°°, ¢, (a) is C* with derivative g(a)
that obeys

st < > a /-2 [V ] s ([ vwia)

n=2

SO

gc/aW(y)my.
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By a direct calculation.

ne) = [ vy

so that (3.9) is proven.

Clearly, t(a) is supported on [0,a] and ¢ + ¢ has 0 in its support. That
means we need only show ¢ is non-zero on each interval [a — €, a]. Suppose
t vanishes identically on such an interval. Then by (3.9),

V() sc/a\v<y>|dy

for« >a—e. So for z € [a — ¢, al,
[ Vldy<la e [Vl

so V vanishes on [a — &', a) with & = min(e, }). Since a = sup(supp(V)) by
hypothesis, this is a contradiction which shows that a € supp(t). O

This implies Theorem 4. Proposition 3.2 also makes it easy to construct
potentials with an infinity of antibound states. The basic idea is close
to those of Titchmarsh [28] on zeros of Laplace transforms and a similar
analysis (but using Melin’s theory and on the whole line) has been made
by Zworski [29]. Define intervals I1,Is,... C [0,1] by I = [0,3]. I, =
L3, L, =01 2%1, 1— ). Let a, =2" e 2" and

Viz)=(—1)"an ifz e I,.

It is easy to modify V' to be C°°. The infinity of oscillations of V is critical
since if V' has a definite sign near x = a, it is easy to see that ¢(a) has a
definite sign, and so f(—k) does for k near infinity and thus there are only
finitely many antibound states.

Since ay, is decreasing, |t'(a)+ V()| < C27"ay, by (ii) of Proposition 3.2.

Thus for n large, t'(a) is very close to (—1)"*'a, on I,,. Thus
1 o
/ t'(a) 2% doy ~o Z(*l)n_HanQ_n 62(1—2_”)m
0 n=1
oo
~ 25 Z(_l)n—l—l eXp(—Z_n_ll{ _ 2n+1).
n=1

For ki, = 22(™+1) it is easy to see this sum is dominated by the term with
n = m. Since fol t'(a) 2 da ~ —2k fol t(a) e2°" da, we concluded that

(—1)™ f(=22m4D) >

for m large, and so f(—k) has infinitely many zeros as kK — oc.
Once one has a half-line potential with an infinity of antibound states,
the same is true of whole-line problems with suitable even potentials.
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We now turn to the whole-line case and Theorem 5. We will use (2.21)

b
2kd(K) = 2K +/ eV (x) f1(z, k) dz,

as well as the following formula proven in a similar way:

b
2kc(k) = / eV (x) fy(z, —K) dX

Proposition 3.3. In the whole-line case:

(i)
b b—a
kd(K) =K+ %/ V(z)dr+ %/0 t(a)e 2" da

for an L'-function t on [0,b — a].

(i)
where s(a) is a function in L'(a,b).
(iii)
s(a) = Vi) <€ [ Vi)l dy

b
gc/|wwwy

(iv) a,b € supp(s).

Proof. (i) We begin with the extension of (3.8) which implies that

b
fr(z, k) =" +/ to (o, z) e 2re gthe,
X

Plugging this into (3.10),

b b b
kd(k) = K + % / V(z)dx + %/ dm/ ty(a, x) e—26(a—2) .,
d abi x

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

b a b—p3
:/{—}—%/a V(x)dm—{—%/o (/a t+(ﬁ+x,a:)dx> e 2R dg,

which is (3.13) if t(a) = f:ia ty(a+ z,x)de.
(ii) Plugging (3.15) into (3.11) yields

() = %/abe%z‘/(:r) dx+%/abV(x) dx(/:t+(a,x) 62“°‘da>
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which is (3.14) if

s(a) =V(a) + /a ty(ao, )V (x)dx. (3.16)

b
s(a) =V(a) +/ t (o, z)V(x)dx. (3.17)

(iii) This follows from (3.16)/(3.17) with

¢ = sup [t (@, 2)].

a,x

(iv) This follows as in the proof of (iii) of Proposition 3.2. O

(3.13) is Theorem 5 if we prove that b — a € supp(t). We give a proof
of this fact that is part of Zworski’s proof [29] translated to our language;
Froese [8] has a different proof.

Proposition 3.4. b — a € supp(¢).

Proof. Write kd(k) = [m(a)e 2 da and re(k) = [n(a)e 2 da in dis-
tributional sense where

and

n(a) =1s(—a).

By (2.25) and the uniqueness of inverse Laplace transforms
(m*m)(a) = 18" (a) + (n*7)(a), (3.18)

where m(a) = m(—a) and * is convolution. Since a,b € supp(s), we have
that a —b and b —a lie in supp[n*7/. If supp[m] C [0, ¢|, then supp[m x| C
[—c, c]. Hence by (3.18), b — a € supp|m)]. O

4. ANTIBOUND STATES

Our goal in this section is to prove Theorem 6. We will provide three
rather different proofs, two that I found and one supplied to me by G.M. Graf
[11]. We will present them first in the case when u(0) = 0 boundary condi-
tions with V' of compact support, and then make some remarks about the
other cases.

First Proof of Theorem 6. We begin by noting some properties of the Fred-
holm determinant d(x):
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(i) If k # 0, either d(k) # 0 or d(—x) # 0 (or both). This is true because
if d(+x) = 0, then the Jost solution f(z, +x) vanishes at z = 0, so the
function solving —u” + qu = —x%u with u(0) = 0, v/(0) = 1 is @™
for x > a = maxsupp(V). This cannot happen for both x and —x
since u # 0 for = large.

(2) If d(k = 0) = 0, then d'(k = 0) # 0. This well-known result holds
because %f(x, K) }n=0 and f(z,x)|._, both solve —u”4qu = 0 and are
equal to z and 1 for x > a. As with the proof of (i), it cannot happen
that both d(k = 0) = 0 (in which case the solution with »(0) = 0,
u'(0) =1 is a constant for z > a) and %(/{ = 0) = 0 (in which case u
is equal to ax for x > a).

(iii) If k,(A) are the bound state “energies” of —% + Ag, then k,())
is increasing in A for A\ in (Lp;00) where L, is the infimum over
those A with n or more bound states. This follows from first-order

perturbation theory (Feynman-Hellman theorem), which implies that
o(— 2
Gl = (p,qp) < —k2/X < 0.
(iv) There are no zeros of f in the quadrants Re x > 0, Im x # 0 since they
would correspond to imaginary eigenvalues.

(v) Resonances (zeros with Re k < 0, Im k # 0) occur in complex conjugate
pairs.

This means as X increase and we look at eigenvalues of —d‘i—Qg + Aq, the
only way bound states can change is by an antibound state turning into a
bound state. However, antibound states can change due to a complex pair
of resonances turning into a pair of antibound states or vice-versa.

Now imagine XA increasing past Lq. A single antibound state turns into a
bound state k1(\). For A near L, there is exactly one bound state/antibound
state near 0 since d'(L1) # 0 by (ii). In particular, there are no antibound
states in (—k1(A),0). Since —k1(A) cannot be an antibound state, no an-
tibound states can pass along the real axis into or out of (—x1(\),0) for
A € (L1,Ls2). Only pairs of resonances can produce pairs of antibound
states. Thus, for A € (L1, Ls), there are an even number of antibound
states in (—k1(A),0). At A = Lo, a single antibound state turns into a
bound state leaving an odd number in (—r1(A), —k2(A)). As X increases,
antibound states only get added or subtracted in pairs, so the number stays
odd. The argument is simple for each similar interval (—r,(\), —Kkp41(A))
for A > Ly41. O

Second Proof of Theorem 6. This proof has some connection with an old
paper of Ciafaloni-Menotti [6], who discuss a related result concerning al-
ternation as coupling constant is changed rather as k is varied. We define

d(_ﬁ) =e(K
T =) (4.1)
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If k; is the jth bound state 0 < K, < Kp—1 < -+ < K1, then d(k;) = 0 and
d(—£j) # 0 (as in (i) in the last proof). We will show that

lim (k — kj)e(k) < 0. (4.2)

R—Rj

It follows that e(k; +¢) < 0 and e(kj—1 —e) > 0 for € small and so,
by continuity, e(x) has an odd number of zeros (counting multiplicity) in
(Kj, kj—1). But zeros of d(—k) are the same as zeros of e(k).

We will prove (4.2) by using a representation for e(x) due to Froese [8, 9].
In this case

d(k) = det(1 4+ K(k))

K(R) () = V()2 UL oy 17
(K (k) — K(—r)(z,y) = 25 'V (z)"/?sinh (k) sinh(ky) |V (y) [/
is rank 1; call it A(k). Then
d(—k) = d(r) det(1 — (1 + K(x))*A(k))
= d(r)[1 = Tr((1+ K (x)) "' A(k))]
so [8, 9]:
e(r) =1 =26~ (V| %p0, (14 K (x)) "'V 20), (4.3)
where ¢g(x) = sinh(kz).
Let L(k) = VY/2(hg + V + &%) "1 |V|Y/2. Then, by the resolvent formula:
L(k) = K(k) — K(k)L(k)
1+ K(k) ™ =1-L(k).
Then by (4.3)
e(rk) =1 — 257 (g0, Vipo) + 26~ (Vipo, (ho +V + k%) Vpp).
It follows from this that

Jim (= rj)e(r;) = —2; 1 (267) 7 [(Vipo, m)

where 7); is the normalized eigenvector for Hy+ V' at energy —mjz. Thus, the
limit is non-positive. Since e has a pole, the limit is non-zero, and so (4.2)
is proven. O
Third Proof of Theorem 6 (Graf [11]). Let u(zx, k) solve the equation —u" +
qu = —r%u with u(0) = 0, «/(0) = 1. As is well known, u(z, x;) has j — 1
zeros, so since u(x, k) > 0 for  small, (—1)7tu(z, ;) > 0 for z near infinity.
Since ¢ has compact support, say [0, a],

u(z, k) =a(k)e ™ + B(k)e™, z>a
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and a and 8 are continuous since u(z, ), v/ (z, k) are, and «,3 can be
expressed in terms of suitable u, v’ data. By the sign condition on u near
infinity

(=17 ta(kj) >0, (4.4)

where one has strict positivity since u cannot be identically zero on (a, c0).

By the association of f and the Jost function, f(—x) = 0 if and only if
the solution which is e** near infinity vanishes at x = 0, that is, if and only
if a(k) = 0. By (4.4), a has an odd number of zeros in (kj, Kj—1). O

These proofs were stated for the case where H has u(0) = 0 boundary
conditions, but each proof can be modified to handle the other half-line
cases. For example, the third proof accommodates u’(0) 4+ hu(0) = 0 bound-
ary conditions by looking at the solution obeying that boundary condition
and u(0) = 1 normalization. And it handles an &?21_) term by replacing
exponentials by suitable Bessel functions.

The proofs also accommodate potentials with superexponential decay
with minor modification. For example, the second proof applies verbatim
to such potentials.

An illuminating example is the Bargmann potential [5] with Jost function

(suggested by Newton [22])

(K, — kl)(ﬁ — ]{72)
(K + ks + ika) (5 + kg — ihs)

where k; > 0 for j = 1,2, 3, 4. Such a potential has no antibound states and
seemingly violates Theorem 6. The point, of course, is that ¢ is not super-
exponential in this case, but only decays as e~ with a = min(ky, ko, k3).
In general, Theorem 6 does hold for potentials with exponential decay, say,
bounded by e~ ", but only for intervals (—k;j, —k;_1) with k; < a.

f(r) =

APPENDIX A. THE DETERMINANT OF A GREEN’S MATRIX
Let {a;}Y,, {b:}; be two sequences and let C' be the N x N matrix
Cij = Quini,j)Omax(ij); 1 <47 < N. (A1)

Our main goal in this appendix is to give a simple proof of the following
theorem of Barrett-Feinsilver [3], which we used in Section 2:

Theorem A.1. Let C be a matriz given by (A.1). Then
det(C’) = bN(aNbN,1 — aN,le) (aNfle2 — aN72bN71) . (a2b1 — albg)al.
(A.2)

Remarks. 1. Barrett-Feinsilver [3] actually state the theorem for matrices
closely related to ones given by A.1 and express the result in terms of the
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Cij, Viz:
N-1 N
det(C) = H (cijiCit1,i-1— Ci,i+10i+1,i)/HCiz‘-
-1 it1

2. The proof in [3] is combinatoric but has the advantage of generaliza-
tions in a variety of directions [2, 15, 4].

3. An idea similar to our proof in a related context appears in Jost-Pais
[12].

4. Matrices of type (A.1) were dubbed Green’s matrices by Karlin [14]
since they are a discrete analog of one-dimensional Green’s functions. In-

deed, they occur in Section 2 in connection with free Green’s functions. And
they arise as the inverses of symmetric tridiagonal matrices

I Yy ... 0
U1 0

J=|" _ _ (A.3)
0 e YN—-1 TN

in that there is a one-one correspondence realized by the inverse between
invertible matrices of the form (A.1) and invertible matrices of the form
(A.3). This is a theorem of Gantmacher-Krein [10] (see also Barrett [2]).
Indeed, given an invertible (A.3), a can be determined by

a; =1; ma+yra2=0; Yp-105-1 + Tpay + Ypapt1 =0, n=2,...N -1
(A.4)
YN—1bN— 1+ 2Nby =05 yn_1bp—1 + Tpby + Ynbpy1 =0, n=2,...,N —1,
(A.5)
where b is normalized by
yn(an+1b1 - bn+1an) =1, n=1,...,N—1 (A6)

[Note: (A.4)/(A.5) imply the left side of (A.6) is independent of n and it is
non-zero if J is invertible.] Conversely, given a matrix (A.1), one defines y,
by (A.6). [Note: det(C') # 0 means (a,—1b, —by—1a,) # 0 by Theorem A.1.]
And then one defines x,, by (A.4) or (A.5).

Proof of Theorem A.1. We prove the result by induction in N. The result
for N =1 is obvious. If we can prove the result when by_1 # 0, it follows
by continuity for all by _1, so suppose by_1 # 0. Consider the last row and
column of C. It has anby in the corner and otherwise every element is a;by
for some j € {1,..., N — 1}. It follows that

det(C) =anby det(C’N_l) + b?VF(al, eeyQp_1; b1, .. -bN—l)

where Cy_1 is the (N — 1) x (N — 1) Green’s matrix with the last row and
column removed and F' is some function of {a;} ¥ 7' and {b;} 7"
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Fix these values of @ and b and think of ay and by as variable and det(C')
as a function of them. When ay = ay_1 and by = by_1, then C has the
identical rows, so det(C) = 0, that is,

an_1bn_1 det(CN_l) + b?Vle =0
so, since by_1 # 0, F' = —an_1 det(Cn_1)/by—_1 and thus

det(C) = bN(aNbN,1 — aNfle) det(CNfl)/bel. (A?)

But by induction, we can assume (A.2) for det(Cy_1) and thus (A.7) implies

(A.2) for det(C). O
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