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ABSTRACT. Let {4 p bethe Krein spectral shift function for a pair of operators
A, B, with C' = A — B trace class. We establish the bound

[Feasnar< [ FlgeoMhar =3 [FG) - FG - Dlns(O),
j=1

where F' is any non-negative convex function on [0,00) with F(0) = 0 and
u;(C) are the singular values of C. Specializing to F(t) = tP, p > 1 this
improves a recent bound of Combes, Hislop, and Nakamura.

1. INTRODUCTION

Let A, B be bounded self-adjoint operators such that their difference A — B is
trace class. The Krein spectral shift function £4 g for the pair A, B is determined
by

()~ F(B) = [ £ NEan0) A
for all functions f € C§°(R) and &(X\) = 0 if || is large enough. The two bounds

[16am0lar < w4 B) )
and
[€a,B(A)] <n if A— Bisrank n (2)

are well known; see, for example, [5] or [6]. The Krein spectral shift function
can also be defined for unbounded self-adjoint operators A, B and enjoys the same
properties as long as their difference is trace class. The results of this paper extend
to general unbounded operators A and B (as long as their difference is trace class)
but for simplicity, we will suppose that A and B are bounded. For applications
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of the spectral shift function in scattering theory, see, for example, the survey
article [1].

The spectral shift function also found applications in the theory of random
Schrodinger operators. Kostrykin and Schrader [3, 4] constructed a spectral shift
density for random Schrédinger operators with Anderson-type potentials. More
recently, Combes, Hislop, and Nakamura [2] realized that LP-bounds on the Krein
spectral shift function can serve as a basic tool for a proof of Holder continuity of
the integrated density of states for a large class of continuous random Schrodinger
operators. In terms of the singular values of the difference C' = A — B, their bound
reads

feasly = ( [leasorar)” <3 ey ©

for 1 <p < oo. Note that (3) includes the endpoint cases (1) and (2) for p = 1 and
and in the limit p — oo, respectively.

To see what type of bound is the correct one for an LP-bound on the Krein
spectral shift function, we consider a special case: Let C' be a positive trace class
operator with eigenvalues ;. Calculating

uf(C) Z/ e

we see that the spectral shift function for the pair C, 0 is simply given by
EooN) =nif g1 <A< and €co(AN) =0ifA<0or A> 1. (4)

For cases like this where A and B are finite rank, it is known that the spectral
shift function is just the difference of the dimensions of the spectral subspaces —
which leads immediately to another way of seeing why (4) is true. In particular,
&c,0 enjoys the following important properties:

e {c,o takes only values in Ny (or Z if C' is not non-negative).
e For any non-negative function F' on [0, co) with F'(0) = 0, we have

o0

[ Flécahar =3~ FO)ws — pyea). (5)

j=1

e In addition, if ' is monotone increasing, then

/ ([&coM) dX = Z F(j—1)] py. (6)

The first two claims follow immediately from (4). Formally, the last claim follows
from the second by summation by parts. However, since

N
ZF(j)(Mj*MjH Z F(j—1))p; — F(N)pun+1,

j=1 j=1
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this usually poses some growth restriction on F'(j) to do the limit N — co. We
prefer not to do this but use positivity instead. Notice

M
M)~

<
Il
—
3

S OFG) (s — i) =

j=1

(F(n) — F(n—1)) (nj — pj+1)

I
Il
— =

F(n) — F(n—=1))(p; — pj+1)-

—
IN
3
IN

J
By the assumptions on F' and p;, all terms in this double sum are non-negative.

Hence we can use the Fubini-Tonelli theorem to freely interchange the summation
and conclude

Z F(j)(1j — pir1) =

WK

(F(”) - F(”—l)) Z (Mj - Mj+1)

Il
-

n

M

(F(n) — F(n—1))pn,

n

+
=

where we used the fact that the last sum telescopes and pu, — 0 as n — oo.
In particular, the right-hand side of (5) and (6) is finite if and only if the other
is and then they are equal. Below we will use this type of argument to freely do
summation by parts without a priori bounds on the boundary terms. Alternatively,
one could consider the case of finite rank operators C'= A — B first and then use
some approximation arguments.

Our main result is that the above example (6) is an extreme case:

Theorem 1. Let F' be a non-negative convex function on [0, 00) vanishing at zero.
Given a non-negative compact operator C with singular values p;(C), we have

[ Peaspar< [ Fiecannar
< . (7)
=Y [F() = FG-1)](C)
j=1
for all pairs of bounded operators A, B with >23°  pui(|A — Bl) < 3272, p;(C) for
all n € N. In particular, this is the case if |A— B| < C.

Remark. Moreover, if F is strictly convex, the above inequality is strict if either
the modulus of £4_p takes non-integer values on a set of positive Lebesgue measure
or one does not have equality in Lemma 3 below. However, it seems to be difficult
to find necessary and sufficient conditions on A and B alone for the case of equality
in (7).

Specializing to F(t) = tP for some p > 1 we get as a corollary,

Corollary 2. Let £4,p be the Krein spectral shift function for the pair A, B. In
terms of the singular values i of the difference A — B, we have the LP-bound

1€a,Bllp < 11§ a-B|ollp = (Z [nP — (nfl)p]unf/p, (8)

n=1
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Remarks. i) There are two different ways to see that (8) is, indeed, stronger than
the bound (3) by Combes et al. First, the direct argument: Rewrite

(S o) = (S i)

and consider the right-hand side as the [P-norm of the function n — n? in the
weighted [P-space [P(u) with measure p(n) := pn — pin41 for n € N. Write n =
14+ (n—1) and use Minkowski’s inequality for the {P(u)-norm to get

(S )" < (S0 "+ (30 17uti)

n=1

=+ (Lw-1um)
N " o 1/p
szu:/u(Z(n—Nwm)) ,

n=N

where, for the last inequality, we repeated the first step N times. Using monotone
convergence for the limit N — oo, we conclude

(7 1) <Yl 9)
n=1 n=1
For the soft argument, note that, according to (6),
> 1/p
(37— =1%)in) ™ = liéciollps
n=1

where C is any non-negative compact operator with singular values p,,. The bound
(3) for £ o immediately implies the inequality (9). Of course, the direct argument
is, in some sense, a reformulation of the inductive proof of Combes et al.

ii) Our result shows that if > % nP~'p, < oo, then £4, 5 € LP(R). Note that
this cannot be improved as far as only conditions on u,, are used. It is also strictly
better than the result by Combes et al. For example, if u, = n=Plog(n + 2)~,
then Combes et al. require a> p to conclude {4 5 € LP(R), while our result only
needs a>1.

2. Two PROOFS

We want to give two proofs of our main result, Theorem 1, both depending on dif-
ferent aspects of the problem. First, some notation. For a complex-valued function
f, let my be its distribution function, that is, mg(t) := [{X : [f(N\)| >t}|, with |.A]
the Lebesgue measure of a Borel set A C R. We will write m 4, g for the distribution
function of {4,p. The following lemma is the core of both proofs:

Lemma 3 (Basic Lemma). With C = A — B, we have for alln € Ny

[ee]

/OomA,B(t)dtg 3 uj(C):/oom‘cho(t)dt.

j=n+1
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Remark. Setting (v — s)4 := sup{0, x — s}, we have

| miwar= [5o0) - s an (10)

for all s > 0. Hence Lemma 3 is equivalent to

[ee]

[t =mears 3= wy(©) = [(ic oMl -n) dr

j=n+1

Proof of Lemma 3: By the formula (4) for ¢/,

Jteral)=mwix= 3 G=n)us ~ i)
j=n-+1
= D> D =)= )
l=n+1 j=I l=n+1

proving the second part of the assertion in the lemma.

For the inequality, let 1;, ¢; be two sets of orthonormal vectors such that A—B =
> ey i (dj, ). Note that ¢; = +¢); since A and B are self-adjoint. Set Cp := 0
and C,, := Z?:l wi{@;, -y, for n € N. The spectral shift function is transitive. In
particular,

éa,B =E&a,4+C, +€a+c,,B-
By (2) we know |£4,44c, | < n. Thus
(I€a,(N)| = n)+ < [€asc,.B(N)]
and hence, by (10) and (1):

[ mas@ai= [(easo-n. duc-c)= S

j=n+1

In the following we will write m and & for ma B, £4,B, respectively.

First proof of Theorem 1: For n € Ny, put a, := F(n+1) — F(n), so we have
F(n) = > g<jcn . The a, are monotone increasing due to the convexity of F,
that is, a, — a,_1 > 0 for all n € N. Furthermore, set

Tn = /noo m(t) dt

and observe that, due to (10),

[ easOl - mydr =z, aun - mnt). (1)
n<[§[<n+l
Look at
JRACIES Z [ rieonar (12)

n<\§\<n+1
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By convexity of F', we have F(s) < F(n)+ (s—n)(F(n+1) — F(n)) for s € [n, n+1].
Plugging this into (12), we infer

[ Faecnax
gi[F(n) / A+ ap / (|§(>\)|fn)d>\]

n=0 n<|g|<ntl n<|¢|<ntl
_ ,i [(7:01 ar) (m(n) — m(n+1)) + an (€n — Ty — m(n + 1))} (by (11))
- lf;al Zoj:l (m(n) —m(n+1)) + g:o an(2n — Tp41 — m(n+1))
= lioojalm(l—f-l) + i}an (Tn — Zpp —m(n+1))
_ i an (2 — Ts1). (13)

Note that if F' is strictly convex, we have equality in this inequality if and only if
¢ takes only integer values! Using that the terms in this sum are non-negative, we
can again reorder the summations freely to conclude, setting a_; := 0,

oo

JEQEOD AN D o —02) = 3 (01— a2) o — )

0<i<n

3
Il
=}

(a —a—1)x < 3 (a1 — ai—1) Z H (14)

1=0 j=1+1

(F(G) = F(G—1)u,

ol

Il
=}

ol

<.
Il
—

where in the last inequality we used positivity of the increments a; — a;—; (aka
convexity of F') and Lemma 3. This proves Theorem 1, including the case of
equality since, if F' is strictly convex and £ takes non-integer values on a set of
positive measure, the inequality in (13) is strict. We will come back to this question
in the second proof. [ ]

For the second proof we need some preparatory lemmas:

Lemma 4. For any non-negative, convex function F' on [0, 00) which vanishes at
zero, there exists a non-negative, locally finite measure vy on [0, 00) such that

F(t)= /Ooo(t —u)yvp(du) for allt > 0.

F is strictly convez if and only if vp is strictly positive, that is, vp([a,b]) > 0 for
all0 < a <b.

Proof. Of course, this proof is well known. We want to give a short proof for
completeness. Define F'(t) to be zero for negative ¢ — it then becomes convex on
all of R. The assumptions on F' show that the left derivative F” exists everywhere, is
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non-negative, monotone increasing, and continuous from the left. Hence it defines
a measure vp by setting vp([a,b)) := F’'(b) — F’(a). That this formula involves
intervals that include a is a consequence of the left continuity of F’ as we have
defined it. Note that in this formula F’(0) = 0 since it is the left derivative. The
measure vr has a point mass at 0 which is precisely the right derivative of F' at
zero. This measure is strictly positive on [0, 0o) if and only if F” is strictly increasing
on [0,00), that is, if and only if F is strictly convex. Moreover, by construction,
F'(s) =vp(]0,s)) for all s > 0. Calculating

/O(tfu_,_ypdu //dsypdu / #([0, 5)) ds

[0,t)

_/ Fi(s)ds = F(t)
0
shows the assertion. ]

Some more notation: Recall that for a function f, ms(t) := [{A | |f(N)] > t}]

and define
i [Cmp0di= [0 ) an

Lemma 5. Let F be any non-negative, convex function F on [0, 00) which vanishes
at zero. Given two functions f and g, we have that Qf < Q4 implies

/ F(FO)) dA < / F(lg) dA.

Moreover, if F' is strictly convex and Q < Q4 on a set of positive Lebesque measure,
then the inequality above is strict.

Proof. From Lemma 4 we infer

[ Fusonar- /Qf ) vr(du),

which concludes the proof. ]

Lemma 6. Suppose that g takes only values in an unbounded, discrete set S C
[0,00) with 0 € S. Then the inequality Q¢(s) < Qq(s) for s € S implies Q¢(t) <
Qq(t) for all t € [0, 00).

Proof. Let S = {0= so <s1 < s2 < ---}. Notice that Qs is always convex and,
furthermore, @, is linear on [s;, sj41]. The claim follows from convexity since, by
assumption, Qf(s) < Qq(s) for s € S. [ ]

Now we come to the

Second proof of Theorem 1: Given bounded operators A and B, let D = |A—B| and
C' any non-negative, compact, trace class operator with > ,uj( ) <>, mi(0)
for all n € N. The basic Lemma 3 shows

QfA,B(n) < QE\D\,U(n) < ch,o(n) for all n € Ny. (15)

Lemma 6 then implies that (15) extends from Ny to all positive real n. Once one
has that, Lemma 5 proves (7).
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If |£4,p] takes non-integer values on a set of positive Lebesgue measure, then
there exists n € No such that Q¢, , is strictly smaller than Q¢ , , on the interval
(n,n=+1) . This shows that if F is strictly convex, equality can only hold as long
as |£a,B| is integer-valued. ]

Acknowledgment: We thank Rowan Killip for a refreshing discussion.
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