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Abstract. We study ratio asymptotics, that is, existence of the
limit of Pn+1(z)/Pn(z) (Pn = monic orthogonal polynomial) and
the existence of weak limits of p2

n dµ (pn = Pn/‖Pn‖) as n → ∞
for orthogonal polynomials on the real line. We show existence of
ratio asymptotics at a single z0 with Im(z0) 6= 0 implies dµ is in
a Nevai class (i.e., an → a and bn → b where an, bn are the off-
diagonal and diagonal Jacobi parameters). For µ’s with bounded
support, we prove p2

n dµ has a weak limit if and only if lim bn,
lim a2n, and lim a2n+1 all exist. In both cases, we write down the
limits explicitly.

1. Introduction

In [7], Khrushchev asked two questions about orthogonal polynomi-
als on the unit circle [4, 13, 14] and found the following remarkable
theorems in terms of the monic orthogonal polynomials, Φn; the or-
thonormal polynomials, ϕn = Φn/‖Φn‖L2 ; and the Verblunsky coeffi-

cients, αn = −Φn+1(0).

Theorem A. Φ∗
n+1(z)/Φ∗

n(z) has a limit uniformly in z over compact
subsets of D if and only if either
(i) For ` = 1, 2, . . . , limn→∞ αn+`αn = 0, or
(ii) There is a ∈ (0, 1] and λ ∈ ∂D so that limn→∞|αn| = a,

limn→∞ ᾱn+1αn = a2λ.

Theorem B. |ϕn|2 dµ has a weak limit if and only if either
(i) For ` = 1, 2, . . . , limn→∞ αn+`αn = 0, or
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(ii) There exists a, a′ ∈ (0, 1], λ ∈ ∂D, and integers k ≥ 1 and ` ∈
{0, 1, . . . , k − 1} so that

lim
n→∞

|α2nk+`+j| =





a if j = 0

a′ if j = k

0 if j = 1, . . . , k − 1, k + 1, . . . , 2k − 1

lim
n→∞

ᾱ2nk+`α2nk+k+` = aa′λ

Khrushchev [7] also describes explicitly the limits in both cases. Our
goal in this paper is to find the analogs of these theorems for orthogonal
polynomials on the real line. The answers and proofs are much simpler
— the methods of Khrushchev which depend heavily on Schur functions
do not seem to extend, nor does mapping bounded intervals on R to
∂D (as in Szegő [14, Sect. 11.5]) seem to allow direct transfer.

Before stating our results, let us set up notation. Given a measure
dµ on R with

∫
x2n dµ < ∞ for all n, we let Pn(x) be the monic

orthogonal and pn(x) the orthonormal polynomials. To define them,
we suppose henceforth that dµ is nontrivial, that is, not supported on
a finite set, and we will also assume throughout that µ(R) = 1. Thus
Pn is determined by Pn(x) = xn+ lower order and

∫
xjPn(x) dµ(x) = 0

for j = 0, 1, . . . , n−1. pn = Pn/‖Pn‖ where ‖ · ‖ is the L2(R, dµ) norm.
It is well-known [14] that the Pn’s obey a three-term recursion rela-

tion. There are bj ∈ R and aj ∈ (0,∞) so that

xPn(x) = Pn+1(x) + bn+1Pn(x) + a2
nPn−1(x) (1.1)

Our indexing of b1, b2, . . . and a1, a2, . . . is not common — often the
labelling starts at b0 and a0. We take this convention from [8] for
reasons explained there. (1.1) implies inductively that

‖Pn‖ = an . . . a1 (1.2)

and then that the pn obey the recursion relation

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.3)

In turn, (1.3) suggests we study the Jacobi matrix

J =




b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .


 (1.4)
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Since {pn}∞n=0 is an orthonormal set,

U :
N∑

j=0

vjpj →



v1

v2
...




is a unitary map of the closed span, S, of the p’s to `2(Z+) (Z+ =
{1, 2, . . . }) and for v ∈ S0 = span of p’s, we have U−1JUv =
(multiplication by x) v.

In case the moment problem is determinant [1, 12], J is selfadjoint,
and dµ is just the spectral measure for J and vector δ = (1, 0, . . . ).

We can now state our main results.

Theorem 1 (≡ Theorems 2.1 and 2.2). Suppose that at a single z0 ∈
C\R, we have

lim
n→∞

Pn+1(z)

Pn(z)
= f(z) (1.5)

for z = z0. Then, for some a ∈ [0,∞) and b ∈ R,

lim
n→∞

an = a lim
n→∞

bn = b (1.6)

Conversely, if (1.6) holds and spectrum(J) is the spectrum of the op-
erator J , then (1.5) holds for all z ∈ C\spectrum(J) and

f(z) =
(z − b) +

√
(z − b)2 − 4a2

2
(1.7)

where the branch of the square root is taken with
√· · · = z + O(1/z)

near z = ∞.

Theorem 2 (≡ Theorems 3.1 and 3.2). Let

dµn = p2
n(x) dµ(x) (1.8)

Suppose that for ` = 1, 2, and 4, limn→∞
∫

x` dµn exists. Then for
a, c ∈ [0,∞) and b ∈ R, we have

lim
n→∞

bn = b lim
n→∞

a2n = a lim
n→∞

a2n+1 = c (1.9)

Conversely, if (1.9) holds, the dµn have supports lying in a fixed
bounded interval and there is a measure dρb;a,c so that for any con-
tinuous f on R (including f(x) = x`), we have

∫
f(x) dµn(x) →

∫
f(x) dρ(x) (1.10)

dρ is a function of a, b, c only, and if dρb;a,c = dρb′;a′c′, we have b = b′

and either a = a′, c = c′ or a = c′, c = a′.
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Theorem 1 is proven in Section 2 and Theorem 2 in Section 3. dρ
is calculated in Section 5. Theorems 1 and 2 seem to be optimal in
that the two pieces of real data (1.6) (i.e., a and b) correspond to
one complex number f(z0) while the three moments in Theorem 2
correspond to the real numbers, a, b, and c.

There is previous work of Nevai [9] on the subjects of Theorem 1 and
Theorem 2. He proved that (1.6) implies (1.5) with f given by (1.7),
and conversely proved that if (1.5) holds for all z ∈ C\R and f(z)
given by (1.7), then (1.6) holds. He did not get a result depending on
a single z0 nor, more importantly, did he show that (1.7) are the only
possible limits in (1.5).

Nevai [9] also proved that if an → a and bn → b, then dµn has a
weak limit (he wrote down the explicit form of dρb;a,a for a = c, as we
will in Section 5).

In [10], Nevai made a conjecture closely related to a special case of
Theorem 2. Namely,

Nevai Conjecture 2.16 ([10]). If (1.10) holds for all bounded uni-
formly continuous functions on R with dρ(x) = π−1χ[−1,1](x)(1 −
x2)−1/2 dx, then an → 1

2
and bn → 0.

Corollary to Theorem 2. If one supposes supp(dµ) is bounded, then
Nevai’s conjecture holds.

Proof. x` ¹ supp(dµ) is bounded, so
∫

x` dµn converges for ` = 1, 2, 4
to the same limit as for an ≡ 1

2
and b ≡ 0. Uniqueness of the limit (and

the fact that a = c) completes the proof. ¤

Related to this is

Nevai Conjecture 2.17 ([10]). If for some A, we have
∫∞

A
dµn → 0,

then for every ε > 0, [A + ε, α) ∩ supp(dµ) is finite.

We mention

Weaker Nevai Conjecture 2.17. If for some A > 0, µn({x | |x| >
A}) → 0, then supp(dµ) is bounded.

Clearly, Nevai Conjecture 2.17 implies the weaker version. The point
of this is that a positive solution of the Weaker Nevai Conjecture 2.17
plus the results of this paper would imply Nevai Conjecture 2.16.

It is a pleasure to thank Rowan Killip and Paul Nevai for cogent
comments.
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2. Ratio Asymptotics

The two main theorems on limits of Pn+1(x)/Pn(x) are as follows:

Theorem 2.1. Suppose an → a ∈ [0,∞) and bn → b ∈ R. Then for
all z ∈ C\spectrum(J), we have that

lim
n→∞

Pn+1(z)

Pn(z)
=

(z − b) +
√

(z − b)2 − 4a2

2
(2.1)

Remarks. 1. In (2.1), we take the branch of the square root with√· · · ∼ z for |z| large, that is, as z →∞.

2. For z /∈ R, Pn is nonzero for all n. (2.1) for z0 ∈ R\spectrum(J)
includes the fact that for z0 fixed, Pn(z0) 6= 0 for all large n.

3. One can also show that for z ∈ spectrum(J)\[b − 2a, b + 2a] so
that z is an eigenvalue of J ,

lim
n→∞

Pn+1(z)

Pn(z)
=

(z − b)−
√

(z − b)2 − 4a2

2
(2.2)

Theorem 2.2. Suppose for one z0 with Im z0 6= 0,
limn→∞ Pn+1(z)/Pn(z) exists (and is finite). Then there exists
a ∈ [0,∞) with b ∈ R so that an → a and bn → b so that (2.1) holds.
In particular, the only functions that can occur as ratio asymptotics
are the ones in (2.1).

Theorem 2.1 is not new. In this generality, it is due to Nevai [9],
who also proved a converse; namely, he showed that if (2.1) holds for
all z ∈ C\R, then an → a and bn → b. But we will sketch two proofs of
Theorem 2.1 for the reader’s convenience. One uses transfer matrices
and the other, operator theory.

As a preliminary, we need:

Proposition 2.3. Let {xj,n}n
j=1 be the zeros of Pn(x) with

x1,n < x2,n < · · · < xn,n (2.3)

Then
(i)

−Pn−1(z)

Pn(z)
=

n∑
j=0

αj,n

xj,n − z
(2.4)

where αj,n > 0 and
n∑

j=1

αj,n = 1 (2.5)
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(ii) If Im z > 0,

0 < − Im

(
Pn−1(z)

Pn(z)

)
≤ 1

Im z
(2.6)

and ∣∣∣∣
Pn−1(z)

Pn(z)

∣∣∣∣ ≤
1

Im z
(2.7)

(iii) If Im z > 0,

Im

(
Pn+1

Pn

)
≥ Im z (2.8)

Proof. (i) Since Pn is monic, Pn(z) =
∏n

j=1(z − xj,n). Since Pn−1/Pn

has simple poles and goes to zero at infinity, (2.4) holds for some αj,n.
Multiplying by xi,n − z and taking z to xi,n, we find

αj,n =

∏n−1
`=1 (xj,n − x`,n−1)∏n
`=1; ` 6=j(zj,n − x`,n)

(2.9)

For j = n, all factors in the right are positive. Since zeros of Pn−1 and
Pn interlace as we decrease j by one, both numerator and denominator
each pick up a minus sign which cancel to prove αj,n > 0.

The left side of (2.4) is −z−1 + O(z−2) as z →∞ since Pn is monic.
The right side is −z−1(

∑n
j=0 αj,n) + O(z−2), so (2.5) holds.

(ii) This follows from (2.4) and (2.5) if one notes that for any x ∈ R
and z with Im z > 0,

0 < Im

(
1

x− z

)
≤ 1

|x− z| ≤
1

Im z

(iii) This follows immediately from

Pn+1(z)

Pn(z)
= z − bn+1 − a2

n

Pn−1(z)

Pn(z)
(2.10)

Since Im Pn−1/Pn < 0, (2.10) implies (2.8). ¤
Proof of Theorem 2.2. By replacing x by (x−Re z0)/ Im z0 (i.e., trans-
lating and scaling the measure), we can suppose for notational simplic-
ity that z0 = i. Let

α = lim
n→∞

Pn+1(i)

Pn(i)
(2.11)

By (2.8), Im α ≥ 1 so − Im(α−1) = Im α/|α|2 > 0.
Taking imaginary parts of (2.10), we see that

a2
n =

[Im(Pn+1/Pn)− 1]

Im(−Pn−1/Pn)
→ (Im α− 1)

Im(−α−1)
≡ a2 ≥ 0 (2.12)
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proving an has a limit.
Taking real parts of (2.10) shows

bn+1 = −a2
n Re

(
Pn−1

Pn

)
− Re

(
Pn+1

Pn

)
→ −a2 Re(α−1)− Re(α) ≡ b

(2.13)
¤

Our first proof of Theorem 2.1 is a simple consequence on the fol-
lowing theorem of Poincaré (see [3, 11, 13] for proofs):

Theorem of Poincaré. Let uj ∈ C solve the n-th order difference
equation

un+j = aj,1un+j−1 + aj,2un+j−2 + · · ·+ aj,nuj (2.14)

j = 1, 2, . . . . Suppose
(i) aj,n 6= 0 for all j.
(ii) limj→∞ aj,` = A` exists for ` = 1, . . . , n.
Let λ1, . . . , λn be the solutions of

An + An−1λ + · · ·+ A1λ
n−1 = λn (2.15)

Suppose {λj}n
j=1 are distinct, and for j 6= k, |λj| 6= |λk|. Then, if u is

not identically zero, we have for some k that

lim
j→∞

uj+1

uj

= λk (2.16)

First Proof of Theorem 2.1. (1.1) is exactly of the form (2.14). The
equation (2.15) becomes

λ2 = (z − b)λ− a2 (2.17)

whose solutions are

λ± =
(z − b)±

√
(z − b)2 − 4a2

2
(2.18)

To prove (2.1), we must show that if z /∈ [b−2a, b+2a], then |λ+| 6= |λ−|
and then identify which root is taken by the ratio.

If α and β are complex numbers, |α+β| = |α−β| if and only if α and
β are orthogonal as vectors in C = R2, if and only if β = icα for c ∈ R,
if and only if β2 = −c2α2. Taking α = (z−b) and β =

√
(z − b)2 − 4a2,

we see |λ+| = |λ−| if and only if

−c2(z − b)2 = (z − b)2 − 4a2

or

z − b = ± 2a√
1 + c2

(2.19)

for c ∈ R. (2.19) holds if and only if z ∈ [b− 2a, b + 2a].
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Since |λ+| 6= |λ−|, λ±(z) are analytic in C\[b−2a, b+2a] (as is obvious
from (2.18)). Since λ+λ− = a2, |λ+| |λ−| = a2, and λ+ = z + O(1/z)
as |z| → ∞, |λ+| > a for |z| large, and so since |λ+| |λ−| = a2 and
|λ+| 6= |λ−| implies |λ±| 6= a, we see

|λ+| > a |λ−| < a all z ∈ C\[b− 2a, b + 2a] (2.20)

Thus for all z ∈ C\[b − 2a, b + 2a], Poincaré’s theorem applies and
Pn+1/Pn has a limit `(z) where for each z, `(z) = λ+ or `(z) = λ−.

By (2.6), Pn/Pn+1 is a normal family on R\C, so `(z) is analytic on
R\C. By (2.8), |`(z)| > |Im z|, so for |z| large, `(z) = λ+(z) and thus,
by analyticity, `(z) = λ+(z) for z ∈ C\R. This establishes (2.1) there.

For z ∈ R\[b− 2a, b + 2a],

lim
n→∞

pn+1(z)

pn(z)
= lim

n→∞
1

a

Pn+1(z)

Pn(z)
=

λ±(z)

a

If the limit is λ−(z), lim|pn+1/pn| < 1, so pn ∈ `2 and z ∈ spectrum(J).
Conversely, if it is λ+, lim|pn+1/pn| > 1, so pn /∈ `2. Thus (2.1) holds
for z ∈ R\spectrum(J) and (2.2) holds for z ∈ spectrum(J)\[b−2a, b+
2a]. ¤
Second Proof of Theorem 2.1. Let J (n) be the n × n matrix obtained
from the first n rows and columns of J . As is well-known,

det(z − J (n)) = Pn(z)

Thus, by Cramer’s rule,

Pn−1(z)

Pn(z)
= (z − J (n))−1

nn = (z − J̃ (n))−1
11 (2.21)

where J̃
(n)
ij = J̃

(n)
n−i, n−j, that is,

J̃ (n) =




bn an−1 0 . . . . . .
an−1 bn−1 an−2 . . . . . .

0 an−2 bn−2 . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . a1 b1




(2.22)

If J̃ (∞) is the constant Jacobi matrix an ≡ a, bn ≡ b, it is clear as
operators on `2(Z+), J̃ (n) → J̃ (∞) strongly. It follows that as operators
on `2(Z), (J̃ (n) − z)−1 → (J̃ (∞) − z)−1 strongly for Im z 6= 0. Thus

Pn−1(z)

Pn(z)
= (z − J̃ (n))−1

11 → (z − J̃ (∞))−1
11 (2.23)

Let w solve
a(w + w−1) + b = z (2.24)



RATIO ASYMPTOTICS AND WEAK ASYMPTOTIC MEASURES 9

with |w| < 1. Let un = wn. Thus un ∈ `2 and

(z − J̃ (∞))u = (aw−1)δ1

so
(z − J̃ (∞))−1

11 = aw−1 (2.25)

Solving (2.24), we see that aw−1 = RHS of (2.1). This proves (2.1) on
C\R.

On R\spectrum(J), one shows the eigenvalues of J̃ (n) (equals zeros
of Pn(z)) outside [b− 2a, b + 2a] converge to the eigenvalues of J so for
z ∈ R\spectrum(J), (J̃ (n) − z)−1 → (J̃ (∞) − z)−1 strongly also. ¤

3. Weak Asymptotic Limits

Let dµn = p2
n dµ. In this section, the main theorems are

Theorem 3.1. Suppose

bn → b a2n → a a2n+1 → c (3.1)

for b ∈ R, a, c ∈ [0,∞). Then as n → ∞, dµn has a weak limit
dρb;a,c(x), and for every `,∫

x` dµn →
∫

x` dρb;a,c(x) (3.2)

Remarks. 1. The hypotheses imply that dµ is supported in [inf bn −
2 sup(an), sup bn + 2 sup(an)] which is bounded, so weak convergence is
equivalent to convergence of the moments.

2. We will see below that dρb′;a′,c′ = dρb;a,c implies b′ = b and either
a′ = a, c′ = c, or a′ = c, c′ = a.

3. We will discuss the form of dρb;a,c in Section 5.

Theorem 3.2. Suppose for ` = 1, 2, and 4,

lim
n→∞

∫
x`dµn = A` (3.3)

Then for some a, b, c, (3.1) holds. Moreover, A1, A2, A4 determine b,
a + c, |a− c| (i.e., they determine b and the unordered pair (a, c)).

Remarks. 1. We will see A2 < ∞ implies sup(|bn|+ |an|) < ∞.

2. The final assertion proves the second remark after Theorem 3.1.

Our proofs will depend on a graphical representation of
∫

x` dµn.
Consider the lattice Z+ = {0, 1, . . . }. We will consider a random walk
on Z+ where at each step, one either stays at the site one is at or one
jumps by a single site. Paths have unnormalized weights, products over
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the steps: bk+1 if one stays at site k, ak+1 is one move from k to k+1 or
k + 1 to k. To be more precise, a path is a sequence ρ0, ρ1, . . . , ρ` ∈ Z+

so that |ρm − ρm−1| ≤ 1 and

W (ρ) =
`−1∏
j=0

w(ρj, ρj+1) (3.4)

and

w(ρj, ρj+1) =





bk+1 if ρj+1 = ρj = k

ak+1 if ρj+1 = ρj + 1 = k + 1

ak it ρj+1 = ρj − 1 = k − 1

(3.5)

Here is the key tool:

Proposition 3.3. ∫
x` dµn =

∑
ρ∈Qn,`

W (ρ) (3.6)

where Qn,` is the set of all paths of length ` with ρ0 = ρ` = n.

Proof. Since
xpn = an+1pn+1 + bn+1pn + anpn−1

we see immediately that, by induction in j,

xjpn =
∑

cj,m,npm (3.7)

where
cj,m,n =

∑
ρ∈Qn,m,j

W (ρ)

and Qn,m,j is all paths of length j with ρ0 = n and ρj = m. (3.6)
follows since

∫
x` dµn = 〈pn, x`pn〉 = c`,n,n. ¤

Proof of Theorem 3.1. Under hypothesis (3.1), J is bounded, so dµ has
a bounded support, so weak convergence is equivalent to (3.2). By
Proposition 3.3,

∫
x` dµn is a finite sum over paths. This representation

shows that if an, bn, and ãn, b̃n are two sets of Jacobi parameters and
limn→∞|an − ãn| + |bn − b̃n| = 0, then |∫ x`dµn −

∫
x`dµ̃n| → 0. Thus

we need only prove (3.2) for bn ≡ b, a2n ≡ a, a2n+1 ≡ c.
Fix `. So long as ` < 2n, there is a one-one correspondence between

paths ρ ∈ Qn,` and ρ ∈ Qn,+1,` by U = TS,

T (ρ)j = ρj + 1

S(ρ)j = n− (ρj − n)

S reflects the path in n, T translates by 1. ` < 2n is needed to assure
paths do not get mapped into ones that have ρj < 0, which is forbidden
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(and that the inverse does not do this), showing U is a bijection of Qn,`

and Qn+1,`. The key point is that W (Uρ) = W (ρ), for if ρj = ρj+1, the
weight is always b and both S and T interchange links with weight a
and those with weight c. It follows that if b ≡ b, a2n ≡ a, a2n+1 ≡ c,
then

∫
x` dρn is independent of n once ` < 2n, so the limit exists.

Once the moments exist, they provide a measure since the nonnegative
Hankel matrices converge to nonnegative Hankel matrices. ¤
Proof of Theorem 3.2.

∫
xp2

n dµ = bn+1, so (3.4) for ` = 1 implies
bn+1 → A1 ≡ b. Let dµ̃(x) = dµ(x + b). The Jacobi parameters of
µ̃ are given by

ãn = an b̃n = bn − b (3.8)

Moreover,
∫

x` dµn =
∑̀
j=0

(
`

j

)
(b)`−j

∫
xj dµ̃n (3.9)

and ∫
x` dµ̃n =

∑̀
j=0

(
`

j

)
(−b)`−j

∫
xj dµn (3.10)

Since b̃n → 0 and every odd ` random walk has a bk factor in it,∫
x` dµ̃n → 0 for all odd `. Thus, (3.9) implies

∫
x3 dµn exists and then

(3.10) that
∫

x4 dµ̃n converges. Thus, without loss, we suppose A1 = 0
and bn → 0.

If bn → 0, any path with ρj = ρj+1 contributes zero in the limit; so
we can restrict to paths with |ρj+1− ρj| = 1. Thus, looking at the two
such paths with ρ2 = ρ0 = n,

lim
n→∞

a2
n+1 + a2

n = A2 (3.11)

In looking at paths with ρ0 = ρ4 = n, all those with ρ2 = n contribute
(
∫

x2dµn)2, so

lim
n→∞

a2
n+2a

2
n+1 + a2

na2
n−1 = A4 − A2

2 (3.12)

Thus, using (x− y)2 = (x + y)2 − 4xy,

lim
n→∞

(a2
n+2 − a2

n+1)
2 + (a2

n − a2
n−1)

2 = 6A2
2 − 4A4 (3.13)

Suppose an has a limit point, a, that is, an(j) → a as j →∞ for a sub-

sequence. Define c =
√

A2 − a2. By (3.11), for any ` = 0,±1,±2, . . . ,

an(j)+` →
{

a ` even

c ` odd
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In particular, by (3.13),

|a2 − c2| =
√

3A2
2 − 2A4 (3.14)

Since also

a2 + c2 = A2 (3.15)

there are at most two solutions of (3.14), (3.15):

a2 = 1
2

[
A2 +

√
3A2

2 − 2A4

]
(3.16)

c2 = 1
2

[
A2 −

√
3A2

2 − 2A4

]
(3.17)

and the one with a, c, reversed. Thus the right sides of (3.16) and
(3.17) are the only limit points of a2

n.
The lemma below completes the proof. ¤

Lemma 3.4. Let xn be a sequence so that for some α, β ∈ R,

lim
n→∞

xn + xn+1 = α + β (3.18)

lim
n→∞

|xn − xn+1| = |α− β| (3.19)

Then either

lim
n

x2n = α lim
n

x2n+1 = β

or

lim
n

x2n = β lim
n

x2n+1 = α

Proof. By replacing xn by xn− 1
2
(α + β), we can suppose α = −β ≥ 0.

If α = β = 0, the result is trivial, so suppose α = −β > 0. Pick N so
that for n > N ,

|xn + xn+1| < α

|xn − xn+1| > α

Thus, since |xn− xn+1| > |xn + xn+2|, xn and xn+1 have opposite signs
for all n > N , that is, for n > N , either (−1)nxn > 0 or (−1)n+1xn > 0.
Since ±α are the only allowed limit points if (−1)nxn > 0, x2n → α,
x2n+1 → β = −α, and if (−1)n+1xn > 0, x2n → β, x2n+1 → α. ¤
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4. Ratio Asymptotics for pn+1/pn

In this section and the next, we discuss two further issues related
to our results: what about lim pn+1/pn (pn rather than Pn) and we
calculate the measures dρb;a,c of (3.2) (already well known if a = c).

Let

Rn(z) =
Pn+1(z)

Pn(z)
rn(z) =

pn+1(z)

pn(z)
(4.1)

Since pn = (a1 . . . an)−1Pn,

rn(z) = a−1
n+1Rn(z) (4.2)

so we immediately see with Theorem 2.1 that if an → a 6= 0 and bn → b,

lim
n→∞

rn(z) =
(z − b) +

√
(z − b)2 − 4a2

2a
(4.3)

We want to address a converse. One problem we find is that while
|Rn(z)| > Im|z|, without an a priori upper bound on an, we do not
have a bound for |rn(z)|, so it is not obvious that existence of the limit
implies an is bounded.

Example 4.1. Let an = en!, bn = arbitrary bounded sequence, espe-
cially one without a limit. Then, by (1.3) and

rn(z) =
z − bn+1

an+1

− an

an+1

[rn−1(z)]−1

=
z − bn+1

an+1

− a2
n

an+1

[Rn−1(z)]−1 (4.4)

by (4.2). By (2.7),

|rn(z)| ≤ |z − bn+1|
an+1

+
a2

n

an+1

|Im z|−1 → 0 (4.5)

since an is chosen so a2
n/an+1 → 0. Thus for this example, rn(z) →

0. ¤
Because of this example, we will need to suppose that if lim rn(z)

exists, it has nonzero imaginary part. Here is a result that requires two
points rather than one, with some extra conditions:

Theorem 4.2. Suppose supn an < ∞. Suppose z1, z2 are in {z | Im z >
0} and let

lim
n→∞

rn(zj) = λj (4.6)

with

(a) Im λj > 0
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and either

(b1)
Im λ1

Im z1

6= Im λ2

Im z2

or

(b2)
Im(λ−1

1 )

Im z1

6= Im(λ−1
2 )

Im z2

Then an → a 6= 0 and bn → b.

Proof. By (1.3),

an+1rn(z) = (z − bn+1)− an[rn−1(z)]−1 (4.7)

Since Im(−rn−1(z))−1 > 0, (4.7) implies

an+1 Im rn(zj) ≥ Im zj

which implies

lim inf an ≥ Im zj

Im λj

> 0

so the a’s are bounded above and below.
Let (a, c) be a limit point of (an+1, an). By (4.7),

a Im λj = Im zj + c(Im(−λj)
−1) (4.8)

If Im λ1/ Im z1 6= Im λ2/ Im z2, (4.8) implies

a

[
Im λ1

Im z1

− Im λ2

Im z2

]
= c

[
Im(−λ1)

−1

Im z1

− Im(−λ2)
−1

Im z2

]

so we can solve for a as a multiple of c, and then for c in (4.8) for j = 1.
If Im(λ1)

−1/ Im z1 6= Im(λ2)
−1/ Im z2, we solve for c as a multiple of a.

Either way, we see (4.8) has a unique solution for (a, c) so (an+1, an) →
(a, c). But then (an+2, an+1) → (a, c) so a = c and an → a 6= 0.
This implies lim Rn(z1) = lim ancn(z) exists. So, by Theorem 4.2,
bn → b. ¤

We have a second remark about the existence of limn→∞ rn(z). In
the OPUC case, existence of ϕ∗n+1(z)/ϕ∗n(z) for all z ∈ D implies the
same of Φ∗

n+1(z)/Φ∗
n(z) (and, by taking αj = 0 if j 6= n2, αn2 = 1

2
,

not conversely) for ϕ∗n+1(0)/ϕ∗n(0) = ρ−1
n , so existence of the ϕ ratio

limit at z = 0 implies ρn → ρ∞ and then, since Φ∗
n+1(z)/Φ∗

n(z) =
ρnϕ∗n+1(0)/ϕ∗n(0), we get the Φ∗

n ratio limits.
The same is true here, but alas, the analog of z = 0 for OPUC is

z = ∞ here. The following captures the idea, without the need for
hypotheses (b) of Theorem 4.2.
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Theorem 4.3. Suppose an and |bn| are bounded and rn(z) converges
to a nonzero limit as n → ∞ for all z in a small neighborhood of
z0 ∈ C\R. Then an → a and bn → b for some a 6= 0, b ∈ R.

Proof. By (4.4),

rn(z) =
z

an+1

− bn+1

an+1

+ O

(
1

z−1

)
(4.9)

Thus

rn(z)−1 =
an+1

z
+

bn+1

z2
+ O

(
1

z3

)
(4.10)

If supp(dµ) ⊂ [−c, c] (take c = supn|bn|+ 2 sup|an|), then for ρ > c,
by the Cauchy formula for every ` ∈ Z and the fact that rn has its zeros
in [−c, c], 1

2πi

∮
|z|=ρ

rn(z)−1z` dz is ρ independent for ρ > c. Taking ρ to

infinity, we get, by (4.9),

1

an+1

=
1

2πi

∮

|z|=c+1

rn(z)−1 dz (4.11)

− bn+1

an+1

=
1

2πi

∮

|z|=c+1

rn(z)−1z dz (4.12)

Thus uniform convergence of rn(z) to a limit on |z| = c + 1 implies
convergence of an and bn. Therefore, we are reduced to showing con-
vergence of r−1

n on a single compact subset of C\R implies convergence
on all compact subsets of C\[−c, c].

By (2.4) and (2.5) and xi,n ∈ [−c, c], we have

|Rn(z)−1| ≤ sup
x∈[−c,c]

|z − x|−1

and thus, by (4.2),

|rn(z)−1| ≤ [
sup

n
|an|

]
sup

x∈[−c,c]

|z − x|−1 (4.13)

Thus convergence of rn(z) on a compact implies, by Vitali’s theo-
rem and (4.13), uniform convergence of rn(z)−1 on compact sets in
C\[−c, c]. ¤
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5. Calculation of dρb;a,c(x)

In this section, we compute the weak limit ρb;a,c of p2
n dµ for µ, the

measure corresponding to the Jacobi matrix a2n = c, a2n+1 = a, bn = b.
We will also find dµb;a,c, the measure associated to the Jacobi matrix

J =




b a
a b c

c b a
a b c

. . . . . . . . .




(5.1)

We begin by computing

f(z; b; a, c) =

∫
dµb;a,c(x)

z − x
(5.2)

and

G(z; b; a, c) =

∫
dρb;a,c(x)

z − x
(5.3)

This calculation is not unrelated to calculations in Khrushchev [7]
for the measure associated to a period 2 Verblunsky coefficient. As he
does, we could ask for the Jacobi coefficients for the measure dρ and
show they converge exponentially fast to those for dµ (with a need to
interchange a and c depending on the sign of a− c).

We begin with a result about a finite Jacobi matrix

J [1,n] =




b1 a1

a1 b1 a2

. . . . . . . . .
. . . . . . . . .

. . . . . . an−1

an−1 bn




(5.4)

We let J [j,k] for 1 ≤ j ≤ k ≤ n denote the (k − j + 1) × (k − j + 1)
matrix we get by keeping rows and columns between j and k (inclusive).
We refer to the row number of J [j,k] as j, j + 1, . . . so, for example,
(J [j,k])jj = bj.

Here is a key lemma that appears in Gesztesy-Simon [5] although
closely related formulae have appeared elsewhere; in particular, the
k = 1, n results go back to Jacobi:
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Proposition 5.1. For 2 ≤ k ≤ n− 1,

[(z − J [1,n])−1]kk

= 1
/{z − bk − a2

k−1[(z − J [1,k−1])−1]k−1,k−1 − a2
k[(z − J [k+1,n])−1]k+1,k+1}

(5.5)

For k = 1,

[(z − J [1,n])−1]11 = 1
/{z − b1 − a2

1[(z − J [2,n])−1]22} (5.6)

Proof. Let 2 ≤ k ≤ n − 1. Here is a proof that is more direct than
that in [5], although the essence is the same. If row and column k are
removed, the resulting matrix is J [1,k−1]⊕J [k+1,n] so, by Cramer’s rule,

[(z − J [1,n])−1]kk =
det(z − J [1,k−1]) det(z − J [k+1,n])

det(z − J [1,n])
(5.7)

Expanding det(z − J [1,n]) in minors in row k,

det(z − J [1,n]) = (z − bk)d1 − a2
k−1d2 − a2

kd3 (5.8)

where

d1 = det(z − J [1,k−1]) det(z − J [k+1,n]) (5.9)

d2 = det(z − J [1,k−2]) det(z − J [k+1,n]) (5.10)

d3 = det(z − J [1,k−1]) det(z − J [k+2,n]) (5.11)

(where det(z − J [1,0]) and det(z − J [n+1,n]), which occur if k = 2 or
k = n− 1, are interpreted as 1).

Finally, note that, by Cramer’s rule again,

[(z − J [1,k−1])−1]k−1,k−1 =
d2

d1

(5.12)

[(z − J [k+1,n])−1]k+1,k+1 =
d3

d1

(5.13)

(5.7)–(5.13) imply (5.5). (5.6) is proven in a similar way (but, e.g., the
analog of (5.8) has only two terms). ¤

Corollary 5.2. For the functions f and G of (5.2)/ (5.3), we have
that for z ∈ C\R,

[G(z; b; a, c)]−1 = z − b− c2f(z; b; a, c)− a2f(z; b; c, a) (5.14)

Remark. This formula makes it evident once again that G is sym-
metric in a and c.
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Proof. Let J be given by (5.1). On `2(Z+), J [1,n]⊕0 converges strongly
to J . Thus

f(z; b; a, c) = [(z − J)−1]11 = lim
n→∞

[(z − J [1,n])−1]11 (5.15)

Moreover,
∫

pk(x)2 dµb;a,c(x)

z − x
= [(z − J)−1]kk = lim

n→∞
[(z − J [1,n])−1]kk (5.16)

so

G(z; b; a, c) = lim
k→∞

[
lim

n→∞
[(z − J [1,n])−1]kk

]
(5.17)

(5.14) follows by using (5.5), (5.15), and (5.17) together with the struc-
ture of J (e.g., J [1+2`,n+2`] = J [1,n] and J [1+2`+1,n+2`+1] is J̃ [1,n] for J̃ ,
the matrix with a and c reversed). ¤

Remark. The limit of (5.5) as n → ∞ is a precise analog of
Khrushchev’s formula [6] that for the unit circle case, the Schur func-
tion of |ϕn|2 dµ is bnfn. It would be interesting to see if one could
translate our proof here to a proof of Khrushchev’s formula using the
CMV matrix [2, 13] in place of the Jacobi matrix.

Corollary 5.3.

[f(z; b; a, c)]−1 = z − b− a2f(z; b; c, a) (5.18)

Proof. This is identical to the last proof using (5.6) in place of (5.5).
Of course, this is a special case of the well-known Stieltjes continued
fraction expansion for the Stieltjes transform of the measure associated
to a Jacobi matrix. ¤

Henceforth, for simplicity, we take b = 0. Since G(z; b; a, c) = G(z−
b; 0; a, c), and similarly for f , it is easy to go from this case to the case
of general b.

As a warmup, consider the case a = c. Then (5.18) becomes

1 = f(z − a2f) (5.19)

which is solved by

f(z; 0; a, a) =
z −√z2 − 4a2

2a2
(5.20)

where the branch of the square root is taken (with
√· · · = z + O(1/z)

as |z| → ∞ consistent with f(z) ∼ 1/z + O(z−2)). By (5.14), we get

G(z; 0; a, a) =
1√

z2 − 4a2
(5.21)
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limε↓0 Im G(x + iε; 0; a, a) is only nonzero for z ∈ [−2a, 2a] so

dρb;a,a(x) =
1

π
lim
ε↓0

Im G(x + iε; b; a, c) dx (5.22)

implies the well-known

dρb;a,a =
1

π
√

4a2 − (x− b)2
χ[b−2a,b+2a](x) dx (5.23)

consistent with Nevai’s conjecture.
Here is the main result of this section:

Theorem 5.4. Define

I(z; a, c) = (c2 − a2 + z2)2 − 4z2c2 (5.24)

Then

(i) f(z; 0; a, c) =
c2 − a2 + z2 −

√
I(z; a, c)

2c2z
(5.25)

(ii) G(z; 0; a, c) =
1√

I(z; a, c) +
√

I(z; c, a)
(5.26)

(iii) dρb;a,c,(x) = [χJ2(x) + χJ2(x)]w(x) dx (5.27)

where

J1 = [b + |c− a|, b + a + c] J2 = −J1 (5.28)

and for x ∈ J1 ∪ J2,

w(x) = π−1
[√−I(x− b; a, c) +

√
−I(x− b; c, a)

]−1
(5.29)

Proof. (i) Iterating (5.15) once, we get a quadratic equation for
f(z; 0; a, c) whose solution (the one with f = 1/z +O(1/z2) at infinity)
is (5.25).

(ii) Follows from (5.14) and (5.25).

(iii) I(z; a, c) = 0 if and only if c2 − a2 + z2 = ±2zc if and only if

(z ± c)2 = a2 if and only if z = ±a± c (independent ±) which say
√

I
has a branch cut on J1 ∪ J2 and G is purely imaginary there. (5.22)
completes the proof. ¤

We note there is another proof of the theorem using Floquet theory
and the theory of periodic whole-line Jacobi matrices.
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