ON A THEOREM OF KAC AND GILBERT
BARRY SIMON

ABSTRACT. We prove a general operator theoretic result that as-
serts that many multiplicity two selfadjoint operators have simple
singular spectrum.

1. INTRODUCTION

In 1963, 1.S. Kac [5] proved that whole-line Schrédinger operators,
——% 4+ V(z), for fairly general Vs have simple singular spectrum. It
is well known (e.g., V' = 0) that the absolutely continuous spectrum
can have multiplicity two and that under limit point hypotheses, eigen-
values are simple. But the simplicity of the singular continuous spec-
trum is surprisingly subtle. Some insight into the result was obtained
by Gilbert [3], who found a proof using the subordinacy theory of
Gilbert-Pearson [4]. The proof is elegant but depends on the substan-
tial machinery of subordinacy. Our purpose here is to note an abstract
result that relates these things to the celebrated result of Aronszajn-
Donoghue [1]:

Theorem 1. Let A be a bounded selfadjoint operator on H and ¢ € H
a cyclic vector for A. Suppose A € R\{0} and

B=A+Xe, ) (1.1)
Then the singular spectral measures for A and B are disjoint.
We state this and the next theorem in the bounded case for simplic-

ity; we discuss the general case later. Here’s the main result of this
note:

Theorem 2. Let H = K1 & Ky and P : ' H — Ki, the canonical
projection. Let A; € L(K;) for j = 1,2, and ¢ € H so that p1 = Py
and vy = (1 — P)g are cyclic for Ay and Ay. Let A € R\{0}. Then

has simple singular spectrum.
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Remark. If A is unitarily equivalent to A, and has a.c. spectrum,
then C' has multiplicity two a.c. spectrum. So it is interesting that the
singular spectrum is simple.

In Section 2, we prove Theorem 2. In Section 3, we apply it to whole-
line Jacobi matrices. In Section 4, we discuss extensions of Theorem 2
to the case of unbounded selfadjoint operators and to unitary operators.
In Section 5, we apply the results of Section 4 to Schrédinger operators
and to extended CMV matrices.

2. PROOF OF THEOREM 2

Let du; be the spectral measure for ¢,; and A; and B = A; @ As.
Thus K; = L*(R, du;) in such a way that A; is multiplication by z and

p; = L.

Pick disjoint sets X,Y,Z C R whose union is R so du; [ X is
equivalent to dus [ X and pi(Y) = pa(Z) = 0. For example, if
duy = f(duy + dus), then one can take X = {z | 0 < f(x) < 1},

V={z|f(x) =0}, Z={z] f(x) =1}.

Let £, be the cyclic subspace generated by ¢ and B and Ly = L.
Then ¥ = (xx,—Xxx) is a cyclic vector for B | L5 and its spectral
measure 1s

duf = xx (@) (dp + dpo) (2.1)
In particular,
(dp)s < (dpa + dpa)s (2.2)
By definition of £y, ¢ is cyclic for B | £; and
ClLi=B+Aep, )

so, by Theorem 1,

(duS)s L (dpl)s = (dpy + dps)s (2:3)
Thus, the singular parts of dug and d,ug = dug are disjoint, which
implies that the singular spectrum of C' is simple. U

The proof shows that the singular parts of B and C' overlap in
Xx (dpy + dus)s and, in particular,

Corollary 2.1. B and C' have mutually singular parts if and only if
Ay and Ay have mutually singular parts.
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3. APPLICATION TO JACOBI MATRICES

A two-sided Jacobi matrix is defined by two two-sided sequences,
{b,32 . and {a,}°> . with b, € R and a, € (0,00) and sup,,(|an|+
bn|) < oo. It defines a bounded operator J on (*(Z) by

(Ju)p = ap_1Up_1 + bptiy + aptiy 1 (3.1)
SO
.. b_1 a_1 0 0 ce
J = | bo Qo 0 e (32)
0 Qo b1 aq

Theorem 3.1. The singular spectrum of J is simple.

Proof. Let Ky = £*((—o0, —1]), Ko = £3([0,00)), and ¢ the vector with

components
1 j=-1,0
_ 3.3
so Pp=46_1; (1 = P)p = do.
Then
J—a_1(p,p) = A1 & Ay
where A, is the one-sided Jacobi matrix with
bg —a—_1 Qo 0
Ay = Qo bi  ap

and Ay in 0_1,0_o,... basis is

b_1 — Q-1 Q_9 0
Al = a_o b_g a_s

Thus Py is cyclic for A; and (1 — P)y is cyclic for As. Theorem 2
applies and implies the desired result. O

4. UNITARY AND UNBOUNDED SELFADJOINT OPERATORS

Let Uy, Uy, and W be unitary operators on Ky, Ko, and H = K1 B K,
so W —U; @ U, is rank one, and so if ¢ € ker(W —U; & UQ)L, then Py
is cyclic for Uy and (1 — P)y is cyclic for Uy, where P is the canonical
projection of H to IC;. Suppose W — U; & Uy # 0. Then
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Theorem 4.1. The singular spectrum of W is simple.

Proof. We begin by proving the unitary analog of the Aronszajn-
Donoghue theorem. If W — V is rank one and nonzero, then for
¢ a unit vector in ker(W — V)*, we have Wy = AV for some
A€ ID = {z € C| |z = 1}. By a direct calculation (see, e.g.,

[6]),
(wigizw)z%éégg (4.1)
(i) =10 4

and
9(z) = A" f(2) (4.3)

If ¢ cyclic for W, the singular spectrum in W is supported on those
z € 0D with
11%1 rzg(rz) =1

and similarly, the singular spectrum of V' on the set of z € JD with
lim rz f(rz) =1

r1

By (4.3), these sets are disjoint.
This proves the Aronszajn-Donoghue theorem in the unitary case,
and that implies this theorem by mimicking the proof of Theorem 2. [

Next, let Ay, Ay, and C' be potentially unbounded selfadjoint oper-
ators on Ky, Ko, and H = K1 & Ky. Suppose D = (A4; ® Ay —4)7! —
(C — )71 is rank one with ¢ € (ker D)t so Py is cyclic for A; and
(1 — P)p for Ay. Then with
Theorem 4.1 applies, so

Theorem 4.2. C' has simple singular spectrum.

5. EXTENDED CMYV MATRICES AND SCHRODINGER OPERATORS

Extended CMV matrices enter in the theory of the orthogonal poly-
nomials on the unit circle [6]. They are defined by a family of Verblun-
sky coefficients {a;}32_ with a; € D = {2z € C| |z| = 1} as follows.

Let ©(«) be the 2 x 2 matrix

m@:(a p) (5.1)
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where p = (1 — |a|?)'/2.

Think of ¢*(Z), first as a direct sum @&"____C? with the n-th factor
spanned by (d2p, 62,+1) and let M = @O (az,), then as a direct sum
with the n-th factor spanned by (09,11, 02,12) and £ = GO (ag,y1)-
Then & = LM is the extended CMV matrix.

We claim
Theorem 5.1. £ always has simple singular spectrum.
Proof. Let
1+a
xr =
14 a_1

det(@(al) - (g ?)) —0

by a simple calculation. It is thus rank one, so if € is defined by
replacing ©(a_;) by (£9), £ — £ is rank one. On the other hand, € is
a direct sum of two half-line CMV matrices and it is easy to see Py
and (1 — P)y are cyclic. Thus Theorem 4.1 applies. O

Then

Finally, we turn to the Schrodinger operator case that motivated us
in the first place. Suppose H = —% + V where V € L} (—00,00) is

limit point at both +00 and —oo. Let H; (resp. Hy) be H on L?(0, 00)
(resp. L?*(—0o0,0)) with w(0) = 0 boundary conditions. Then

(H—14)— (Hy © Hy —14)""

is rank one by the explicit Green’s function formulae [2], and its kernel
is spanned by a function ¢ with

d? :
(—ﬁjLV)gO:zgp x#0 (5.2)
with ¢ L? at +00 and —oo and (0, ) = ¢(0_). (5.2) implies ¢ | [0, 00)
(resp. ¢ [ (—00,0]) is cyclic for Hy (resp. Hy). Theorem 4.2 applies
and yields the Kac-Gilbert theorem:

Theorem 5.2. —% + V' has simple singular spectrum.
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