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Abstract

We discuss asymptotics of the zeros of orthogonal polynomials on the real line

and on the unit circle when the recursion coefficients are periodic. The zeros on

or near the absolutely continuous spectrum have a clock structure with spacings
inverse to the density of zeros. Zeros away from the a.c. spectrum have limit

points modp and only finitely many of them.(© 2000 Wiley Periodicals, Inc.

1 Introduction

This paper is the third in a series [18, 19] that discusses detailed asymptotics of
the zeros of orthogonal polynomials with special emphasis on distances between
nearby zeros. We discuss both orthogonal polynomials on the real line (OPRL)
where the basic recursion for the orthonormal polynomjalér), is

(1.1) $pn($) = An+1Pn+1 ($) + bn+1pn($) + anpnfl(m)

(an, >0forn =1,2,..., b, real, andp_;(x) = 0), and orthogonal polynomials
on the unit circle (OPUC) where the basic recursion is

(1.2) Pr1(2) = o (200(2) — Angli (2))

Herea,, are complex coefficients lying in the unit difkand

(1.3) on(2) = 2" en(1/2)

and

(1-4) Pn = (1 - ‘O‘n|2)1/2

In this paper, we focus on the case where the Jacobi coeffidients> |, {bn }o2
or the Verblunsky coefficientg, }5°, are periodic, that is, for some

(15) an+p = dn bn—l—p = bn
or
(16) Qnyp = Qp

It should be possible to say something about perturbations of a periodic sequence,
saya'”, which obeys (1.6) and,, = ') + da, with |5,| — 0 sufficiently fast.
We leave the details to be worked out elsewhere.
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2 B. SIMON

To describe our results, we begin by summarizing some of the basics of the
structure of the measures and recursion relations when (1.5) or (1.6) holds. We will
say more about this underlying structure in the sections below. In this introduction,
we will assume that all gaps are open, although we don’t need and won't use that
assumption in the detailed discussion.

When (1.5) holds, the continuous part of the underlying meagigregn R is
supported orp closed intervalge;, 5;], 5 = 1,...,p, called bands, with gaps
(B, aj+1) In between. Each gap has zero or one mass point.Hfienction of
the measurédp,

(1.7) m(z) = / dp()

r—z
has a meromorphic continuation to the gepus1 hyperelliptic Riemann surface,
S, associated tm§:1($ — aj)(z — B;)]/2. This surface has a natural projection
7 : S — C, atwofold cover except at the branch poidis; }/_, U {3;},_;.
7B}, aj+1] is acircle andn(z) has exactly one polg, .. ., y,—1 on each circle.

It has been known for many years (see Faber [2]) that the density of Zeiss
supported onugzl[aj,ﬁj] = B and is the equilibrium measure fé in potential
theory. We defing:(E) = ffl dk. Thenk(5;) = j/p. Our main results about
OPRL are:

(1) We can describe the zeros pf,—1(x) exactly (not just asymptotically) in
terms ofr(v;) andk(E).
(2) Asymptotically, as» — oo, the number of zeros ¢f,, in each bandc;, 3;],

N9, obeyssup,|2 — N(™7)| < oo, and the zerogz ™y N7) opey
1

J n
0=1,2,...,. N(m3) 1
asn — oQ.

(3) z € Cis alimit of zeros ofp,, (all ) if and only if z lies in supfdp).

(4) Outside the bands, there are at m®st+ 2b — 3 points which are limits of
zeros ofp,,, 51 for eachb = 1,...,p and, except for these limits, zeros
have no accumulation points @\bands. While this is our bound, an optimal
bound might bep — 2.

For OPUC, the continuous part of the measuye, is supported op disjoint
intervals {e? | zj <0 <y}, j=1,...,p, in 0D with p gaps in between
{e? | yj <6 < xj11} with 2,41 = 27+ 1. Each gap has zero or one mass point.
The Caratbodory function of the measuk:,

- 10
(L.9) ) = [ S duto)

has a meromorphic continuation frdinto the genug — 1 hyperelliptic Riemann
surfaceS, associated tf[[}_, (z — ¢"*7)(z — ¢"¥7)]'/2. The surface has a natural
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projectiont : S — C, and the closure of each gap has a circle as the inverse image.
F has a single pole in each such circlegsia all atyy, . . ., v,.

Again, the density of zeros is the equilibrium measure for the bands and each
band has mask/p in this measure. See [17], especially Chapter 11, for a discus-
sion of periodic OPUC. Our main results for OPUC are:

(1) We can describe the zeros@f , — »,,, exactly (note, not zeros qfy,,).

(2") Asymptotically, a1 — oo, the number of zeros qf,, near each bandy ("7,
obeyssup,, | — N ()| < o0, and the points on the bands closest to the zeros
obey an estimate like (1.8).

(3") z € Cis alimit of zeros ofp,, (all n) if and only if z lies in supfdpu).

(4) There are at mostp + 2b — 1 points which are limits of zeros af,,, for
eachb = 1,...,p and, except for these limits, zeros have no accumulation
points inC\bands.

In Section 2, we discuss OPRL when (1.5) holds, and in Section 3, OPUC when
(1.6) holds. Each section begins with a summary of transfer matrix techniques for
periodic recursion coefficients (Floquet theory).

While | am unaware of any previous work on the precise subject of Sections 2
and 3, the results are closely related to prior work of Peherstorfer [7, 8], who dis-
cusses zeros in terms of measures supported on a union of bands with a particular
structure that overlaps our class of measures (see, in particular, Proposition 3.7 in
[7]). For a discussion of zeros for OPUC with two bands, see [5].

Our striking result listed as (1) above (see Theorem 2.1 below) is easy to prove
once one realizes it is true — indeed, we provide two elementary proofs. The
referee has informed us that while there is no explicit discussion of zeros in [6],
our Theorem 2.1 follows in a few lines from Corollary 2.1d in [6].

These papers also consider situations where the recursion coefficients are only
almost periodic. For any finite collection of closed intervaldfoor closed arcs on
0D, there is a natural isospectral torus of OPRL or OPUC where the correspond-
ing m- or F-function has minimal degree on the Riemann surface (see, e.g., [17,
Section 11.8]). It would be interesting to extend the results of the current paper to
that case.

2 OPRL With Periodic Jacobi Coefficients

In this section, we analyze the zeros of OPRL with Jacobi coefficients obeying
(1.5). We begin with a summary of the theory of transfer matrices, discriminants,
and Abelian functions associated to this situation. A reference for much of this
theory is von Moerbeke [21]; a discussion of the discriminant can be found in
Hochstadt [3], von Moerbeke [21], Toda [20], and Last [4]. The theory is close to
the OPUC theory developed in Chapter 11 of [17].

Define the2 x 2 matrix,

1 (z—br —ak>
2.1 A =
@D £(2) ag41 ( Ak+1 0
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where
(2.2) ap = ap
Thus
(2.3) det(Ay) = &
Ok+1
and the abstract form of (1.1)
(24) 2Up = Ap41Un4+1 + Opp1Un + Anln_1

is equivalent to

(2.5) <“”+1> - An< tn )
Un Unp—1

So, in particular,

(2.6) (pgzgg >> = ApAn_1... A (;)

This motivates the definition of the transfer matrix,
(2.7) To(z) = Ap—1(2) ... Ao(2)
forn=1,2,.... We have, by (1.5), that
(2.8) Tonpro = Ty(Tp)™
suggesting thdl, plays a basic role. By (2.3) and (2.2),
(2.9) det(T,) =1

A fundamental quantity is the discriminant
(2.10) A(z) =Tr(Ty(2))
By (2.6), we have

(2 n—1(2

e 2= () i)

whereq, (z) is a polynomial of degree that is essentially the polynomial of the
second kind (the normalization is not the standard one but involves angktra
By (2.9) and (2.10)7,(z) has eigenvalues

Alz)
2

(2.12) Ty(z) = +/(B)? 1

In a moment, we will define branch cuts in such a way that on all\@futs,
(2.13) T+ (2)[ > [T (2)]
so (2.8) implies the Lyapunov exponent is given by

. 1 1
(2.14) Jim - log [ T(2)] = 1ogIT4(2)] = 7(2)



FINE STRUCTURE OF THE ZEROS OF OFP, lll 5

(2.12) meansgl';| = |I'_| if and only if A(z) € [-2,2], and one shows that
this only happens if is real. Moreover, ifA(z) € (—2,2), thenA’(z) # 0. Thus,
for « very negative(—1)?A(x) > 0 and solutions of —1)PA(z) = +2 alternate
as+2,—2,-2,+2,+2,—2,—2,..., which we label as

(2.15) <f<aa<BFPlaz<---<G

SinceA(x) is a polynomial of degreg, there arep solutions ofA(z) = 2 and of
A(z) = —2, s02p points{a; }i_; U {B;}i_;.

The bands arpyy, 81], [az2, B2], - . ., [ap, Bp] and the gaps argdy, az), (52, as),
ooy (Bp=1,pt1). If somes; = «aj41, we say thej-th gap is closed. Otherwise
we say the gap is open.

If we remove the bands frof, ' (z) are single-valued analytic functions and
(2.13) holds. Moreovet; ' has an analytic continuation to the Riemann surface,
S, of genus?! < p — 1 where/ is the number of open gaps is defined by the
function[(z — a1)(z — Bp) [Topen gaph? — B5)(z — aj41)]'/%. T_ is precisely the
analytic continuation of .. to the second sheet.

The Dirichlet data are partially thoses where

(2.16) T, () (é) e, <(1]>

that is, points where th2l matrix element off}, vanishes. It can be seen that the

Dirichlet dataz’s occur, one to each gap, that is,, ..., z,—1 with 3; < z; <
ajr1. If zis at an edge of a gap, then = c,, is 1. Otherwise|c;| # 1. If
lc;| > 1, we add the sign; = —1to z;, and if|¢;| < 1, we add the siga; = +1

to z;. Thus the values of Dirichlet data for each open gap are two copies of;]
glued at the ends, that is, a circle. The set of Dirichlet data is thdslamensional
torus. Itis a fundamental result [21] that the map fr@sandbd’s to Dirichlet data
sets up a one-one correspondence ta’alandb’s with a givenA, that is, the set
of a’s andb’s with a givenA is an/-dimensional torus.

The m-function (1.7) associated p has a meromorphic continuation to the
Riemann surface$, with poles precisely at the poinis on the principal sheet if
oj = +1 and on the bottom sheetdf; = —1. p has point mass precisely at those
zj € (B, aj41) With o; = +1. It has absolutely continuous support exactly the
union of the bands, and has no singular part other than the possible point masses in
the gaps.

Finally, in the review, we note that the potential theoretic equilibrium measure
dk for the set of bands has several critical properties:

(1) If k(x) = [, dk, then

(2.17) K(35) = hlagi) =
k can be related explicitly td\ by
A(z) = 2cos(pr(1 — k(x)))
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(2) The Thouless formula holds:
(2.18) v(z) = /log|z — x| dk(z) +log Cp

wherev is given by (2.14) and’ is the (logarithmic) capacity aB.
(3) The (logarithmic) capacity of the bands is given by

(2.19) Cp = (j]i[laj>_1

(4) T, is the complex Green’s function f@\bands, that is,

(2.20) I'i(2) =Cpexp (p/log(z — ) dk:(x))

That completes the review of periodic OPRL. We now turn to the study of
the zeros. We begin by describing exactly (not just asymptotically!) the zeros of
Pmpfl:

Theorem 2.1. The zeros of’,,,_1(x) are exactly
(i) Thep — 1 Dirichlet data points{a; }"_1.

(ii) The(m—l)ppoints{x,g”;)} k=1,.p Where
’ q=1,...m—1

)y _ k=1, 4

(2.21) e

Remarks. 1. The points of (2.21) can be described as follows. Break each
band[«;, 8;] into m pieces of equal size in equilibrium measure. 'Elfﬁ) are the
interior break points.

2. If a gap is closed, we include its position in the “Dirichlet points” of (i).

3. Generically, there are not zeros at the band edges, that is, (2.24)-has
1,...,m — 1 but notg = 0 or ¢ = m. Butit can happen that one or more of the
Dirichlet data points is at at; 1 or aj;.

4. This immediately implies that once one proves that the density of zeros
exists, that it is given bylk.

5. It is remarkable that this result is new, given that it is so elegant and its
proof so simple! | think this is because the OP community most often focuses
on measures and doesn’t think so much about the recursion parameters and the
Schibdinger operator community doesn’t usually think of zero®pf

6. We will give two proofs of this result below. We have been informed by the
referee that it can also be proven using Corollary 2.1d in [6].

Example 2.2.Letb, =0, a,, = % which has periogh = 1. It is well-known in this
case that theP, are essentially Chebyshev polynomials of the second kind, that is,
1 sin(n +1)0

2.22 P, =
( ) n(cost) AL sin 6



FINE STRUCTURE OF THE ZEROS OF OFP, lll 7

ThusP,,_; has zeros at points where

(2.23) o=""" =1, .m-1

m

(the zeros atl = 0 and# = 7 are cancelled by thein(6)). k(z) = m — arccos(x)
and(2.23)is (2.21) We see that Theorem 2.1 generalizes the obvious result on the
zeros of the Chebyshev polynomials of the second kind. O

First Proof of Theorem 2.1By (2.11), zeros of?,,,_ are precisely points where

the 12 matrix element ofl},,, vanishes, that is, points Whe@) is an eigenvector

of T;,,. That s, zeros of’,,,_; are Dirichlet points for this perioghp problem.
When (1.5) holds, we can view thgs andb’s as periodic of periodnp. There

are closed gaps whef®,,(z) = +1, that is, interior points to the original bands

where(I'1)™ = 1, that is, points where (2.21) holds. Thus, the Dirichlet data for

T, are exactly the points claimed. O

Theorem 2.1 immediately implies point (2) from the introduction.

Theorem 2.3.Let P, (=) be a family of OPRL associated to a set of Jacobi param-
eters obeying1.5). Let(c;, ;) be a single band and lev (7) be the number of
zeros ofP, in that band. Then

(2.24) |NMPF3) _ (1 — 1)| < min(b+ 1, p — b)

for -1 < b < p — 1. In particular,

(NS

(2.25) ‘N("’j) - "‘ <1+
p

Proof. By a variational principle for any, n/,

(2.26) (NI - NS < |n — |
(2.24) is immediate from Theorem 2.1 if we take= mp — 1 andn’ = mp +
(p — 1). (2.25) follows from (2.24) given thahin(b+ 1,p — b) < p/2. O

Remark. Because of possibilities of Dirichlet data zerosogtand/or3;, we
need(a;, 8;) in defining N (7). Itis more natural to usf;, 5;]. If one does that,
(2.24) become8 + min(b + 1,p — b) and (2.25)3 + §.

To go beyond these results and prove clock behavior for the zerps,of;
(b # —1 modp), we need to analyze the structurepgfin terms ofl",,I"_. For
z not a branch point (or closed gap), # I'_. I'; is well-defined onC\bands
since|I'y| > |I'_|. On the bandgI';| = |I'_| and, indeed, the boundary values
on the two sides of a band are distinct. But is analytic onC\bands, so for such
z, we can definé’+ by

(2.27) T,(z) =T P, +T_P_
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whereP,, P_ are2 x 2 rank one projections obeying

(2.28) P2=P, P*=P. PP =P P =0
and
(2.29) P, +P =1

It follows from (2.27) and (2.29) that
Tp(z) —T_(2)1

(2.30) P, =

r,—TI_
~ Ty(z) =Ty (2)1
(2.31) p. =22 IT,

which, in particular, shows thd?, is a meromorphic function o whose second-
sheet values are just_.

Define

(2.32) a(z) = <<(1)

)
(2.33) b(2) = < <é> , Pi(2) (é) >
(

S0 (2.29) implies

(2.34) < (‘i) P(2)
(2.35) <<(1)> P(2) ((1)>> — 11— b(2)

Under most circumstances,z) has a pole at band edges whére—I'_ — 0.
For later purpose, we note théf)), (7,(z) — T-1)(5)) = (). T,(2)(y)) has a
finite limit at such points. Later we will be looking at

ot -1 = ((})ne (o)) Fop

~( (2) T(2) (3) Yy

if I —T_ — 0. Thisis zero if and only if (}), 7,,() (;)) = 0, that is, if and only
if the edge of the band is a Dirichlet data point.
(2.27) and (2.28) imply

(2.36) Typ(2) = Tp(2)™ = TPy + T P_
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SO
(2.37) Top(2) <(1)> — [a()(T — T™)] (g) T [b(=)TT + (1= b(z)I™) (é)
Thus, by (2.25) fob > 0,

(2.38)
Pmerbfl = < <(1)> s TbTmp <é> >
(239) = [(I7 — I™)a(2)la-a() + BT + (1 b(=)I™)pp-r (2)
where
(2.40) g—2(2)=1 ¢-1(2)=0

Remark.See Peherstorfer [6, Theorem 3.1] for another formulaes., ;.

Second Proof of Theorem 2.Eorb = 0, p,—1 = 0 andg,—» = 1, SO
(2.41) Pmp—1(2) = (I —=T")a(z)
Its zeros are thus points whet¢z) = 0 or wherel* = I'"”, except that at branch
points,a(z) can have a pole which can cancel a zerd'gf— I'"".
a(z) = 0 if and only if (}) is an eigenvector of ,(z), that is, exactly at the
Dirichlet data points.
I'" = I'™ is equivalent td'?™ = 1 sinceI'_ = I';'. This implies|T';| =
|T'_|, so can only happen on the bands. On the bands, by (2.20),
(2.42) 'y (x) = exp(mip k(x))
andI'?™ = 1 if and only if
(2.43) mpk(x) € Z
that is, if (2.21) holds for some = 0,...,m. Butatqg = 0 org = m, a(z) has a

pole that cancels the zero bf’ — I'"", so the zeros of,,,—1 are precisely given
by (i) and (ii) of Theorem 2.1. O

We can use (2.39) to analyze zeroogf, 1,1 for largem. We begin with the
region away from the bands:

Theorem 2.4. Letz € C\bands and leb be fixed. Then
(2.44) Tm Ty (2) " ppis1(2) = a(2)ap2(2) + b(2)pp1 (2)

In particular, if the right side of(2.44)is calledj,(z), then

(1) If jp(20) # O, thenp,,p1p—1(2) is nonvanishing neat, for m large.

(2) If ju(20) = 0, thenp,,,,+5—1(2) has a zerdk zeros ifz has ak-th order zero
at zg) near z for m large.

(3) There are at mostp + 2b — 3 points inC\bands wheregj(z) is zero.
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Proof. (2.44) is immediate from (2.39) an@l_ /T";| < 1. (1) and (2) then follow
by Hurwitz’s theorem if we show that(z) is not identically zero.
By (2.1) and (2.7) neat = oo,

T,(2) = (H) (5 0)+oe™

which impliesT'y = ([T_, a;)~'2” + O(#~!) andT'_(z) = O(>77). It follows
thata(z) — 0 asz — oo andb(z) — 1. Thus, sincey,_; has degreé — 1, (2.39)
shows that as — oo on the main sheefj,(z9) has a pole of order — 1.

On the other sheef?; changes td°_, soa(z) — 0 andb(z) — 0 on the other
sheet. It follows thayj,(z) has a pole ato of degree at modt — 2. j;, also has
poles of degree at mostat each branch point. Thug,(z) as a function ot has
total degree at mo&p + (b— 1) + (b— 2) = 2p+ 2b— 3 which bounds the number
of zeros. O

Finally, we turn to zeros on the bands. A major role will be played by the
function on the right side of (2.44) {s for “Jost” since this acts in many ways like
a Jost function):

(2.45) Jv(2) = a(2)qp—2(2) + b(2)pp-1(2)
Lemma 2.5. j; is nonvanishing on the interior of the bands.

Remark By j,(x) for = real, we mean (2.45) with defined vidim, o a(z+ic)
sincePy. are only defined offC\ bands.

Proof. As already mentioned, the boundary values obey

(2.46) liﬁ]l P, (z +ic) = 1%1 P_(xz —ie)

(by the two-sheeted nature 6f andP_). Thus, by (2.32)—(2.35),
(2.47) a(z +1i0) = —a(z — i0)

(2.48) b(x +1i0) =1 — b(x — i0)

Moreover, sincd), andI' ;. are real orR\bandsg(z) andb(z) are real orR\bands
(by (2.26)). Thus

(2.49) a(z +1i0) = a(x — i0)
(2.50) b(x 4 i0) = b(x — 0)
The last four equations imply far in the bands
(2.51) Re(a(x +1i0)) =0
(2.52) Re(b(z + i0)) = %

p andgq are real orR, so
(2.53) Re(jy()) = 5 pp1()
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Thus, if j5(x¢) = 0 on the bandsgy, 1 (x¢) = 0.

As we have seeny(z) = 0 only at the Dirichlet points and so not in the bands.
If pp_1(z0) = 0 = jp(x0), then sincen(zg) # 0, we also havey,_o(zp) = 0.
By (2.11), if pp_1(z0) = qp—2(x0), thendet(Ty(xo)) = 0, which is false. We
conclude via proof by contradiction thaf(x) has no zeros. O

Theorem 2.6. For eachb and each band, there is an integeD, ; so, for suffi-
ciently largem, the number of zerod/, ;(m) of p,,pis—1 iS eitherm — Dy ; or
m — Dy ; + 1. In particular,

n_ Nmg)

(2.54) sup
p

n7j

< 00

Moreover,(1.8) holds.
Remark.This result is closely related to Proposition 3.7 in [7].

Proof. By (2.39), (2.46), (2.47), and (2.48), we have

(2.55) Prmptb—1(2) = Jo(2)I' ()™ + jp(x) Ty (2)
on the bands. By the lemmg,(z) is nonvanishing inside band so

(2.56) Jo(@) = |n ()]
where~y, is continuous — indeed, real analytic — and by a simple argumegnt,
andy; have limits asc | o orz 1 ;.

By (2.42), (2.55) becomes

(2.57) Pmp+b—1(x) = 2|jp(z)| cos(mmp k(z) + v (z))
Define Dy, ; to be the negative of the integral part(ef(5;) — v («;)]/7. Since
SUPpandd Vs (Z)| < oo, there is, for largen, at most one solution ofmp k(z) +
vw(z) = w¢ for eachl. Given this, it is immediate that the number of zeros is
m — Dy j orm — Dy ; + 1.

Finally, (1.8) is immediate from (2.57). Given thats C'!, we even get that

N n,j 1 1

(2.58) M@gh—kmgﬁy:n+o(ﬁ> 0

As for point (3) from the introduction, the proof of Theorem 2.4 shows that if
2o is not in the bands and is a limit of zerosyef,, +»—1(2), thenp,,,++—1(z0) goes
to zero exponentially (aE™). If this is true for eacth, then>"°° ,|p,(20)]? < oo,
which meang; is in the pure point spectrum @f:. Since the bands are also in the
spectrum, we have

Proposition 2.7. zp € C is a limit of zeros of,,(z) (all n) if and only ifzy €
suppd).

Remark.This also follows from a result of Denisov-Simon [1], but their argu-
ment, which applies more generally, is more subtle.
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3 OPUC With Periodic Verblunsky Coefficients

In this section, we analyze the zeros of OPUC with Verblunsky coefficients
obeying (1.6). We begin with a summary of the transfer matrices, discriminants,
and Abelian functions in this situation. These ideas, while an obvious analog of
the OPRL situation, seem not to have been studied before their appearance in [17],
which is the reference for more details. Many of the consequences of these ideas
were found earlier in work of Peherstorfer and Steinbauer[9, 10, 11, 12, 13, 14, 15].

Throughout, we will suppose thatis even. If (ag,...,ap—1,05p,...) IS &
sequence with odd periody, 51,...) = (a0,0,a1,0, a9, ...) has even period
and

(3.1) Don (2, {85}) = u(2% {as})
so results for the evemcase immediately imply results for the ogdd
Define the2 x 2 matrix

32) A= (L2

- ﬁ —zQy
wherepy, is given by (1.4). Then

det(Ag(2)) = 2
(1.2) and its* are equivalent to

(3.3) (“Jf“) = An(2) (@)
Qpn-‘,-l (Pn

The second kind polynomials;, (=), are the OPUC with Verblunsky coefficients
{—a;}520. Thenitis easy to see that

¢n+1 - . ¢n
(B4 <w2+1> = Al )<w:;>

with A given by (3.2).
We thus define

(3.9) Tn(z) = An—l(z) s AO(Z)
By (1.6), we have
(36) Tmp+b = Tb(Tp)m

(3.3) and (3.4) imply that

)+
©, 1
(3)-+()
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so that
_ 1 (n(2) +Yn(2) on(z) — ¢n(2)
(3.9) ) =4 (O LG GO
The discriminant is defined by
(3.10) A(z) = 27 P2 TH(T,(2))

The >~7/2 factor (recallp is even) is there becauset(z~?/2T,(z)) = 1, so
27PI2T,(2) has eigenvalueB. (z) given by (2.12).A(z) is real ondD so

(3.11) Az) = A(1/2)

A(z) € (=2,2) only if z = ¢ and there are roots, each of TiT)(z)) F
22P/2 = (), that is,p solutions of A(z) = +2. These alternate on the circle at
points+2, —2, —2, 42, +2, —2,—2 ..., SO we pick

(3.12) 0<m <y1 <T2 <Y< <yp <21
wheree'®i, ¢'i are solutions ofA(z) = +2.

The bands
(3.13) i ={e" |z <0<y}
are precisely the points whers(z) € [—2,2]. In between are the gaps
(3.14) Gi{e® |y; <0 < xji1}

wherex, 1 = z1 + 2r. Some gaps can be closed, thatds;, is empty (i.e.,
Yj = Tjt1)-

We also see that o8\bands|I";| > |I'_|, so the Lyapunov exponent is given
by
(3.15)  lim L log||Ty(2)] = 5 loglz| + L log|Ts (2)] = 1(2)

If we remove the bands frof, (2.13) holds. Moreovel; . (z) has an analytic
continuation to the Riemann surfae®,of [[Topen gapkz — € +1)(z—€'%7)]1/2. The
genus ofS, ¢ < p — 1, wherel + 1 is the number of open gaps. (In some sense,
the OPRL case, where the genlis the number of gaps, hdst 1 gaps also, but
one gap iR\ [a1, Bp] which includes infinity.)I"_ is the analytic continuation of
I', to the second sheet.

The Dirichlet data are partly those pointsdi, z;, where

(3.16) Tp(2) G) =c, G)

It can be shown there is one suehin each gap (including closed gaps) for the
roots ofy,(2) — ¢, (2). We lete; = c.,. If z; is at a gap edgeég;| = 1; otherwise
lc;| # 1. If |¢;| > 1, we add sign-1 to z; and place the Dirichlet point on the
lower sheet of at pointz;. If |c;| < 1, we add sign+-1 and put the Dirichlet point
on the initial sheet+1 points correspond to pure pointsdp.
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As in the OPRL case, the set of possible Dirichlet data points is a torus, but
now of dimensior¢ + 1. This torus parametrizes thogewith periodica’s and
discriminantA.

The F-function, (1.9), has a meromorphic contribution§owith poles pre-
cisely at the Dirichlet data points.

The potential theoretic equilibrium measutisfor the bands have several crit-
ical properties:

(1) If k(&) = k({e? | 71 < 6 < 6p}), then

(3.17) k() = k(e®it1) = L
p
(2) The Thouless formula holds:
(3.18) v(2) = /log\z — e dk(e") 4+ log Cp

where~ is given by (3.15) and’ is the capacity of the bands.
(3) We have

p—1

(3.19) Cp = H(1 — ‘aj‘z)m
=0
@)
(3.20) I (2) = Cpz"?exp (p/log(z —e') dk(ew))

This completes the review of periodic OPUC. The analog of Theorem 2.1 does
not involve®,, but®,, — ®;:

Theorem 3.1. The zeros ob,,,(2) — ®;,,(2) are at the following points:
(i) thep Dirichlet dataz;’s in each gap of the periog problem.
(i) the(m — 1)p points where
(3.21) Ry =K1, @
p mp
k=1,....p;q=1,...,m—1.

Proof. As noted (and proven several ways in [17, Chapter 11]), for a peripd
problem,®,,,, — ®7,  has its zeros, one in each gap. The gaps ofitheproblem

are the gaps of the original problem plus a closed gap at each point where (3.21)
holds. There is a zero in each closed gap and at each point where (3.16) holds since

thenTn,(2) (1) = ¢ (1) O

We now turn to the analysis of zeros f,,4(z2), b = 0,1,...,p—1; m =
0,1,2,.... The analog of (2.38) is, by (3.7),

(322 p— <©,Tb<Tp>m ®>
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As in Section 2, we write, fox € C\bands:
(3.23) 2T (2) =T (2)Py(2) + T_(2)P_(2)

whereP. are2x 2 matrices which are complementary projections, thatis, (2.28)/(2.29)
hold. (2.30)/(2.31) are replaced by

2P, (2) —T_(2)1

3.24 P, =
(3.24) + T T

27 P2T(2) =Ty (2)1
3.25 P = P +
(3.25) T T,

So, in particular,PL have meromorphic continuations & and P, continued to
the other sheet if_.

Define
(3.26) a(z) = % <<1>,P+ (1>>
(3.27) b(z) = % < (_11> P, (1) >

so that, by (2.29),

(3.28) % <® P ®> —1—a(2)
(3.29) : < (_11> P G) > = b(z)

1
V2

1
PR <1> =

(_11) are an orthonormal basis,

a(z) (1) +5(2) (11>]
+T7 (1~ a2) G) ) (—m

Therefore, by (3.7), (3.8), and (3.22),

mpio(2) = @u(2)[a(2)2PPTT + (1 — a)2™/20)

; 1
Thus, since (1),

(3.30)

3.3

(3.31) + wb(z)[b(z)zmpﬂf‘f — b(z)zmp/QFT]
We thus define

(3.32) Ju(2) = a(2)ep(2) + b(2)1s(2)

and we have, sincg’,| > |[I'_| onC\bands:
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Theorem 3.2. For z € C\bands,
(3.33) lim 2~ "2 (2) = jb(2)

In addition, 5, is nonvanishing neat = oc.

In particular, if zop ¢ bands andj,(zy) # 0, then for some > 0 and M, we
havey,,,+5(20) # 01if |2 — 20| < e andm > M. If zy ¢ bands andj,(2o) has
a zero of orderk, then for some > 0 and all m large, ¢,,,,++(2) has precisely:
zeros(counting multiplicity. The number of, in C\bands withj,(z9) = 0 is at
most2p + 2b — 1.

Remark Asymptotics related to (3.33) can be found in [15, Proposition 3.1].

Proof. As noted, (3.31) andl'| > |I'_| imply (3.33). To analyzej,(z) near
z = oo, we proceed as follows: We have, by (3.2) and (3.5), that|as> oo,

@3 1= ("), §)- (L O] 0w

(3.35) - zp<pﬁ1 pjl) (_ ! 8) + 0"

Qp—1

(3.36) P, = <_a1p_1 8) +0(z7Y
(3.37) P = <a51 ?) +0(z™h
and
(3.38) a(z) = 5 (1 —ap1)+0(z")
(3.39) b(z) = 5 (1+ap1)+0(z")
We have
p—1
(3.40) o) = (TLo" )2+ 06
j=0
p—1
(3.41) Up(z) = ( 11 pj—l)z” + 02"
j=0
from which we see that
p—1
(3.42) n(2) = ( 11 pjfl)zb Lo
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since (3.38)/(3.39) imply(2) +b(z) = 14+0(z?). In particular,j,(2) is not zero
nearoo, S0 jj, is not identically zero, and the assertion about locations of zeros of
©mp-+b(2) follows from Hurwitz’s theorem.

Sincel —a(z) —b(z) = O(z71), (3.28)/(3.29) imply that, on the second sheet,
the analytic continuation of,(z) nearoo is O(z?~1). It follows thatj, has a pole
of orderb at co on the main sheet (regularif= 0) and a pole of order at most
b— 1 (azeroifb = 0 and is regular ib = 1) atoo on the second sheej, also can
have at mos2p simple poles at thep branch points.

It follows that the degree of, as a meromorphic function off is at most
2p + 2b— 1 (if b = 0, 2p). Thus the number of zeros is at m@st+ 26 — 1 if
b # 0. If b = 0, there are at moftp + 2b zeros. But since then one is@&t on the
second sheet, the number of zeros on finite points is at 2post2b — 1. O

Next, we note that

Theorem 3.3. Let{«, } be periodic and not at ald. z, is a limit of zeros ofy,, ()
(i.e., there exist,, with ¢, (z,) = 0 andz, — z if and only if z; lies in the
support ofdu).

Remark.a,, = 0 has0 as a limit point of zeros ap,,(z) = 2", so one needs
some additional condition on thés to assure this result.

Proof. By Theorems 8.1.11 and 8.1.12 of [16]zif € supddu), then itis a limit
point of zeros. For the other direction, suppage¢ bands and is a limit point
of zeros. By Theorem 3.2;(z9) = 0 for eachb = 0,1,...,p — 1, so by (3.31),
Omp+b(2) ~ C(F_zg/z)m which, sincgzp| < 1and|T'_| < 1, implies thatp,,(zo)
goes to zero exponentially.

Sincea,, is not identically zero, some;, j € {0,1,...,p — 1} is nonzero.
Thus, by Szeg recursion forp;,

Praptj(20) = 0 [200mp(20) = pjPmp+1(20)]
goes to zero exponentially in.
Sincea, is periodic,sup,,|a,| < 1, and sosup,, p,* < co. Since

Prpri11(20) = pii1 (Ohps i (20) — iompr5(20))
we seep;,.,. i1 (20) decays exponentially and so, by inductigri2o) decays ex-
ponentially. By the Christoffel-Darboux formula (see [16, eqn. (2.2.7@](z0)|> >
1 — |20/%, so the decay implielo| = 1. But if 2o € 9D andy,,|¢n(20)> < oo,
thenu({z0}) > 0 (see [16, Theorem 2.7.3]).
Thus if zg is a limit of zeros, eithery € bands onu({z0}) > 0, that is,zy €
Supgdp). O

Finally, in our analysis of periodic OPUC, we turn to zeros near to the bands.
We definej, on C\bands so that (3.31) becomes

(3.43) mprb(2) = Jp(2)2™PPTT 4 Gy (2) 222D
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While ¢,,,11(2) is continuous across the bandgs, j,, andI'+ are not. In fact,
I+ (resp.jp) continued across a band beconiies (resp.j,). We define all four
objects ak’? € 9D as limits ag" 1 1 of the values ate™.

Proposition 3.4. (i) Inthe bands,
(3.44) P21 () = exp(—imp k(6))

(i) At no point in the bands do bof(e?) andj,(e?) vanish.
(iii) 7 is everywhere nonvanishing on the interiors of the bands.

Proof. (i) This follows from (3.20). There is an issue of checking that it is
exp(—imp k(0)), notexp(imp k(). To confirm this, note that

889 Im log(exp(—impk(#))) <0

and mainly< 0. Sinced|I'y|/0r < 0 atr = 1, this is consistent with (3.44) and
the Cauchy-Riemann equations.

(i) follows from (3.43) and the fact that,, (=) is nonvanishing o@D.

(iii) Continue (3.43) through the cut. Sings, is entire, the continuation onto
the “second sheet” is alsg,,. I'+ get interchanged by crossing the cut. Let us use
J»,2, Jv,2 for the continuation to the second sheet (of coujgejs j, on the second
sheet, but that will not concern us).

By this (3.43) continuedp,,;,(2) = 0 if and only if

r<z>>m _ B22)
Iy (2) Jb2(2)

If j1(20) = 0 for zg € OD, then|7, 2(rz0)/js,2(r20)| goes from0 to a nonzero
value asr increases. On the other hand, sinte /I';| < 1 on C\bands, form

large, |I'_(rzo)/T'+(r20)|™ goes froml to a very small value as increases. It
follows that form large,

(3.45) <

m

I'_(2) Jb2(2)
Iy (z) Jb2(2)
has a solutiom,,, zg with r,,, > 1 andr,, — 1. Asin [18], we can change the phase
slightly to ensure (3.45) holds for some point,, nearr,, zo with |z,,| > 1. Since
¢ has no zero ifC\D, this is a contradiction. O

Remark This proof shows that in the banfig(e®)| > |4, (e%)).
(3.43) says we want to solve
I_(z)\"™
(3.46) (Fg) -2
to find zeros ofp,,,,4(2). We have, by the remark, thg,(0)| < 1.

Definition. We callzy € bands a singular point of ordérif j,(z9) = 0 and the
zero is of ordek.
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We do not know if there are singular points in any example! If so, they should
be nongeneric. We define the functions

N jb(e”)
3.47 0) = ———
( ) gb( ) jb(ele)
and

Jb(2)
3.48 = —=
( ) gb(z) ]b(z)
For e in the interior of a band minus the singular points,4é¢8) be given by
(3.49) BO) _ ep(2iA(0))
95(0)

with A continuous away from the singular points.
The analysis of a similar equation to (3.46) in [18] shows that:
(a) The solutions of (3.46) neat| = 1 lie in sectors where

(3.50) 2mp k(0) = A(0) + 2% + O( = )

mlogm

with exactly one solution in each such sector.
(b) The magnitudes of the solutions obey

1

(3.51) 2] = 1— o( Ogm>

m

(c) Successive zeros, 1, z;, Obey

1 1

(3.52) karg(zi)) — karg 1) =~ + 0~ )
and
(3.53) Sa e 0( L )
2k mlogm

(d) All estimates in (a)—(c) are uniform on a band.

(e) Away from singular points, alD(1/m log m) errors can be replaced B)(1/m?)
andO(logm/m) in (3.51) byO(1/m). If there are no singular points, these
error bounds are uniform over a band.

It is easy to see that the total variation 4fin each interval between singular
points (or band endpoints) is finite, so (3.50) and the factithatries byl /p over
a band say that the number of solutions in a band differs frohy a finite amount.
This implies

Theorem 3.5. Let N (™) be the number of zeros;, of o, (z) that obey
(a) arg z¢ € bandj
(b)

(3.54) (1= |ze]) <7 1/2



20 B. SIMON

Then
(@) supmj\N("’j) -3l <o
(b) For n large, all such zeros have

logn

(3.55) (1—]z) <C

and if there are no singular points, we can repldogn/n in (3.55)by 1/n.
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