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Abstract

We discuss asymptotics of the zeros of orthogonal polynomials on the real line
and on the unit circle when the recursion coefficients are periodic. The zeros on
or near the absolutely continuous spectrum have a clock structure with spacings
inverse to the density of zeros. Zeros away from the a.c. spectrum have limit
points modp and only finitely many of them. c© 2000 Wiley Periodicals, Inc.

1 Introduction

This paper is the third in a series [18, 19] that discusses detailed asymptotics of
the zeros of orthogonal polynomials with special emphasis on distances between
nearby zeros. We discuss both orthogonal polynomials on the real line (OPRL)
where the basic recursion for the orthonormal polynomials,pn(x), is

(1.1) xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x)

(an > 0 for n = 1, 2, . . . , bn real, andp−1(x) ≡ 0), and orthogonal polynomials
on the unit circle (OPUC) where the basic recursion is

(1.2) ϕn+1(z) = ρ−1
n (zϕn(z)− ᾱnϕ∗n(z))

Hereαn are complex coefficients lying in the unit diskD and

(1.3) ϕ∗n(z) = zn ϕn(1/z̄)

and

(1.4) ρn = (1− |αn|2)1/2

In this paper, we focus on the case where the Jacobi coefficients{an}∞n=1, {bn}∞n=1

or the Verblunsky coefficients{αn}∞n=0 are periodic, that is, for somep,

(1.5) an+p = an bn+p = bn

or

(1.6) αn+p = αn

It should be possible to say something about perturbations of a periodic sequence,
sayα

(0)
n , which obeys (1.6) andαn = α

(0)
n + δαn with |δαn| → 0 sufficiently fast.

We leave the details to be worked out elsewhere.
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2 B. SIMON

To describe our results, we begin by summarizing some of the basics of the
structure of the measures and recursion relations when (1.5) or (1.6) holds. We will
say more about this underlying structure in the sections below. In this introduction,
we will assume that all gaps are open, although we don’t need and won’t use that
assumption in the detailed discussion.

When (1.5) holds, the continuous part of the underlying measure,dρ, onR is
supported onp closed intervals[αj , βj ], j = 1, . . . , p, called bands, with gaps
(βj , αj+1) in between. Each gap has zero or one mass point. Them-function of
the measuredρ,

(1.7) m(z) =
∫

dρ(x)
x− z

has a meromorphic continuation to the genusp− 1 hyperelliptic Riemann surface,
S, associated to[

∏p
j=1(x− αj)(x− βj)]1/2. This surface has a natural projection

π : S → C, a twofold cover except at the branch points{αj}p
j=1 ∪ {βj}p

j=1.
π−1[βj , αj+1] is a circle andm(z) has exactly one poleγ1, . . . , γp−1 on each circle.

It has been known for many years (see Faber [2]) that the density of zerosdk is
supported on∪p

j=1[αj , βj ] ≡ B and is the equilibrium measure forB in potential

theory. We definek(E) =
∫ E
α1

dk. Thenk(βj) = j/p. Our main results about
OPRL are:
(1) We can describe the zeros ofpnp−1(x) exactly (not just asymptotically) in

terms ofπ(γj) andk(E).
(2) Asymptotically, asn → ∞, the number of zeros ofpn in each band[αj , βj ],

N (n,j), obeyssupn|np −N (n,j)| < ∞, and the zeros{x(n,j)
` }N(n,j)

`=1 obey

(1.8) sup
j

`=1,2,...,N(n,j)−1

n

∣∣∣∣k(x(n,j)
`+1 )− k(x(n,j)

` )− 1
n

∣∣∣∣ → 0

asn →∞.
(3) z ∈ C is a limit of zeros ofpn (all n) if and only if z lies in supp(dρ).
(4) Outside the bands, there are at most2p + 2b − 3 points which are limits of

zeros ofpmp+b−1 for eachb = 1, . . . , p and, except for these limits, zeros
have no accumulation points inC\bands. While this is our bound, an optimal
bound might be2p− 2.

For OPUC, the continuous part of the measure,dµ, is supported onp disjoint
intervals{eiθ | xj ≤ θ ≤ yj}, j = 1, . . . , p, in ∂D with p gaps in between
{eiθ | yj ≤ θ ≤ xj+1} with xp+1 ≡ 2π+x1. Each gap has zero or one mass point.
The Carath́eodory function of the measuredµ,

(1.9) F (z) =
∫

eiθ + z

eiθ − z
dµ(θ)

has a meromorphic continuation fromD to the genusp− 1 hyperelliptic Riemann
surface,S, associated to[

∏p
j=1(z − eixj )(z − eiyj )]1/2. The surface has a natural
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projectionπ : S → C, and the closure of each gap has a circle as the inverse image.
F has a single pole in each such circle, sop in all atγ1, . . . , γp.

Again, the density of zeros is the equilibrium measure for the bands and each
band has mass1/p in this measure. See [17], especially Chapter 11, for a discus-
sion of periodic OPUC. Our main results for OPUC are:
(1′) We can describe the zeros ofϕ∗np − ϕnp exactly (note, not zeros ofϕnp).
(2′) Asymptotically, asn →∞, the number of zeros ofϕn near each band,N (n,j),

obeyssupn|np −N (n,j)| < ∞, and the points on the bands closest to the zeros
obey an estimate like (1.8).

(3′) z ∈ C is a limit of zeros ofϕn (all n) if and only if z lies in supp(dµ).
(4′) There are at most2p + 2b − 1 points which are limits of zeros ofϕmp+b for

eachb = 1, . . . , p and, except for these limits, zeros have no accumulation
points inC\bands.

In Section 2, we discuss OPRL when (1.5) holds, and in Section 3, OPUC when
(1.6) holds. Each section begins with a summary of transfer matrix techniques for
periodic recursion coefficients (Floquet theory).

While I am unaware of any previous work on the precise subject of Sections 2
and 3, the results are closely related to prior work of Peherstorfer [7, 8], who dis-
cusses zeros in terms of measures supported on a union of bands with a particular
structure that overlaps our class of measures (see, in particular, Proposition 3.7 in
[7]). For a discussion of zeros for OPUC with two bands, see [5].

Our striking result listed as (1) above (see Theorem 2.1 below) is easy to prove
once one realizes it is true — indeed, we provide two elementary proofs. The
referee has informed us that while there is no explicit discussion of zeros in [6],
our Theorem 2.1 follows in a few lines from Corollary 2.1d in [6].

These papers also consider situations where the recursion coefficients are only
almost periodic. For any finite collection of closed intervals onR or closed arcs on
∂D, there is a natural isospectral torus of OPRL or OPUC where the correspond-
ing m- or F -function has minimal degree on the Riemann surface (see, e.g., [17,
Section 11.8]). It would be interesting to extend the results of the current paper to
that case.

2 OPRL With Periodic Jacobi Coefficients

In this section, we analyze the zeros of OPRL with Jacobi coefficients obeying
(1.5). We begin with a summary of the theory of transfer matrices, discriminants,
and Abelian functions associated to this situation. A reference for much of this
theory is von Moerbeke [21]; a discussion of the discriminant can be found in
Hochstadt [3], von Moerbeke [21], Toda [20], and Last [4]. The theory is close to
the OPUC theory developed in Chapter 11 of [17].

Define the2× 2 matrix,

(2.1) Ak(z) =
1

ak+1

(
z − bk+1 −ak

ak+1 0

)



4 B. SIMON

where

(2.2) a0 ≡ ap

Thus

(2.3) det(Ak) =
ak

ak+1

and the abstract form of (1.1)

(2.4) zun = an+1un+1 + bn+1un + anun−1

is equivalent to

(2.5)

(
un+1

un

)
= An

(
un

un−1

)

So, in particular,

(2.6)

(
pn+1(z)
pn(z)

)
= AnAn−1 . . . A0

(
1
0

)

This motivates the definition of the transfer matrix,

(2.7) Tn(z) = An−1(z) . . . A0(z)

for n = 1, 2, . . . . We have, by (1.5), that

(2.8) Tmp+b = Tb(Tp)m

suggesting thatTp plays a basic role. By (2.3) and (2.2),

(2.9) det(Tp) = 1

A fundamental quantity is the discriminant

(2.10) ∆(z) = Tr(Tp(z))

By (2.6), we have

(2.11) Tn(z) =
(

pn(z) qn−1(z)
pn−1(z) qn−2(z)

)

whereqn(z) is a polynomial of degreen that is essentially the polynomial of the
second kind (the normalization is not the standard one but involves an extraap).

By (2.9) and (2.10),Tp(z) has eigenvalues

(2.12) Γ±(z) =
∆(z)

2
±

√(∆(z)
2

)2 − 1

In a moment, we will define branch cuts in such a way that on all ofC\cuts,

(2.13) |Γ+(z)| > |Γ−(z)|
so (2.8) implies the Lyapunov exponent is given by

(2.14) lim
n→∞

1
n

log ‖Tn(z)‖ =
1
p

log|Γ+(z)| ≡ γ(z)
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(2.12) means|Γ+| = |Γ−| if and only if ∆(z) ∈ [−2, 2], and one shows that
this only happens ifz is real. Moreover, if∆(z) ∈ (−2, 2), then∆′(x) 6= 0. Thus,
for x very negative,(−1)p∆(x) > 0 and solutions of(−1)p∆(x) = ±2 alternate
as+2,−2,−2, +2, +2,−2,−2, . . . , which we label as

(2.15) α1 < β1 ≤ α2 < β2 ≤ α3 < · · · < βp

Since∆(x) is a polynomial of degreep, there arep solutions of∆(x) = 2 and of
∆(x) = −2, so2p points{αj}p

j=1 ∪ {βj}p
j=1.

The bands are[α1, β1], [α2, β2], . . . , [αp, βp] and the gaps are(β1, α2), (β2, α3),
. . . , (βp−1, αp+1). If someβj = αj+1, we say thej-th gap is closed. Otherwise
we say the gap is open.

If we remove the bands fromC, Γ±(z) are single-valued analytic functions and
(2.13) holds. Moreover,Γ+ has an analytic continuation to the Riemann surface,
S, of genus̀ ≤ p − 1 where` is the number of open gaps.S is defined by the
function [(z − α1)(z − βp)

∏
open gaps(z − βj)(z − αj+1)]1/2. Γ− is precisely the

analytic continuation ofΓ+ to the second sheet.
The Dirichlet data are partially thosex’s where

(2.16) Tp(x)

(
1
0

)
= cx

(
1
0

)

that is, points where the21 matrix element ofTp vanishes. It can be seen that the
Dirichlet datax’s occur, one to each gap, that is,x1, . . . , xp−1 with βj ≤ xj ≤
αj+1. If x is at an edge of a gap, thencj ≡ cxj is ±1. Otherwise|cj | 6= 1. If
|cj | > 1, we add the signσj = −1 to xj , and if |cj | < 1, we add the signσj = +1
to xj . Thus the values of Dirichlet data for each open gap are two copies of[αj , βj ]
glued at the ends, that is, a circle. The set of Dirichlet data is thus an`-dimensional
torus. It is a fundamental result [21] that the map froma’s andb’s to Dirichlet data
sets up a one-one correspondence to alla’s andb’s with a given∆, that is, the set
of a’s andb’s with a given∆ is an`-dimensional torus.

Them-function (1.7) associated todρ has a meromorphic continuation to the
Riemann surface,S, with poles precisely at the pointsxj on the principal sheet if
σj = +1 and on the bottom sheet ifσj = −1. ρ has point mass precisely at those
xj ∈ (βj , αj+1) with σj = +1. It has absolutely continuous support exactly the
union of the bands, and has no singular part other than the possible point masses in
the gaps.

Finally, in the review, we note that the potential theoretic equilibrium measure
dk for the set of bands has several critical properties:
(1) If k(x) =

∫ x
α1

dk, then

(2.17) k(βj) = k(αj+1) =
j

p

k can be related explicitly to∆ by

∆(x) = 2 cos(pπ(1− k(x)))
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(2) The Thouless formula holds:

(2.18) γ(z) =
∫

log|z − x| dk(x) + log CB

whereγ is given by (2.14) andCB is the (logarithmic) capacity ofB.
(3) The (logarithmic) capacity of the bands is given by

(2.19) CB =
( p∏

j=1

aj

)−1

(4) Γ+ is the complex Green’s function forC\bands, that is,

(2.20) Γ+(z) = CB exp
(

p

∫
log(z − x) dk(x)

)

That completes the review of periodic OPRL. We now turn to the study of
the zeros. We begin by describing exactly (not just asymptotically!) the zeros of
Pmp−1:

Theorem 2.1. The zeros ofPmp−1(x) are exactly

(i) Thep− 1 Dirichlet data points{xj}p−1
j=1.

(ii) The(m− 1)p points{x(m)
k,q } k=1,...,p

q=1,...,m−1
where

(2.21) k(x(m)
k,q ) =

k − 1
p

+
q

mp

Remarks.1. The points of (2.21) can be described as follows. Break each
band[αj , βj ] into m pieces of equal size in equilibrium measure. Thex

(m)
k,q are the

interior break points.

2. If a gap is closed, we include its position in the “Dirichlet points” of (i).

3. Generically, there are not zeros at the band edges, that is, (2.21) hasq =
1, . . . , m − 1 but notq = 0 or q = m. But it can happen that one or more of the
Dirichlet data points is at anαj+1 or aβj .

4. This immediately implies that once one proves that the density of zeros
exists, that it is given bydk.

5. It is remarkable that this result is new, given that it is so elegant and its
proof so simple! I think this is because the OP community most often focuses
on measures and doesn’t think so much about the recursion parameters and the
Schr̈odinger operator community doesn’t usually think of zeros ofPn.

6. We will give two proofs of this result below. We have been informed by the
referee that it can also be proven using Corollary 2.1d in [6].

Example 2.2. Letbn ≡ 0, an ≡ 1
2 which has periodp = 1. It is well-known in this

case that thePn are essentially Chebyshev polynomials of the second kind, that is,

(2.22) Pn(cos θ) =
1
2n

sin(n + 1)θ
sin θ
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ThusPm−1 has zeros at points where

(2.23) θ =
jπ

m
j = 1, . . . , m− 1

(the zeros atθ = 0 andθ = π are cancelled by thesin(θ)). k(x) = π − arccos(x)
and (2.23)is (2.21). We see that Theorem 2.1 generalizes the obvious result on the
zeros of the Chebyshev polynomials of the second kind. ¤

First Proof of Theorem 2.1.By (2.11), zeros ofPmp−1 are precisely points where
the12 matrix element ofTmp vanishes, that is, points where

(1
0

)
is an eigenvector

of Tmp. That is, zeros ofPmp−1 are Dirichlet points for this periodmp problem.
When (1.5) holds, we can view thea’s andb’s as periodic of periodmp. There

are closed gaps whereTmp(z) = ±1, that is, interior points to the original bands
where(Γ±)m = 1, that is, points where (2.21) holds. Thus, the Dirichlet data for
Tmp are exactly the points claimed. ¤

Theorem 2.1 immediately implies point (2) from the introduction.

Theorem 2.3.LetPn(x) be a family of OPRL associated to a set of Jacobi param-
eters obeying(1.5). Let (αj , βj) be a single band and letN (n,j) be the number of
zeros ofPn in that band. Then

(2.24) |N (mp+b,j) − (m− 1)| ≤ min(b + 1, p− b)

for −1 ≤ b ≤ p− 1. In particular,

(2.25)
∣∣∣∣N (n,j) − n

p

∣∣∣∣ ≤ 1 +
p

2

Proof. By a variational principle for anyn, n′,

(2.26) |N (n,j) −N (n′,j)| ≤ |n− n′|
(2.24) is immediate from Theorem 2.1 if we taken′ = mp − 1 andn′ = mp +
(p− 1). (2.25) follows from (2.24) given thatmin(b + 1, p− b) ≤ p/2. ¤

Remark. Because of possibilities of Dirichlet data zeros atαj and/orβj , we
need(αj , βj) in definingN (n,j). It is more natural to use[αj , βj ]. If one does that,
(2.24) becomes2 + min(b + 1, p− b) and (2.25),3 + p

2 .

To go beyond these results and prove clock behavior for the zeros ofpmp+b

(b 6≡ −1 modp), we need to analyze the structure ofpn in terms ofΓ+, Γ−. For
z not a branch point (or closed gap),Γ+ 6= Γ−. Γ+ is well-defined onC\bands
since|Γ+| > |Γ−|. On the bands,|Γ+| = |Γ−| and, indeed, the boundary values
on the two sides of a band are distinct. ButΓ+ is analytic onC\bands, so for such
z, we can defineP± by

(2.27) Tp(z) = Γ+P+ + Γ−P−
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whereP+, P− are2× 2 rank one projections obeying

(2.28) P 2
+ = P+ P 2

− = P− P+P− = P−P+ = 0

and

(2.29) P+ + P− = 1

It follows from (2.27) and (2.29) that

P+ =
Tp(z)− Γ−(z)1

Γ+ − Γ−
(2.30)

P− =
Tp(z)− Γ+(z)1

Γ− − Γ+
(2.31)

which, in particular, shows thatP+ is a meromorphic function onS whose second-
sheet values are justP−.

Define

a(z) =
〈(

0
1

)
, P+(z)

(
1
0

)〉
(2.32)

b(z) =
〈(

1
0

)
, P+(z)

(
1
0

)〉
(2.33)

so (2.29) implies
〈(

0
1

)
, P−(z)

(
1
0

)〉
= −a(z)(2.34)

〈(
1
0

)
, P−(z)

(
1
0

)〉
= 1− b(z)(2.35)

Under most circumstances,a(z) has a pole at band edges whereΓ+−Γ− → 0.
For later purpose, we note that〈(0

1

)
, (Tp(z) − Γ−1)

(1
0

)〉 = 〈(0
1

)
, Tp(z)

(1
0

)〉 has a
finite limit at such points. Later we will be looking at

a(z)(Γm
+ − Γm

− ) =
〈(

0
1

)
, Tp(z)

(
1
0

)〉 Γm
+ − Γm−

Γ+ − Γ−

→
〈(

0
1

)
, Tp(z)

(
1
0

)〉
mΓm−1

+

if Γ+−Γ− → 0. This is zero if and only if〈(0
1

)
, Tp(z)

(1
0

)〉 = 0, that is, if and only
if the edge of the band is a Dirichlet data point.

(2.27) and (2.28) imply

(2.36) Tmp(z) = Tp(z)m = Γm
+P+ + Γm

−P−
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so

(2.37) Tmp(z)

(
0
1

)
= [a(z)(Γm

+ − Γm
− )]

(
0
1

)
+ [b(z)Γm

+ + (1− b(z))Γm
− )]

(
1
0

)

Thus, by (2.25) forb ≥ 0,

Pmp+b−1 =
〈(

0
1

)
, TbTmp

(
1
0

)〉
(2.38)

= [(Γm
+ − Γm

− )a(z)]qb−2(z) + [b(z)Γm
+ + (1− b(z))Γm

− )]pb−1(z)(2.39)

where

(2.40) q−2(z) ≡ 1 q−1(z) ≡ 0

Remark.See Peherstorfer [6, Theorem 3.1] for another formula forPmp+b−1.

Second Proof of Theorem 2.1.For b = 0, pb−1 ≡ 0 andqb−2 = 1, so

(2.41) pmp−1(z) = (Γm
+ − Γm

− )a(z)

Its zeros are thus points wherea(z) = 0 or whereΓm
+ = Γm− , except that at branch

points,a(z) can have a pole which can cancel a zero ofΓm
+ − Γm− .

a(z) = 0 if and only if
(1
0

)
is an eigenvector ofTp(z), that is, exactly at the

Dirichlet data points.
Γm

+ = Γm− is equivalent toΓ2m
+ = 1 sinceΓ− = Γ−1

+ . This implies|Γ+| =
|Γ−|, so can only happen on the bands. On the bands, by (2.20),

(2.42) Γ+(x) = exp(πip k(x))

andΓ2m
+ = 1 if and only if

(2.43) mpk(x) ∈ Z
that is, if (2.21) holds for someq = 0, . . . ,m. But atq = 0 or q = m, a(z) has a
pole that cancels the zero ofΓm

+ − Γm− , so the zeros ofpmp−1 are precisely given
by (i) and (ii) of Theorem 2.1. ¤

We can use (2.39) to analyze zeros ofpmp+b−1 for largem. We begin with the
region away from the bands:

Theorem 2.4. Letz ∈ C\bands and letb be fixed. Then

(2.44) lim
m→∞ Γ+(z)−mpmp+b−1(z) = a(z)qb−2(z) + b(z)pb−1(z)

In particular, if the right side of(2.44)is calledjb(z), then
(1) If jb(z0) 6= 0, thenpmp+b−1(z) is nonvanishing nearz0 for m large.
(2) If jb(z0) = 0, thenpmp+b−1(z) has a zero(k zeros ifz has ak-th order zero

at z0) nearz0 for m large.
(3) There are at most2p + 2b− 3 points inC\bands wherejb(z0) is zero.
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Proof. (2.44) is immediate from (2.39) and|Γ−/Γ+| < 1. (1) and (2) then follow
by Hurwitz’s theorem if we show thatjb(z) is not identically zero.

By (2.1) and (2.7) nearz = ∞,

Tp(z) =
( p∏

j=1

aj

)−1

zp
(

1 0
0 0

)
+ O(zp−1)

which impliesΓ+ = (
∏p

j=1 aj)−1zp + O(zp−1) andΓ−(z) = O(z−p). It follows
thata(z) → 0 asz →∞ andb(z) → 1. Thus, sincepb−1 has degreeb− 1, (2.39)
shows that asz →∞ on the main sheet,jb(z0) has a pole of orderb− 1.

On the other sheet,P+ changes toP−, soa(z) → 0 andb(z) → 0 on the other
sheet. It follows thatjb(z) has a pole at∞ of degree at mostb − 2. jb also has
poles of degree at most1 at each branch point. Thus,jb(z) as a function onS has
total degree at most2p+(b−1)+(b−2) = 2p+2b−3 which bounds the number
of zeros. ¤

Finally, we turn to zeros on the bands. A major role will be played by the
function on the right side of (2.44) (j is for “Jost” since this acts in many ways like
a Jost function):

(2.45) jb(z) = a(z)qb−2(z) + b(z)pb−1(z)

Lemma 2.5. jb is nonvanishing on the interior of the bands.

Remark.By jb(x) for x real, we mean (2.45) witha defined vialimε↓0 a(x+iε)
sinceP± are only defined offC\bands.

Proof. As already mentioned, the boundary values obey

(2.46) lim
ε↓0

P+(x + iε) = lim
ε↓0

P−(x− iε)

(by the two-sheeted nature ofP+ andP−). Thus, by (2.32)–(2.35),

a(x + i0) = −a(x− i0)(2.47)

b(x + i0) = 1− b(x− i0)(2.48)

Moreover, sinceTp andΓ± are real onR\bands,a(z) andb(z) are real onR\bands
(by (2.26)). Thus

a(x + i0) = a(x− i0)(2.49)

b(x + i0) = b(x− i0)(2.50)

The last four equations imply forx in the bands

Re(a(x + i0)) = 0(2.51)

Re(b(x + i0)) = 1
2(2.52)

p andq are real onR, so

(2.53) Re(jb(x)) = 1
2 pb−1(x)
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Thus, ifjb(x0) = 0 on the bands,pb−1(x0) = 0.
As we have seen,a(z) = 0 only at the Dirichlet points and so not in the bands.

If pb−1(x0) = 0 = jb(x0), then sincea(x0) 6= 0, we also haveqb−2(x0) = 0.
By (2.11), if pb−1(x0) = qb−2(x0), thendet(Tb(x0)) = 0, which is false. We
conclude via proof by contradiction thatjb(x) has no zeros. ¤
Theorem 2.6. For eachb and each bandj, there is an integerDb,j so, for suffi-
ciently largem, the number of zerosNb,j(m) of pmp+b−1 is eitherm − Db,j or
m−Db,j + 1. In particular,

(2.54) sup
n,j

∣∣∣∣
n

p
−N (n,j)

∣∣∣∣ < ∞

Moreover,(1.8)holds.

Remark.This result is closely related to Proposition 3.7 in [7].

Proof. By (2.39), (2.46), (2.47), and (2.48), we have

(2.55) pmp+b−1(x) = jb(x)Γ+(x)m + jb(x) Γ+(x)
m

on the bands. By the lemma,jb(x) is nonvanishing inside bandj, so

(2.56) jb(x) = |jb(x)|eiγb(x)

whereγb is continuous — indeed, real analytic — and by a simple argument,γb

andγ′b have limits asx ↓ αj or x ↑ βj .
By (2.42), (2.55) becomes

(2.57) pmp+b−1(x) = 2|jb(x)| cos(πmp k(x) + γb(x))

DefineDb,j to be the negative of the integral part of[γb(βj) − γb(αj)]/π. Since
supbands|γ′b(x)| < ∞, there is, for largem, at most one solution ofπmp k(x) +
γb(x) = π` for each`. Given this, it is immediate that the number of zeros is
m−Db,j or m−Db,j + 1.

Finally, (1.8) is immediate from (2.57). Given thatγ is C1, we even get that

¤(2.58) k(x(n,j)
`+1 )− k(x(n,j)

` ) =
1
n

+ O

(
1
n2

)

As for point (3) from the introduction, the proof of Theorem 2.4 shows that if
z0 is not in the bands and is a limit of zeros ofpmp+b−1(z), thenpmp+b−1(z0) goes
to zero exponentially (asΓm− ). If this is true for eachb, then

∑∞
n=0|pn(z0)|2 < ∞,

which meansz0 is in the pure point spectrum ofdµ. Since the bands are also in the
spectrum, we have

Proposition 2.7. z0 ∈ C is a limit of zeros ofpn(z) (all n) if and only if z0 ∈
supp(dµ).

Remark.This also follows from a result of Denisov-Simon [1], but their argu-
ment, which applies more generally, is more subtle.
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3 OPUC With Periodic Verblunsky Coefficients

In this section, we analyze the zeros of OPUC with Verblunsky coefficients
obeying (1.6). We begin with a summary of the transfer matrices, discriminants,
and Abelian functions in this situation. These ideas, while an obvious analog of
the OPRL situation, seem not to have been studied before their appearance in [17],
which is the reference for more details. Many of the consequences of these ideas
were found earlier in work of Peherstorfer and Steinbauer [9, 10, 11, 12, 13, 14, 15].

Throughout, we will suppose thatp is even. If (α0, . . . , αp−1, αp, . . . ) is a
sequence with odd period,(β0, β1, . . . ) = (α0, 0, α1, 0, α2, . . . ) has even period
and

(3.1) Φ2n(z, {βj}) = Φn(z2, {αj})
so results for the evenp case immediately imply results for the oddp.

Define the2× 2 matrix

(3.2) Ak(z) =
1
ρk

(
z −ᾱk

−zαk 1

)

whereρk is given by (1.4). Then

det(Ak(z)) = z

(1.2) and its∗ are equivalent to

(3.3)

(
ϕn+1

ϕ∗n+1

)
= An(z)

(
ϕn

ϕ∗n

)

The second kind polynomials,ψn(z), are the OPUC with Verblunsky coefficients
{−αj}∞j=0. Then it is easy to see that

(3.4)

(
ψn+1

−ψ∗n+1

)
= An(z)

(
ψn

−ψ∗n

)

with A given by (3.2).
We thus define

(3.5) Tn(z) = An−1(z) . . . A0(z)

By (1.6), we have

(3.6) Tmp+b = Tb(Tp)m

(3.3) and (3.4) imply that
(

ϕn

ϕ∗n

)
= Tn

(
1
1

)
(3.7)

(
ψn

−ψ∗n

)
= Tn

(
1
−1

)
(3.8)
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so that

(3.9) Tn(z) = 1
2

(
ϕn(z) + ψn(z) ϕn(z)− ψn(z)
ϕ∗n(z)− ψ∗n(z) ϕ∗n(z) + ψ∗n(z)

)

The discriminant is defined by

(3.10) ∆(z) = z−p/2 Tr(Tp(z))

The z−p/2 factor (recallp is even) is there becausedet(z−p/2Tp(z)) = 1, so
z−p/2Tp(z) has eigenvaluesΓ±(z) given by (2.12).∆(z) is real on∂D so

(3.11) ∆(z) = ∆(1/z̄)

∆(z) ∈ (−2, 2) only if z = eiθ and there arep roots, each of Tr(Tp(z)) ∓
2zp/2 = 0, that is,p solutions of∆(z) = ±2. These alternate on the circle at
points+2,−2,−2, +2, +2,−2,−2, . . . , so we pick

(3.12) 0 ≤ x1 < y1 ≤ x2 < y2 ≤ · · · < yp ≤ 2π

whereeixj , eiyj are solutions of∆(z) = ±2.
The bands

(3.13) Bj = {eiθ | xj ≤ θ ≤ yj}
are precisely the points where∆(z) ∈ [−2, 2]. In between are the gaps

(3.14) Gj{eiθ | yj < θ < xj+1}
wherexp+1 = x1 + 2π. Some gaps can be closed, that is,Gj is empty (i.e.,
yj = xj+1).

We also see that onC\bands,|Γ+| > |Γ−|, so the Lyapunov exponent is given
by

(3.15) lim
n→∞

1
n log ‖Tn(z)‖ = 1

2 log|z|+ 1
p log|Γ+(z)| ≡ γ(z)

If we remove the bands fromC, (2.13) holds. Moreover,Γ+(z) has an analytic
continuation to the Riemann surface,S, of [

∏
open gaps(z−eiyj+1)(z−eixj )]1/2. The

genus ofS, ` ≤ p − 1, where` + 1 is the number of open gaps. (In some sense,
the OPRL case, where the genus` is the number of gaps, has` + 1 gaps also, but
one gap isR\[α1, βp] which includes infinity.)Γ− is the analytic continuation of
Γ+ to the second sheet.

The Dirichlet data are partly those points in∂D, zj , where

(3.16) Tp(z)

(
1
1

)
= cz

(
1
1

)

It can be shown there is one suchzj in each gap (including closed gaps) for thep
roots ofϕp(z)− ϕ∗p(z). We letcj = czj . If zj is at a gap edge,|cj | = 1; otherwise
|cj | 6= 1. If |cj | > 1, we add sign−1 to zj and place the Dirichlet point on the
lower sheet ofS at pointzj . If |cj | < 1, we add sign+1 and put the Dirichlet point
on the initial sheet.+1 points correspond to pure points indµ.
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As in the OPRL case, the set of possible Dirichlet data points is a torus, but
now of dimensioǹ + 1. This torus parametrizes thoseµ with periodicα’s and
discriminant∆.

The F -function, (1.9), has a meromorphic contribution toS with poles pre-
cisely at the Dirichlet data points.

The potential theoretic equilibrium measuresdk for the bands have several crit-
ical properties:
(1) If k(eiθ0) = k({eiθ | x1 < θ < θ0}), then

(3.17) k(eiyj ) = k(eixj+1) =
j

p

(2) The Thouless formula holds:

(3.18) γ(z) =
∫

log|z − eiθ| dk(eiθ) + log CB

whereγ is given by (3.15) andCB is the capacity of the bands.
(3) We have

(3.19) CB =
p−1∏

j=0

(1− |αj |2)1/2

(4)

(3.20) Γ+(z) = CBz−p/2 exp
(

p

∫
log(z − eiθ) dk(eiθ)

)

This completes the review of periodic OPUC. The analog of Theorem 2.1 does
not involveΦn butΦn − Φ∗n:

Theorem 3.1. The zeros ofΦmp(z)− Φ∗mp(z) are at the following points:
(i) thep Dirichlet datazj ’s in each gap of the periodp problem.

(ii) the(m− 1)p points where

(3.21) k(eiθ) =
k − 1

p
+

q

mp

k = 1, . . . , p; q = 1, . . . , m− 1.

Proof. As noted (and proven several ways in [17, Chapter 11]), for a periodmp
problem,Φmp − Φ∗mp has its zeros, one in each gap. The gaps of themp problem
are the gaps of the original problem plus a closed gap at each point where (3.21)
holds. There is a zero in each closed gap and at each point where (3.16) holds since
thenTmp(z)

(1
1

)
= cm

j

(1
1

)
. ¤

We now turn to the analysis of zeros ofϕmp+b(z), b = 0, 1, . . . , p − 1; m =
0, 1, 2, . . . . The analog of (2.38) is, by (3.7),

(3.22) ϕmp+b =
〈(

1
0

)
, Tb(Tp)m

(
1
1

)〉
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As in Section 2, we write, forz ∈ C\bands:

(3.23) z−p/2Tp(z) = Γ+(z)P+(z) + Γ−(z)P−(z)

whereP± are2×2 matrices which are complementary projections, that is, (2.28)/(2.29)
hold. (2.30)/(2.31) are replaced by

P+ =
z−p/2Tp(z)− Γ−(z)1

Γ+ − Γ−
(3.24)

P− =
z−p/2Tp(z)− Γ+(z)1

Γ− − Γ+
(3.25)

So, in particular,P± have meromorphic continuations toS, andP+ continued to
the other sheet isP−.

Define

a(z) =
1
2

〈(
1
1

)
, P+

(
1
1

)〉
(3.26)

b(z) =
1
2

〈(
1
−1

)
, P+

(
1
1

)〉
(3.27)

so that, by (2.29),

1
2

〈(
1
1

)
, P−

(
1
1

)〉
= 1− a(z)(3.28)

1
2

〈(
1
−1

)
, P−

(
1
1

)〉
= −b(z)(3.29)

Thus, since 1√
2

(1
1

)
, 1√

2

( 1
−1

)
are an orthonormal basis,

z−mp/2Tmp

(
1
1

)
= Γm

+

[
a(z)

(
1
1

)
+ b(z)

(
1
−1

)]

+ Γm
−

[
(1− a(z))

(
1
1

)
− b(z)

(
1
−1

)](3.30)

Therefore, by (3.7), (3.8), and (3.22),

ϕmp+b(z) = ϕb(z)[a(z)zmp/2Γm
+ + (1− a)zmp/2Γm

− ]

+ ψb(z)[b(z)zmp/2Γm
+ − b(z)zmp/2Γm

− ]
(3.31)

We thus define

(3.32) jb(z) = a(z)ϕb(z) + b(z)ψb(z)

and we have, since|Γ+| > |Γ−| onC\bands:
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Theorem 3.2. For z ∈ C\bands,

(3.33) lim
m→∞ z−mp/2Γ−m

+ ϕmp+b(z) = jb(z)

In addition,jb is nonvanishing nearz = ∞.
In particular, if z0 /∈ bands andjb(z0) 6= 0, then for someε > 0 andM, we

haveϕmp+b(z0) 6= 0 if |z − z0| < ε andm ≥ M. If z0 /∈ bands andjb(z0) has
a zero of orderk, then for someε > 0 and all m large,ϕmp+b(z) has preciselyk
zeros(counting multiplicity). The number ofz0 in C\bands withjb(z0) = 0 is at
most2p + 2b− 1.

Remark.Asymptotics related to (3.33) can be found in [15, Proposition 3.1].

Proof. As noted, (3.31) and|Γ+| > |Γ−| imply (3.33). To analyzejb(z) near
z = ∞, we proceed as follows: We have, by (3.2) and (3.5), that as|z| → ∞,

Tp(z) = zp
( p−1∏

j=0

ρ−1
j

)[(
1 0

−αp−1 0

)
. . .

(
1 0
−α0 0

)]
+ O(zp−1)(3.34)

= zp
( p−1∏

j=1

ρ−1
j

) (
1 0

−αp−1 0

)
+ O(zp−1)(3.35)

from which it follows that

P+ =
(

1 0
−αp−1 0

)
+ O(z−1)(3.36)

P− =
(

0 0
αp−1 1

)
+ O(z−1)(3.37)

and

a(z) = 1
2 (1− αp−1) + O(z−1)(3.38)

b(z) = 1
2 (1 + αp−1) + O(z−1)(3.39)

We have

ϕb(z) =
( p−1∏

j=0

ρ−1
j

)
zb + O(zb−1)(3.40)

ψb(z) =
( p−1∏

j=0

ρ−1
j

)
zb + O(zb−1)(3.41)

from which we see that

(3.42) jb(z) =
( p−1∏

j=0

ρ−1
j

)
zb + O(zb−1)
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since (3.38)/(3.39) implya(z)+b(z) = 1+O(z−b). In particular,jb(z) is not zero
near∞, sojb is not identically zero, and the assertion about locations of zeros of
ϕmp+b(z) follows from Hurwitz’s theorem.

Since1−a(z)− b(z) = O(z−1), (3.28)/(3.29) imply that, on the second sheet,
the analytic continuation ofjb(z) near∞ is O(zb−1). It follows thatjb has a pole
of orderb at∞ on the main sheet (regular ifb = 0) and a pole of order at most
b− 1 (a zero ifb = 0 and is regular ifb = 1) at∞ on the second sheet.jb also can
have at most2p simple poles at the2p branch points.

It follows that the degree ofjb as a meromorphic function onS is at most
2p + 2b − 1 (if b = 0, 2p). Thus the number of zeros is at most2p + 2b − 1 if
b 6= 0. If b = 0, there are at most2p + 2b zeros. But since then one is at∞ on the
second sheet, the number of zeros on finite points is at most2p + 2b− 1. ¤

Next, we note that

Theorem 3.3. Let{αn} be periodic and not at all0. z0 is a limit of zeros ofϕn(z)
(i.e., there existzn with ϕn(zn) = 0 and zn → z0 if and only if z0 lies in the
support ofdµ).

Remark.αn = 0 has0 as a limit point of zeros atϕn(z) = zn, so one needs
some additional condition on theα’s to assure this result.

Proof. By Theorems 8.1.11 and 8.1.12 of [16], ifz0 ∈ supp(dµ), then it is a limit
point of zeros. For the other direction, supposez0 /∈ bands and is a limit point
of zeros. By Theorem 3.2,jb(z0) = 0 for eachb = 0, 1, . . . , p − 1, so by (3.31),

ϕmp+b(z) ∼ C(Γ−z
p/2
0 )m which, since|z0| ≤ 1 and|Γ−| < 1, implies thatϕn(z0)

goes to zero exponentially.
Sinceαn is not identically zero, someαj , j ∈ {0, 1, . . . , p − 1} is nonzero.

Thus, by Szeg̋o recursion forϕj ,

ϕ∗mp+j(z0) = α−1
j [z0ϕmp(z0)− ρjϕmp+1(z0)]

goes to zero exponentially inm.
Sinceαn is periodic,supn|αn| < 1, and so,supn ρ−1

n < ∞. Since

ϕ∗mp+j+1(z0) = ρ−1
j+1(ϕ

∗
mp+j(z0)− αjϕmp+j(z0))

we seeϕ∗mp+j+1(z0) decays exponentially and so, by induction,ϕ∗n(z0) decays ex-
ponentially. By the Christoffel-Darboux formula (see [16, eqn. (2.2.70)]),|ϕ∗n(z0)|2 ≥
1 − |z0|2, so the decay implies|z0| = 1. But if z0 ∈ ∂D and

∑
n|ϕn(z0)|2 < ∞,

thenµ({z0}) > 0 (see [16, Theorem 2.7.3]).
Thus if z0 is a limit of zeros, eitherz0 ∈ bands orµ({z0}) > 0, that is,z0 ∈

supp(dµ). ¤
Finally, in our analysis of periodic OPUC, we turn to zeros near to the bands.

We definẽb onC\bands so that (3.31) becomes

(3.43) ϕmp+b(z) = jb(z)zmp/2Γm
+ + ̃b(z)zmp/2Γm

−
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While ϕmp+b(z) is continuous across the bands,jb, ̃b, andΓ± are not. In fact,
Γ+ (resp.jb) continued across a band becomesΓ− (resp.̃b). We define all four
objects ateiθ ∈ ∂D as limits asr ↑ 1 of the values atreiθ.

Proposition 3.4. (i) In the bands,

(3.44) eiθp/2Γ+(eiθ) = exp(−iπp k(θ))

(ii) At no point in the bands do bothjb(eiθ) and ̃b(eiθ) vanish.
(iii) ̃b is everywhere nonvanishing on the interiors of the bands.

Proof. (i) This follows from (3.20). There is an issue of checking that it is
exp(−iπp k(θ)), notexp(iπp k(θ)). To confirm this, note that

∂

∂θ
Im log(exp(−iπp k(θ))) ≤ 0

and mainly< 0. Since∂|Γ+|/∂r ≤ 0 at r = 1, this is consistent with (3.44) and
the Cauchy-Riemann equations.

(ii) follows from (3.43) and the fact thatϕn(z) is nonvanishing on∂D.

(iii) Continue (3.43) through the cut. Sinceϕm is entire, the continuation onto
the “second sheet” is alsoϕm. Γ± get interchanged by crossing the cut. Let us use
jb,2, ̃b,2 for the continuation to the second sheet (of course,jb,2 is ̃b on the second
sheet, but that will not concern us).

By this (3.43) continued,ϕmp+b(z) = 0 if and only if

(3.45)
(

Γ−(z)
Γ+(z)

)m

= − ̃b,2(z)
jb,2(z)

If ̃b(z0) = 0 for z0 ∈ ∂D, then|̃b,2(rz0)/jb,2(rz0)| goes from0 to a nonzero
value asr increases. On the other hand, since|Γ−/Γ+| < 1 onC\bands, form
large, |Γ−(rz0)/Γ+(rz0)|m goes from1 to a very small value asr increases. It
follows that form large, ∣∣∣∣

Γ−(z)
Γ+(z)

∣∣∣∣
m

=
∣∣∣∣
̃b,2(z)
jb,2(z)

∣∣∣∣
has a solutionrmz0 with rm > 1 andrm → 1. As in [18], we can change the phase
slightly to ensure (3.45) holds for some point,zm, nearrmz0 with |zm| > 1. Since
ϕ has no zero inC\D, this is a contradiction. ¤

Remark.This proof shows that in the bands|̃b(eiθ)| > |jb(eiθ)|.
(3.43) says we want to solve

(3.46)
(

Γ−(z)
Γ+(z)

)m

= gb(z)

to find zeros ofϕmp+b(z). We have, by the remark, that|gb(θ)| < 1.

Definition. We callz0 ∈ bands a singular point of orderk if jb(z0) = 0 and the
zero is of orderk.
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We do not know if there are singular points in any example! If so, they should
be nongeneric. We define the functions

(3.47) g̃b(θ) = −jb(eiθ)
̃b(eiθ)

and

(3.48) gb(z) = −jb(z)
̃b(z)

Foreiθ in the interior of a band minus the singular points, letA(θ) be given by

(3.49)
g̃b(θ)
g̃b(θ)

= exp(2iA(θ))

with A continuous away from the singular points.
The analysis of a similar equation to (3.46) in [18] shows that:

(a) The solutions of (3.46) near|z| = 1 lie in sectors where

(3.50) 2πp k(θ) = A(θ) +
2πj

m
+ O

(
1

m log m

)

with exactly one solution in each such sector.
(b) The magnitudes of the solutions obey

(3.51) |z| = 1−O

(
log m

m

)

(c) Successive zeroszk+1, zk obey

(3.52) k(arg(zk+1))− k(arg zk) =
1

mp
+ O

(
1

m log m

)

and

(3.53)
∣∣∣∣
zk+1

zk

∣∣∣∣ = 1 + O

(
1

m log m

)

(d) All estimates in (a)–(c) are uniform on a band.
(e) Away from singular points, allO(1/m log m) errors can be replaced byO(1/m2)

andO(log m/m) in (3.51) byO(1/m). If there are no singular points, these
error bounds are uniform over a band.

It is easy to see that the total variation ofA in each interval between singular
points (or band endpoints) is finite, so (3.50) and the fact thatk varies by1/p over
a band say that the number of solutions in a band differs fromm by a finite amount.
This implies

Theorem 3.5. LetN (n,j) be the number of zeros,z`, of ϕn(z) that obey
(a) arg z` ∈ bandj
(b)

(3.54) (1− |z`|) ≤ n−1/2
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Then
(a) supn,j |N (n,j) − n

p | < ∞
(b) For n large, all such zeros have

(3.55) (1− |z0|) ≤ C
log n

n

and if there are no singular points, we can replacelog n/n in (3.55)by1/n.
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