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FOR JACOBI MATRICES,

I. A NECESSARY AND SUFFICIENT CONDITION
FOR SZEGŐ ASYMPTOTICS
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Abstract. We provide necessary and sufficient conditions for
a Jacobi matrix to produce orthogonal polynomials with Szegő
asymptotics off the real axis. A key idea is to prove the equiv-
alence of Szegő asymptotics and of Jost asymptotics for the Jost
solution. We also prove L2 convergence of Szegő asymptotics on
the spectrum.

1. Introduction

In 1922, Szegő [48] proved one of the most celebrated results in clas-
sical analysis: his asymptotic theorem for orthogonal polynomials. In
modern language, he considered measures, dρ, on [−2, 2] of the form

dρ(x) = f(x) dx + dρs(x) (1.1)

with orthonormal polynomials

pn(x) = γnx
n + lower order (1.2)

obeying γn > 0 and ∫
pn(x)pm(x) dρ(x) = δnm (1.3)

What Szegő proved is that for z ∈ D = {z ∈ C | |z| < 1}, one has
Szegő asymptotics as n →∞

znpn

(
z +

1

z

)
→ D(z)−1

√
2

(1.4)
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so long as the following, known as the Szegő condition, holds
∫ 2

−2

log f(x)(4− x2)−1/2 dx > −∞ (1.5)

(Actually, Szegő, using the still standard convention of the orthogo-
nal polynomial community, took dρ on [−1, 1] and he did not allow
a singular component — that is a later refinement. Also, instead of
z 7→ z + z−1 which maps D→ C\[−2, 2], he used the inverse map and
stated his results in terms of limits of

(
x

2
+

√
4− x2

2

)n

pn(x) (1.6)

rather than (1.4)
Szegő also found an explicit formula for D(z), namely,

D(z) = exp

[∫
eiθ + z

eiθ − z
log(f(cos θ))

dθ

4π

]
(1.7)

Moreover, if (1.5) fails, so does (1.4)
From the point of view of measures, the restriction to supp(dρ) ⊂

[−2, 2] is natural, but this is less so with respect to the recursion coeffi-
cients (aka Jacobi parameters) for the orthonormal polynomials, pn(x),
defined by

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.8)

for {an, bn}∞n=1. From this point of view, the natural condition is

an → 1 bn → 0 (1.9)

This is associated to, indeed implies that, ess supp(dρ) = [−2, 2], that
is, supp(dρ) = [−2, 2]∪P , where P is a bounded set whose only possible
limit points are ±2. Our main goal in this paper is to answer the
question of for which {an, bn}∞n=1 does one have Szegő asymptotics; we
will find (see Theorem 5.1)

Theorem 1.1. Let pn(x) be orthonormal polynomials associated to Ja-
cobi parameters {an, bn}∞n=1 obeying (1.9). Then lim znpn(z + 1

z
) exists

for all z ∈ D, is nonzero for z ∈ D\R with convergence uniform on
compacts if and only if

(α)
∞∑

n=1

|an − 1|2 + |bn|2 < ∞ (1.10)

(β) lim
n→∞

anan−1 . . . a1 exists and is nonzero
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(γ) lim
n→∞

n∑
j=1

bj exists

— thereby closing a chapter opened 83 years ago.
There has, of course, been prior literature on these issues, although

with considerably stronger hypotheses than (α)–(γ). The initial results
relating Jacobi parameters to Szegő asymptotics illustrated how strong
supp(dρ) ⊂ [−2, 2] is and include

Theorem 1.2. Let supp(dρ) ⊂ [−2, 2]. Then the following are equiv-
alent:
(a) (β) holds.
(b) (α), (β), and (γ) hold.
(c) The Szegő condition (1.5) holds.

This theorem combines results of Shohat [37] and Nevai [30]; see also
[24] and [44]. Of course, once one drops the restriction on supp(dρ),
the a’s and b’s become almost independent, and any subset of (α)–(γ)
can hold.

To continue our discussion of earlier results on extending Szegő
asymptotics, we need some notation. Since P can only have ±2 as
limit points,

P ∩ (−∞,−2) = {E−
j }N−

j=1 (1.11)

where N− = 0 (i.e., the set is empty), 1, 2, . . . or ∞, and E−
1 < E−

2 <
· · · . Similarly,

P ∩ (2,∞) = {E+
j }N+

j=1 (1.12)

with E+
1 > E+

2 > · · · . The earliest results extending Szegő asymptotics
beyond supp(dρ) ⊂ [−2, 2] are due to Gonchar [16], Nevai [30], and
Nikishin [31], who noted that the result still holds if N+ + N− < ∞.
More recently,

Theorem 1.3 (Peherstorfer-Yuditskii [32]). Suppose an → 1, bn → 0,
and ∑

j,±
(|E±

j | − 2)1/2 < ∞ (1.13)

and that (1.5) holds. Then (1.4) holds where the function D(z)−1 van-
ishes if and only if z + z−1 is some E±

j .

Remark. The D(z)−1 we use here is not the same as the D−1 used in
[32], but is a Blaschke product times their D−1.

Related to this is
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Theorem 1.4 (Killip-Simon [24]). If
∞∑

n=1

|an − 1|+ |bn| < ∞ (1.14)

then (1.13) and (1.5) hold.

From one point of view, (1.13) is quite natural. If z±j is defined by

z±j ∈ (−1, 1) z±j + (z±j )−1 = E±
j (1.15)

then (1.13) is equivalent to
∑
j,±

(1− |z±j |) < ∞ (1.16)

which is exactly what is needed to define a Blaschke product of ze-
ros and obtain D(z)−1 as a Nevanlinna function (see [32, 24, 42]).
Theorems 1.3 and 1.4 are the strongest prior results on when Szegő
asymptotics holds.

Both as input and motivation, the next element of background for
our work concerns sum rules. Szegő proved his results for orthogonal
polynomials on the real line (OPRL) by mapping the problem to one
on orthogonal polynomials on the unit circle (OPUC). For OPUC, he
earlier [46] proved asymptotic formulae. He began at z = 0 where the
limit formula was equivalent to his leading limit theorem for Toeplitz
determinants (see [45]) and deduced the general formula from that.

Verblunsky [49] rewrote the z = 0 limit theorem as a sum rule,
namely, if

dµ(θ) = w(θ)
dθ

2π
+ dµs (1.17)

is a probability measure on ∂D and αn are its Verblunsky coefficients
(see [41, 42] for definition), then

∞∏
j=0

(1− |αj|2) = exp

(∫
log(w(θ))

dθ

2π

)
(1.18)

(which includes the fact that both sides are 0 simultaneously, i.e.,∑∞
j=0|αj|2 = ∞ ⇔ ∫

log(w(θ)) dθ
2π

= −∞). Without knowing of

Verblunsky’s work, Case [3, 4], motivated by KdV sum rules, wrote
some rules for Jacobi matrices with sufficiently nice a’s and b’s — he
was not explicit about the needed conditions, but his arguments at
least require

∞∑
n=1

n(|an − 1|+ |bn|) < ∞ (1.19)
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It was Killip-Simon [24] who realized the right combination of sum
rules and proved

Theorem 1.5 (Killip-Simon [24]). Let an → 1 and bn → 0. Then
∞∑

n=1

|an − 1|2 + |bn|2 < ∞ (1.20)

holds if and only if ∑
j,±

(|E±
j | − 2)3/2 < ∞ (1.21)

and ∫ 2

−2

log(f(x))(4− x2)1/2 dx < ∞ (1.22)

Note that (1.22), which [24] calls the quasi-Szegő condition, is dis-
tinct from (1.5) ((4 − x2)1/2 rather than (4 − x2)−1/2). Further devel-
opments of sum rules include [25, 26, 27, 29, 43, 44]. In particular, one
has

Theorem 1.6 (Simon-Zlatoš [44]). Consider the three assertions:
(β) limn→∞ an . . . a1 exists and is nonzero.
(σ) (1.13) holds.
(τ) (1.5) holds.
If (β) holds, then (σ) ⇔ (τ), and if (σ) and (τ) hold, then (β) holds.

The next element in our analysis is to link Szegő asymptotics to
a different asymptotic result associated with work of Jost [20]. Jost
studied certain solutions of −u′′ + V u = Eu, which is the analog of

anfn+1 + (bn − (z + z−1))fn + an−1fn−1 = 0 n = 2, 3, . . . (1.23)

one of whose solutions is

fn(z) = pn−1

(
z +

1

z

)
(1.24)

As realized by Case [3, 4, 14], the analog of the Jost solution is a
solution of (1.23), which is asymptotic to zn in the sense that

z−nun(z) → 1 (1.25)

Case showed such solutions exist if |z| < 1 and (1.19) holds. In distinc-
tion, Szegő asymptotics says pn−1(z + 1

z
) ∼ Cz−n.

There may or may not be a solution of (1.23) which obeys (1.25) if
one only knows an → 1, bn → 0, but from either the discrete version of
Weyl’s analysis (see, e.g., [33, 39]) or by the Poincaré-Perron theorem
(see, e.g., [42, Section 9.6]), there is a solution for z ∈ D obeying
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fn → 0 — indeed, obeying fn+1/fn → z. From Weyl’s point of view,
this is given by the Green’s function, that is, we can take it to be, for
z ∈ D\{z±j }N±

j=1,

wn(z) = 〈δn, (z + z−1 − J)δ1〉 (1.26)

where J is the infinite Jacobi matrix

J =




b1 a1 0 . . .
a1 b2 a2 . . .
0 a2 b3 . . .

. . . . . . . . . . . .

. . . . . . . . . . . .




(1.27)

viewed as a bounded selfadjoint operator on `2(Z+).

We will say that Jost asymptotics occurs if for z ∈ D\{z±j }N±
j=1,

z−nwn(z) has a nonzero finite limit as n → ∞. A key to our un-
derstanding of when Szegő asymptotics holds for general a’s and b’s
(i.e., to Theorem 1.1) is the following result we prove in Section 2:

Theorem 1.7. Fix z0 ∈ D so that z0 + z−1
0 is not an eigenvalue of J .

Then Szegő asymptotics (i.e., znpn(z + 1
z
) has a nonzero limit) holds at

z0 if and only if Jost asymptotics holds at z0.

We can now turn more closely to our proof of Theorem 1.1. That
Szegő asymptotics implies (α)–(γ) will be easy (and done in Section 5)
once we have Theorem 1.7. Basically, w̃n(z) ≡ z−nwn(z) are analytic
near z = 0 and Jost asymptotics (uniformly on |z| = ε) implies con-
vergence of derivatives at z = 0. The first two Taylor terms at 0 yield
(β)–(γ), and as in [24], a suitable combination of the first and third
Taylor coefficients is positive and yields (α).

The hard direction is that (α)–(γ) implies Szegő or Jost asymp-
totics. We will provide three distinct proofs. The first, in Section 5,
is a relative of Szegő’s original proof and of the Peherstorfer-Yuditskii
arguments relying on the study of analytic functions on the disk. Szegő
just used (1.7) to define D, and Peherstorfer-Yuditskii multiplied D−1

by a Blaschke product. We do not have either luxury here. For (1.7)
to work, one needs

∫
log(f(cos θ))

dθ

2π
> −∞ (1.28)

which is equivalent to (1.5), while all we have is
∫

log(f(cos θ)) sin2(θ)
dθ

2π
> −∞ (1.29)
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which is equivalent to (1.22). Moreover, in place of (1.16), we only
have ∑

j,±
(1− |zj|)3 < ∞ (1.30)

so we cannot define a Blaschke product. The solution will be to define
renormalized Blaschke products when (1.30) holds, which we do in
Section 3, and a renormalized Poisson integral when (1.29) holds, which
we do in Section 4. This will allow us to define a candidate for the Jost
function and prove Jost asymptotics in Section 5 and so provide our
first proof that (α)–(γ) imply Jost asymptotics. This proof provides
bounds we will need in Section 8 to handle L2 convergence on ∂D.

Our second proof in Section 6 relies on an idea going back to Jost-Pais
[21] that the Jost function is a Fredholm determinant. For OPRL, this
is discussed in Killip-Simon [24]. We will use the theory of renormalized
determinants for Hilbert-Schmidt operators to construct a candidate
Jost function and use it to prove Jost asymptotics.

Our final proof, in Section 7, is connected to classical results on the
construction of asymptotic solutions of ODE’s associated with work of
Levinson [28] and Hartman-Wintner [18]; see the book of Eastham [12].
We will use results of Coffman [5] on the difference equation analogs to
construct Jost solutions when (α)–(γ) hold. This construction shows
that the “hard” part of Theorem 1.1 is related to known results on
ODE’s with L2 perturbations. From this point of view, our contribution
here is the realization that Jost solutions imply Szegő asymptotics and
that the conditions are not only sufficient but necessary.

In Section 8, we discuss L2 convergence on ∂D, following the original
scheme of Szegő [46] but with some severe technical complications be-
cause the Jost function is not Nevanlinna. This is the hardest argument
in the paper. In Section 9, we provide examples for each p < 3

2
of Jacobi

matrices with Szegő asymptotics, but with
∑

j,±(|E±
j | − 2)p = ∞. In

Section 10, we make some remarks about Schrödinger operators with
L2 potentials.

We announced our results in [7] written in September of 2003 and
mentioned our L2 results but not their proof to Serguei Denisov. In May
of 2004, Denisov-Kupin [10] released a preprint discussing modified
Szegő asymptotics for certain OPUC when the Szegő condition fails but
a condition like (1.29) holds. Their results are quite distinct from ours
although, via (1.29), there is some overlap. Many of the methods are
similar — in particular, like we do in Section 4, they use renormalized
Poisson representations. There is also some overlap in the L2 control of
the boundary values which we consider in Section 8. In particular, by
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using some of their ideas, it is likely we could streamline the proof of
and slightly strengthen our estimate, Proposition 8.2. We have kept our
original proof. We would emphasize that our work on these methods
is independent and roughly simultaneous.

It is a pleasure to thank M. Moszyński and R. Romanov for useful
discussions. B.S. completed this work during his stay as a Lady Davis
Visiting Professor at Hebrew University, Jerusalem. He would like to
thank H. Farkas and Y. Last for the hospitality of the Mathematics
Institute at Hebrew University.

2. Szegő Asymptotics and Jost Asymptotics

As explained in the introduction, for any Jacobi matrix with an → 1,
bn → 0, and z ∈ D, and not such that z + z−1 is an eigenvalue of J ,
there are two natural solutions of

anfn+1 + (bn − (z + z−1))fn + an−1fn−1 = 0 n = 2, 3, . . . (2.1)

One is the orthogonal polynomial solution, fn = pn−1(z + 1
z
), and the

other is the Weyl solution,

wn(z) = 〈δn, (z + z−1 − J)−1δ1〉 (2.2)

In this section, our purpose is to show that for each such z, one has
Jost asymptotics at that z, that is

w̃n(z) ≡ z−nwn(z) → w̃∞(z) (2.3)

for w̃∞ 6= 0 if and only if one has Szegő asymptotics for that z, that is,

cn(z) ≡ znpn

(
z +

1

z

)
→ c∞(z) (2.4)

for c∞ 6= 0, and moreover,

(1− z2)c∞(z)w̃∞(z) = 1 (2.5)

(as we will see, w̃∞(z) = 1/u(z), where u is the Jost function, so (2.5)
is usually written c∞(z) = u(z)/(1− z2)).

Of course, p�−1 obeys (2.1) also at n = 1 if we define p−1 ≡ f0 = 0
and a0 = 1. Since

(J − z − z−1)(z + z−1 − J)δ1 = −δ1

wn also obeys (2.1) if we set a0 = 1 and

w0(z) = 1 (2.6)

The constancy of the Wronskian thus implies

an

(
pn

(
z +

1

z

)
wn(z)− wn+1(z)pn−1

(
z +

1

z

))
= 1 (2.7)
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where we get 1 since

a0(p0w0 − w1p−1) = 1

Using the definitions (2.3)/(2.4) of c and w̃, (2.7) becomes

an(cn(z)w̃n(z)− z2w̃n+1(z)cn−1(z)) = 1 (2.8)

Thus, the following lemma is of relevance:

Lemma 2.1. Let xn, yn be sequences of nonzero complex numbers and
let λn be nonzero positive numbers with

λn → 1 (2.9)

and so, for some z ∈ D,

xn+1yn − z2xnyn+1 = λn (2.10)

Then
(i) If yn → y∞ 6= 0, then xn → 1/y∞(1− z2).
(ii) If xn → x∞ 6= 0 and z2nyn → 0, then yn → 1/x∞(1− z2).

Proof. (i) Rewrite (2.10) as

xn+1 = λny−1
n + z2 yn+1

yn

xn

and iterate ` + 1 times to get

xn+1 =
∑̀
j=0

λn−j
yn+1

yn+1−jyn−j

z2j + z2`+2 yn+1

yn−`

xn−` (2.11)

Set ` = n− 1 and see that since
∑n−1

j=0 z2j = (1− z2n)/(1− z2),

|xn+1 − y−1
∞ (1− z2n)(1− z2)−1| ≤

n−1∑
j=0

en,jz
2j + en,nz2n (2.12)

where

en,j = λn−j
yn+1

yn+1−jyn−j

− 1

y∞
j = 0, . . . , n− 1

en,n = yn+1x1y
−1
1

Since y` → y∞ 6= 0, supn,j en,j < ∞ and moreover, limn→∞ en,j = 0 for
all fixed j. Thus, since en,j → 0 for j fixed, we have for ` fixed,

lim sup
n→∞

∣∣∣∣
n∑

j=0

en,jz
2j

∣∣∣∣ ≤ lim sup

∣∣∣∣
n∑

j=`

en,jz
2j

∣∣∣∣

≤ |z|2`(1− |z|2)−1 sup
n,j
|en,j|
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→ 0 as ` →∞. Thus (2.12) implies

xn+1 → y−1
∞ (1− z2)−1 (2.13)

(ii) Rewrite (2.10) as

yn = λnx−1
n+1 + z2xnx−1

n−1yn+1

and iterate upwards. Since z2nyn → 0, the remainder after ` iterations
goes to zero as ` →∞, so

yn =
∞∑

j=0

λn+jz
2jxnx

−1
n+j+1x

−1
n+j

As in the argument in (i), this implies that yn → x−1
∞ (1− z2)−1. ¤

Theorem 2.2 (Szegő asymptotics = Jost asymptotics). Let J be a
Jacobi matrix with an → 1, bn → 0, and let z ∈ D be such that z + z−1

is not an eigenvalue of J . Then w̃n(z) has a nonzero limit if and only
if cn(z) has a nonzero limit, and if either happens,

lim
n→∞

cn(z) =
u(z)

1− z2
(2.14)

where

u(z)−1 ≡ lim
n→∞

w̃n(z) (2.15)

Proof. By (2.8), if λn = a−1
n , xn = cn−1(z), yn = w̃n(z), then Lemma 2.1

implies this result so long as

lim
n→∞

z2nw̃n(z) = 0

But

z2nw̃n(z) = znwn(z)

goes to zero since both wn → 0 and zn → 0. ¤

3. Renormalized Blaschke Products

As explained in the introduction, we need a renormalized Blaschke
product that works for real zeros that only obey

∑
n(1 − |zn|)3 < ∞

rather than the usual Blaschke condition
∑

n(1− |zn|) < ∞.
One can make a case that the first renormalization in science was the

Weierstrass product formula — to get an analytic function vanishing
at {zj}∞j=1 with |zj| → ∞, one modifies one’s first guess

f(z) =
∞∏

j=1

(
1− z

zj

)
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to

f(z) =
∞∏

j=1

Wnj

(
z

zj

)
(3.1)

where

Wn(z) = (1− z) exp

( n∑

k=1

zk

k

)
(3.2)

picking the argument to be the truncation of the power series for
− log(1 − z). It is well known, of course, that (3.1) converges if nj

is chosen so that
∑|r/zj|nj+1 < ∞ for all r > 0. Similarly, if our only

goal were to get a function with zeros in the right place, things would
be easy — for one can show that if zj ∈ D, |zj| → 1 as j → ∞ and

wj = zj/|zj|, and if nj is chosen so that
∑∞

j=1(
1−|zj |

ε
)nj+1 < ∞ for all

ε > 0, then

f(z) =
∞∏

j=1

Wnj

(
wj − zj

wj − z

)
(3.3)

is a product converging absolutely to a nonzero function analytic in D
with zeros at {zj}.

We want our Blaschke products to have magnitude one on ∂D and
we will want that for our renormalized Blaschke products.

For p = 0, b(z, p) = z: if p ∈ D, p 6= 0,

b(z, p) =
|p|
p

p− z

1− p̄z
(3.4)

so b(0, p) = |p| > 0. The key, of course, is that b(z, p) = 0 if and only
if z = p and

|b(eiθ, p)| = 1 (3.5)

If p = (1− x)ω with |ω| = 1 and x ∈ (0, 1),

b(z, (1− x)ω) =
1− x− zω−1

1− (1− x)ω−1z

=
1− x

1−ω−1z

1 + xω−1z
1−ω−1z

(3.6)

(3.6) shows immediately if |z| < 1 and
∑|xj| < ∞, then

∏∞
j=1 b(z, (1−

xj)ωj) converges absolutely (and uniformly on |z| < 1 − δ) since the
numerators and denominators in (3.5) separately do.

(3.6) suggests what to do if
∑|xj|n+1 < ∞. Define

bn(z, (1− x)ω) =
Wn( x

1−ω−1z
)

Wn(−xω−1z
1−ω−1z

)
(3.7)
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Here is the key fact:

Proposition 3.1. (a) Let δ > 0. Then for |z| < 1− δ and |x| < δ/2,

|bn(z, (1− x)ω)− 1| ≤ 4δ−n−1xn+1 (3.8)

(b) For eiθ 6= ω,

|bn(eiθ, (1− x)ω)| = 1 (3.9)

Warning. One cannot use the maximum principle and (3.9) to con-
clude that |bn(z, (1− x)ω)| ≤ 1. Indeed, for n ≥ 1,

lim
r↑1
|bn(rω, (1− x)ω)| = ∞

This is where bn’s differ from ordinary Blaschke factors. They have
very singular inner factors (indeed, for n ≥ 3, ones whose boundary
values are not even signed measures).

Proof. (a) It is known, (e.g., Rudin [34, p. 301]) that

|z| < 1 ⇒ |Wn(z)− 1| ≤ |z|n+1 (3.10)

If |x| < δ/2 and |z| < 1− δ, then |x/(1− ω−1z)| ≤ |x/δ| < 1
2

so (3.10)
can be used, and if N and D are the numerator and denominator in
(3.7), |D| > 1

2
. Since

∣∣∣∣
N

D
− 1

∣∣∣∣ ≤
1

|D| (|N − 1|+ |D − 1|)

(3.10) implies that

|bn(z, (1− x)ω)| ≤ 2

[ ∣∣∣∣
x

(1− ω−1z)

∣∣∣∣
n+1

+

∣∣∣∣
xω−1z

(1− ω−1z)

∣∣∣∣
n+1]

which yields (3.8).

(b) By (3.6), if eiθ 6= ω, b(eiθ, (1−x)ω) can be defined as a limit and
(3.6) still holds and b(eiθ, ω) = 1. Thus for x small, log b(eiθ, (1− x)ω)
is analytic in x. By (3.4),

|b(eiθ, p)| =
∣∣∣∣

p− eiθ

1− p̄eiθ

∣∣∣∣ =

∣∣∣∣
p− eiθ

p̄− e−iθ

∣∣∣∣ = 1

so for x positive, eiθ 6= ω,

Re log(b(eiθ, (1− x)ω)) = 0

It follows that its Taylor coefficients,

log(b(eiθ, (1− x)ω)) =
∞∑

n=1

γn(eiθ, ω)xn (3.11)
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have γn pure imaginary. Since

bn(eiθ, (1− x)ω) ≡ b(eiθ, (1− x)ω) exp

( n∑
j=1

γj(e
iθ, θ)xj

)
(3.12)

and γj is pure imaginary, (3.9) holds. ¤

Because we will be interested not in b2 but something related to it by
a finite correction, we need to look in detail at γ1 and γ2. We consider
γj(z, ω) defined by (3.11) with eiθ → z. By (3.6),

γ1(z, ω) = −
(

1 + ω−1z

1− ω−1z

)
(3.13)

γ2(z, ω) = −1
2

(1− (ω−1z)2)

(1− ω−1z)2
= −1

2

(1 + ω−1z)

(1− ω−1z)
(3.14)

Remarkably, γ1/γ2 is independent of ω and z! For reasons that will be
clear below, we want to consider

α(z) =
1 + z2

1− z2
β(z) =

2z

1− z2
(3.15)

Notice that

γ1(z, ω = ±1) = 2γ2(z, ω = ±1) = −(α(z)± β(z)) (3.16)

Definition. For p ∈ (−1, 1), p 6= 0, and z ∈ D, we define

q(z, p) = b(z, p) exp(−α(z) log(|p|)− 1
2
β(z)(p− 1

p
)) (3.17)

Theorem 3.2. (a) For z near zero and p 6= 0, p real,

log q(z, p) = log b(z, p)− α(z) log b(0, p)− 1
2
β(z)

d

dz
log b(z, p)

∣∣∣∣
z=0
(3.18)

(b)

q(z, p) = b2(z, p) exp(−α(z)A(p)− 1
2
β(z)B(p)) (3.19)

where

A(p) = log|p| − (1− |p|)− (1− |p|)2

2
(3.20)

B(p) = −(1− |p|)3

p
(3.21)

(c) If p ∈ (−1, 1) with 1− |p| < δ/2 and |z| < 1− δ, then

|q(z, p)−1| ≤ [4δ−3+5
3
(1+4δ−3)δ−1|p|−1 exp(5

3
δ−1|p|−1(1−|p|)3](1−|p|)3

(3.22)
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Proof. (a) Writing

b(z, p) = |p|
1− z

p

1− zp
we see

log b(z, p) = log|p|+ z

(
p− 1

p

)
+ O(z2)

which, given (3.17), is (3.18).

(b) By (3.12) and (3.16),

q(z, p) = b2(z, x) exp(C(p, z))

where

C(p, z) = −α(z) log(|p|)− 1
2
β(z)

(
p− 1

p

)
− α(z)((1− |p|) + 1

2
(1− |p|)2)

− β(z)sgn(p)((1− |p|) + 1
2
(1− |p|)2)

(3.23)

Thus (3.19) follows from

p− 1

p
+ sgn|p| [2(1− |p|) + (1− |p|)2] = −(1− |p|)3

p
(3.24)

(3.23) follows from writing p = sgn(p)(1− x) and

sgn(p)

[
(1− x)− 1

1− x
+ 2x + x2

]

= sgn(p)

{
(1− x)−

[
1 + x + x2 +

x3

1− x

]
+ 2x + x2

}

= −sgn(p)
x3

1− x
= −(1− |p|)3

p

(c) In terms of the function C of (3.23),

|q(z, p)− 1| = |b2(z, p) exp(C(z, p))− 1| (3.25)

≤ |b2(z, p)| |exp(C(p, z))− 1|+ |b2(z, p)− 1| (3.26)

We have (3.8) to bound |b2(z, p)−1|. Thus |b2| ≤ 1+|b2−1| ≤ 1+4δ−3.
Moreover,

|ec − 1| ≤ |c|max(1, |ec|) ≤ |c|e|c|
so (3.22) follows from

|C| ≤ 5
3
δ−1|p|−1(1− |p|)3 (3.27)

To prove (3.27), note first that |1−z2| ≥ 1−|z|2 = (1+|z|)(1−|z|) ≥
δ. Thus

|α(z)| ≤ 2

δ
|β(z)| ≤ 2

δ
(3.28)
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Moreover, if |p| = 1− x, then
∣∣∣∣log|p| − x− x2

2

∣∣∣∣ =

∣∣∣∣
∞∑

j=3

xj

j

∣∣∣∣

≤ 1

3

x3

1− x

=
1

3

(1− |p|)3

|p|
Thus, by (3.24) and (3.28),

|C| ≤ 2

δ

(1− |p|)3

p

[
1

3
+

1

2

]
=

5

3δ

(1− |p|)3

|p|
proving (3.27). ¤

Because each bn(z, p) is unbounded on D, the usual methods for
controlling products on ∂D do not work; but in the case where the
limit points of zeros only are a finite set, they do. Here is what we will
need:

Theorem 3.3. Let pn be a sequence of reals in (−1, 1) with
limn→∞|pn| = 1 so that

∞∑
n=1

(1− |pn|)3 < ∞ (3.29)

Let

Bren(z) =
∞∏

n=1

q(z, pn) (3.30)

Then
(i) The product (3.30) converges in C+ = {z ∈ Im z > 0} and defines

a function analytic in D∪C+∪C− whose only zeros are at {pn}∞n=1.
(ii)

|Bren(e
iθ)| = 1 θ ∈ (0, π) ∪ (π, 2π) (3.31)

(iii) If

B(N)
ren =

∞∏
n=N+1

q(z, pn) (3.32)

then for any p < ∞,
∫
|B(N)

ren (eiθ)− 1|p dθ

2π
→ 0 (3.33)
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Proof. (i) If z ∈ C+, we have

G(z) ≡ max

(
1

|1− z| ,
1

|1 + z| ,
|z|

|1− z| ,
|z|

|1 + z|
)

< ∞

Thus, if xG(z) < 1, the arguments in Wn in (3.7) are less than 1 and
the same estimates we used to bound |q(z, p)− 1| still work to see

|q(z, p)− 1| ≡ H(z)|1− p|3 (3.34)

for suitable H(z), and this shows the product converges.

(ii) Since the product converges on ∂D\{±1} and |q(eiθ, pn)| = 1,
(3.31) is immediate.

(iii) Since |B(N)
ren (eiθ)| = 1, by (ii), pointwise convergence implies Lp

convergence. The estimate (3.34) implies pointwise convergence to 1
since

∑∞
n=N+1|q(z, pn)− 1| → 0. ¤

4. Renormalized Poisson Representations

Our goal in this section is to start out with a function, f(z), on D,
which has a complex Poisson representation

f(z) =

∫
P (z, eiθ)g(eiθ)

dθ

2π
(4.1)

where

P (z, eiθ) =
eiθ + z

eiθ − z
(4.2)

and g ∈ L1(dθ/2π), real-valued, and

g(eiθ) = g(e−iθ) (4.3)

(so f(z) is real on D ∩ R).
We want to define

h(z) = f(z)− α(z)f(0)− β(z)f ′(0) (4.4)

and show it has a representation

h(z) =

∫
Q(z, eiθ)g(eiθ)

dθ

2π
(4.5)

where Q obeys a bound

|Q(z, eiθ)| ≤ C(z) sin2 θ (4.6)

This will allow us to extend (4.1) to cases where one only has∫ |g(eiθ)| sin2 θ dθ
2π

< ∞. In (4.4), α and β are the functions in (3.15).
For this section, their key property is

α(z)± β(z) = P (z, eiθ = ±1) (4.7)
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To see why (4.6) should hold, note that, by (4.3), in (4.1) we can
replace P (z, eiθ) by

S(z, eiθ) ≡ 1
2
[P (z, eiθ) + P (z, e−iθ)] (4.8)

=
1− z2

1 + z2 − 2z cos θ
(4.9)

Since S(0, eiθ) = 1 and ∂
∂z

S(z, eiθ)
∣∣
z=0

= cos θ, (4.5) holds with

Q(z, eiθ) = S(z, eiθ)− α(z)− β(z) cos θ (4.10)

Because of (4.7) and P (z, eiθ = ±1) = S(z, eiθ = ±1), Q vanishes
at eiθ = +1 and at eiθ = −1. Since α is even under θ → −θ and
θ → 2π− θ, these zeros must be quadratic, which is where (4.6) comes
from.

A straightforward calculation shows that, by (4.10),

Q(z, eiθ) = S(z, eiθ)− 1 + z2

1− z2
− 2z cos θ

1− z2

=
1− z2

1 + z2 − 2z cos θ
− 1 + z2 + 2z cos θ

1− z2

=
−4z2 sin2 θ

(1− z2)(1 + z2 − 2z cos θ)
(4.11)

=
−4z2 sin2 θ

(1− z)(1 + z)(z − eiθ)(z − e−iθ)
(4.12)

We summarize with

Theorem 4.1. Let f be given by (4.1) with g ∈ L1(dθ/2π) satisfying
(4.3) and let h(z) be given by (4.4). Then (4.5) holds with Q given by
(4.11). In particular,

|Q(z, eiθ)| ≤ 4 sin2 θ

(1− |z|)3
(4.13)

Proof. To get (4.13), note that |1− z2| ≥ 1− |z|2 = (1− |z|)(1 + |z|) ≥
1− |z| and |z − e±iθ| ≥ 1− |z|. ¤

As a final result about renormalized Poisson representations, we note
that

Theorem 4.2. Let g ∈ L1(sin2 θ dθ
2π

) be real-valued with g(eiθ) =

g(e−iθ). Define

f(z) =

∫ 2π

0

Q(z, eiθ)g(eiθ)
dθ

2π
(4.14)
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Then for a.e. θ, limr↑1 f(reiθ) ≡ f(eiθ) exists, and for a.e. θ,

Re f(eiθ) = g(eiθ) (4.15)

Proof. Given θ0 ∈ (0, π), break the integral in (4.14) into two parts:
I1 ≡ (θ0 − δ, θ0 + δ) ∪ (−θ0 − δ,−θ0 + δ) for |δ| < min(θ0, π − θ0) and
the complement, I2. By (4.12), if θ ∈ I2,

|Q(reiθ0 , eiθ| ≤ C sin2 θ (4.16)

uniformly in r and limr↑1 Q(reiθ0 , eiθ) exists and is pure imaginary.
Thus the part of the integral in (4.14) for θ ∈ I2 has a limit with
real part 0; if z = reiθ0 , r ↑ 1.

On I1, we can rewrite Q as a sum of its four summands
(1

2
P (z, eiθ), 1

2
P (z, e−iθ), α(z), and β(z) cos θ). Clearly, α(reiθ0) and

β(reiθ0) have limits which are pure imaginary. By the standard theory
of Poisson kernels (Rudin [34], Duren [11]), the P terms have a limit for
a.e. θ0 whose real part is 1

2
(g(eiθ0) + g(e−iθ0)) = g(eiθ0) by the assumed

symmetry of g. ¤

5. A Necessary and Sufficient Condition
for Jost Asymptotics

Our goal in this section is to prove that

Theorem 5.1. Let J be a Jacobi matrix with an → 1, bn → 0. Let
Q = {z ∈ D | z + z−1 is an eigenvalue of J}. Then the following are
equivalent:
(i) Szegő asymptotics (i.e., znpn(z + 1

z
) converges to a nonzero limit

as n →∞) hold for all z ∈ D\Q uniformly on compact subsets of
D\Q.

(ii) Szegő asymptotics hold for all z with |z| = ε for some ε > 0 and
uniformly in such z.

(iii) Jost asymptotics (i.e., z−nwn(z) has a nonzero limit) hold for all
z ∈ D\Q uniformly on compact subsets of D\Q.

(iv) Jost asymptotics hold for all z with |z| = ε for some ε > 0 uni-
formly in such z.

(v) The a’s and b’s obey three conditions:
(α)

∞∑
n=1

|an − 1|2 +
∞∑

n=1

|bn|2 < ∞ (5.1)

(β) limn→∞ a1 . . . an exists and is not zero.
(γ) limn→∞

∑n
j=1 bj exists.

(vi) The spectral measure, µ, on R and orthonormal polynomials obey
the following properties:
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(δ)
∫ 2

−2
log(dµac/dE)

√
4− E2 dE > −∞

(ε)
∑

n(|E±
n | − 2)3/2 < ∞

(κ) If the orthonormal polynomials have the form

pn(x) = γn(xn − λnx
n−1 + · · · ) (5.2)

then limn→∞ γn exists and is nonzero and limn→∞ λn exists.

Remarks. 1. We will see shortly that wn(z) has an nth-order zero at
z = 0, so z−nwn(z) has a removable singularity at z = 0 — and it is
that value we intend when we say the limit exists at z = 0.

2. We will discuss below what happens at the z0’s in Q. (Basically,
znpn(z + 1

z
) has a zero limit there and, by shifting from Weyl to Jost

solutions, we will also have control at z0’s in Q of the other solutions.)

3. We will see that u(z) ≡ (lim w∞(z))−1 always has a factorization
formula when (v) holds. u will be expressed in terms of “spectral data”
and the limits in (β) and (γ).

Define
M(z, J) = 〈δ1, (z + z−1 − J)−1δ1〉 = w1(z) (5.3)

Let J (n) be the Jacobi matrix obtained by removing the first n rows
and left n columns of J . Let

Mn(z, J) = M(z, J (n)) (5.4)

so M0(z, J) ≡ M(z, J). We will often drop the J if it is fixed in some
discussion.

Lemma 5.2.

(i) M(z) = z + O(z2) (5.5)

(ii) Mn(z) =
wn+1(z)

anwn(z)
(5.6)

(iii) wn(z) = M(z)(a1M1(z)) . . . (an−1Mn−1(z)) (5.7)

(iv) wn(z) = (a1 . . . an)zn + O(zn+1) (5.8)

(v) Mn(z) = (z + z−1 − bn+1 − a2
n+1Mn+1(z))−1 (5.9)

(vi) log

(
Mn(z)

z

)
= bn+1z + (1

2
b2
n+1 + a2

n+1 − 1)z2 + O(z3)

(5.10)

Remark. Some of these equalities are intended in the sense of the field
of meromorphic functions. For example, if ` < n and w`(z0) = 0, then
M`(z) has a pole at z0 and M`−1(z) a zero there and they are intended
to cancel in (5.7). Alternatively, these formulae hold initially away
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from {z ∈ D | z + z−1 ∈ σ(J (`)) for some ` = 0, 1, . . . } and then they
have removable singularities in some cases.

Proof. (i) M(z)/z = 〈δ1, (1 + z2 − zJ)−1δ1〉 = 1 + O(z) as z → 0.
(ii) As noted in Section 2, wn(z) is normalized by (2.6), that is, by

a1w2(z) + (b1 − z − z−1)w1(z) = −1

and, of course, M(z) = w1(z). (5.6) thus follows from

an+1

(
wn+2

anwn

)
+ (bn+1 − z − z−1)

(
wn+1

anwn

)
= −1

since wn+j/anwn solves the difference equation for J (n).
(iii) follows from (5.6) and w1 = M .
(iv) is immediate from (5.5) for Mn(z) and (5.7).
(v) follows from (5.6) and the difference equation for w.
(vi) From (5.9) for n = 0 and (5.5) for M1,

M(z)

z
= (1− b1z − a1z

2 + z2 + O(z3))−1

so

log

(
M(z)

z

)
= − log(1− b1z − a2

1z
2 + z2 + O(z3))

= (b1z + 1
2
b1z

2) + (a2
1 − 1)z2 + O(z3)

¤

Reduction of Theorem 5.1 to (v) ⇒ (iii). By Theorem 2.2, (i) ⇔ (iii)
and (ii) ⇔ (iv). (iii) ⇒ (iv) is trivial. Thus we need to prove (iv) ⇒
(v) and (v) ⇔ (vi) to reduce the proof to (v) ⇒ (iii).

The equivalence of (v) and (vi) is easy, given the result of Killip-
Simon [24]. They prove that (α) ⇔ (δ), (ε). The equivalence of (κ)
and (β), (γ) is immediate since the recursion relations for p imply that

an+1γn+1 = γn

−λn+1 = −λn − bn+1

so

γn = (a1 . . . an)−1 λn =
n∑

j=1

bj (5.11)

To study (iv) ⇒ (v), define

w̃n(z) = z−nwn(z) M̃n(z) = z−1Mn(z) (5.12)
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so, by (5.7),

log w̃n(z) =
n−1∑
j=1

log(aj) +
n−1∑
j=1

log M̃j−1(z) (5.13)

Convergence of w̃n(z) uniformly on the circle and analyticity of w̃n(z)
implies the derivatives of w̃n(z) at z = 0 all converge. By (5.10) and
(5.13), the terms of order 1, z, z2 yield

lim
n→∞

n−1∑
j=1

log(aj) = ν1 (5.14)

lim
n→∞

n−1∑
j=1

bj = ν2 (5.15)

lim
n→∞

n−1∑
j=1

a2
j − 1 + 1

2
b2
j = ν3 (5.16)

all exist. Following Killip-Simon [24], we look at (5.16)− 2× (5.14) to
see

lim
n→∞

n−1∑
j=1

G(aj) + 1
2
b2
j = ν3 − 2ν1 (5.17)

where
G(a) = a2 − 1− 2 log(a)

Since G(a) > 0 for a ∈ (0,∞), the summand in (5.17) is nonnegative,
so (5.17) implies absolute convergence. Since G(a) ≥ (a − 1)2 (for
G(1) = G′(1) = 0 and G′′(a) ≥ 2), (5.17) implies

∞∑
j=1

(aj − 1)2 + 1
2
b2
j < ∞

which is (α). (β) is the exponential of (5.14) and (γ) is (5.15). ¤
We now turn towards proving Jost asymptotics when (α), (β), (γ)

hold. We will give three proofs: one in this section using canonical fac-
torization of M -functions, one in Section 6 using renormalized deter-
minants, and one in Section 7 using Levinson-type asymptotic analysis
of difference equations.

Our starting point for the proof in this section will be the “nonlocal”
step-by-step sum rule of Simon [43]:

Theorem 5.3. For any Jacobi matrix with an → 1, bn → 0,

{θ | Im Mn(θ) 6= 0} = {θ | Im Mn+1(θ) 6= 0} (5.18)
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(modulo sets of dθ/2π-measure zero). For any p < ∞,

log

(
Im Mn(θ)

Im Mn−1(θ)

)
∈ Lp

(
∂D,

∂θ

2π

)
(5.19)

and

an+1Mn(z) = zB+
n B−

n (z) exp

(
1

4π

∫
log

(
Im Mn(z)

Im Mn+1(z)

)(
eiθ + z

eiθ − z

)
dθ

)

(5.20)

Here B±
n are alternating Blaschke products (B+ for 0 < p

(n)
1,+ < z

(n)
1,+ <

· · · < p
(n)
`,+ < z

(n)
`,+ and B− for 0 > p

(n)
1,− > z

(n)
1,− > · · · ) with p

(n)
j,± + p

(n)−1
j,±

the eigenvalues of J (n) and z
(n)
j,± + z

(n)−1
j,± the eigenvalues of J (n+1).

Remarks. 1. (5.20) is a special case of a general factorization theorem
for meromorphic Herglotz functions, f , of D. The general theorem has
1
2π

log(|f(eiθ)|). (5.20) then follows from |an+1Mn|2 = Im Mn/ Im Mn+1,
which is a consequence of (5.9).

2. In our applications, the set in (5.18) is all of ∂D. When this is
false, Im Mn/ Im Mn+1 in (5.19) and (5.20) have to be suitably defined
on the complement of the set in (5.18); see [43] for details.

We define

Ln(z) = log

(
an+1Mn(z)

z

)
(5.21)

Nn(z) = Ln(z)− α(z)Ln(0)− 1
2
β(z)L′n(0) (5.22)

where α, β are given by (3.15). If p
(n)
1,± are the poles of Mn closest to

z = 0, we define Ln(z) unambiguously on D\[p(n)
1,+, 1) ∪ (−1, p

(n)
1,−] by

requiring Ln(z) analytic and Ln(0) real. Since p
(n)
1,± → ±1 as n → ∞,

the result below exponentiated holds on D\{p(0)
j,± | j = 1, 2, . . . }.

Lemma 5.4. Suppose that (α), that is, (5.1) holds. Then for all z ∈
D\[p(0)

1,+, 1) ∪ (−1, p
(0)
1,+] = S,

lim
N→∞

N∑
n=0

Nn(z) (5.23)

exists and the convergence is uniform on compact subsets of S.

Proof. By (5.20),

Ln(z) = log B+
n (z) + log B−

n (z) +
1

4π

∫ (
eiθ + z

eiθ − z

)
log

(
Im Mn

Im Mn+1

)
dθ
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Using (3.18) and (4.4),

Nn(z) =
∑
j,±

[− log q(z, p
(n)
j,±) + log q(z, z

(n)
j,±)]

+
1

4π

∫
Q(z, eiθ) log

(
Im Mn

Imn+1

)
dθ

(5.24)

Since z
(n)
j,± = p

(n+1)
j,± , this implies

N∑
n=0

Nn(z) =
∑
j,±

[− log q(z, p
(0)
j,±) + log q(z, p

(N+1)
j,± )]

+
1

4π

∫
Q(z, eiθ) log

(
Im M

Im MN+1

)
dθ

(5.25)

The Killip-Simon [24] P2 sum rule implies
(a)

∫
sin2 θ|log( Im M

sin θ
)| dθ

2π
< ∞

(b)
∑

(1− |p(0)
j,±|)3 < ∞

(c) limN→∞
∫

sin2 θ|log( Im MN+1

sin θ
)| dθ

2π
= 0

(d) limN→∞
∑

(1− |p(N+1)
j,± |)3 = 0

(a) and (b) and the estimates (3.22) and (4.13) allow us to write
(5.25) as a difference of M (0)/p(0) terms and M (N+1)/p(N+1) terms and
then (c),(d) show that the error terms go to zero. The result is that

lim
∑N

n=0 Nn(z) exists and

lim
n→∞

exp

( N∑
n=0

Nn(z)

)

=
∏

j=±1

q(z, p
(0)
j,±)−1 exp

(
1

4π

∫
Q(z, eiθ) log

(
Im M

sin θ

)
dθ

) (5.26)

The proof shows the convergence is uniform. ¤

Proof of Theorem 5.1(v) ⇒ (iii). By (5.7), with w̃n(z) = z−nwn(z),

anw̃n(z) = exp

( n−1∑
j=0

Lj(z)

)
(5.27)

Since an → 1, w̃n(z) has a nonzero limit (i.e., Jost asymptotics hold)
if and only if

lim
N→∞

N∑
j=0

Lj(z)
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exists and the convergence of w̃n is uniform if and only if the conver-
gence of the sum is. Since

Lj(0) = log(aj+1)

by (5.5) and

L′j(0) = bj+1

by (5.10), we have that

Lj(z) = Nj(z) + α(z) log(aj+1) + 1
2
β(z)bj+1 (5.28)

By Lemma 5.4,
∑N

n=0 Nn(z) converges uniformly if (α) holds, (β) and

(γ) say that
∑N

n=0 log(an+1) and
∑N

n=0 bj+1 converge so
∑N

n=0 Ln(z)
converges uniformly. ¤

If w̃n(z) has a nonzero limit, we define the Jost function by

u(z) = lim
n→∞

w̃n(z)−1 (5.29)

This agrees with the usual definition if
∑∞

n=1|an− 1|+ |bn| < ∞. Thus

u(z) = exp

(
−

∞∑
n=0

Ln(z)

)
(5.30)

and we have proven (by (5.26)) that

Theorem 5.5. If (α), (β), (γ) hold, then

u(z) =

( ∞∏
j=1

aj

)−α(z)

e−
1
2
β(z)

P∞
j=1 bj

∞∏
j=1,±

q(z, p
(0)
j,±) exp

(
− 1

4π

∫
Q(z, eiθ) log

(
Im M

sin θ

)
dθ

)

(5.31)

In the above,
∏∞

j=1 aj and
∑∞

j=1 bj refer to the conditional limits.

The integral representation (5.31) implies

Theorem 5.6. Let (α), (β), (γ) hold and let

u(z) =
(

lim
n→∞

z−nwn(n)
)−1

Then
(i) After removing the removable singularities at {p(0)

j }, u(z) is ana-

lytic in D and u(z0) = 0 (z0 ∈ D) if and only if z0 ∈ {p(0)
j }, that

is, if and only if z0 + z−1
0 is an eigenvalue of J .
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(ii) For a.e. θ, limr↑1 u(reiθ) ≡ u(eiθ) exists and

Im M(eiθ)|u(reiθ)|2 = sin θ (5.32)

for a.e. θ.

Proof. (i) is immediate from (5.31) and (ii) follows from the fact that
α, β have purely imaginary values on ∂D\{±1} from (3.31) and Theo-
rem 4.2. ¤

Remark. However, unlike the case where
∑∞

n=1|an − 1| + |bn| < ∞, u
may not be Nevanlinna. Indeed, if

∑∞
n=1(|E±

n | − 2)1/2 = ∞, u cannot
be Nevanlinna. This is the subject of Section 8.

6. Renormalized Determinants

The idea that Jost functions are given by Fredholm determinants
goes back to Jost-Pais [21], and for Jacobi matrices was made explicit
by Killip-Simon [24]. They define the perturbation determinant by

L(z, J) = det(1 + δJ(J0 − (z + z−1))−1) (6.1)

where

δJ = J − J0 (6.2)

and J0 is the Jacobi matrix associated to an ≡ 1, bn ≡ 0. This definition
is used when z ∈ D and

∞∑
n=1

|an − 1|+ |bn| < ∞ (6.3)

In this case, δJ is trace class and the det in (6.1) is the standard trace
class determinant (see Simon [38] and Goh’berg-Krein [15]).

What Killip-Simon [24] prove in their Theorem 2.16 is

Theorem 6.1. For J − J0 trace class, z ∈ D, and z + z−1 /∈ σ(J), we
have that the function M given by (5.4) obeys

M(z, J) =
zL(z, J (1))

L(z, J)
(6.4)

and with wn(z), the Weyl solution,

z−nwn(z) → [
∏∞

j=1 aj]

L(z, j)
(6.5)

Remarks. 1. (6.4) implies (6.5) using (5.7) and L(z, J (n)) → 1 since
‖J (n) − J0‖1 → 0.
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2. (6.5), of course, says that the Jost function is given by

u(z; J) =

[ ∞∏
j=1

aj

]−1

L(z; J) (6.6)

3. Formula (6.4) is an expression of Cramer’s rule since, very for-
mally, Cramer’s rule says

M(z, J) =
det(z + z−1 − J (1))

det(z + z−1 − J)
(6.7)

and

z = M(z, J (0)) =
det(z + z−1 − J

(1)
0 )

det(z + z−1 − J0)
(6.8)

Moreover,

L(z, J) =
det(J − (z + z−1))

det(J0 − (z + z−1))
(6.9)

(6.7)–(6.9) manipulate to (6.4). Of course, the det’s in (6.7)–(6.9)
are all infinite, but one way to prove (6.4) is to prove (6.7)–(6.9) for
cutoff finite matrices and take limits.

When (5.1) holds, J − J0 may not any longer be trace class, but it
is Hilbert-Schmidt, which suggests that we use the renormalized de-
terminant for such operators. Such determinants go back to Carleman
[2]. They are discussed in [38, 15]. Our approach, due to Seiler [35, 36]
and used in [38], relies on the fact that if A is Hilbert-Schmidt, then

B = (1 + A)e−A − 1

is trace class, so we can define

det2(1 + A) ≡ det(1 + B) = det((1 + A)e−A) (6.10)

It obeys (see [38, Chapter 9])

A ∈ I1 → det(1 + A) = det2(1 + A)eTr(A) (6.11)

|det2(1 + A)− det2(1 + C)| ≤ ‖A− C‖2 exp(Γ2(‖A‖2 + ‖C‖2 + 1))
(6.12)

for a suitable constant, Γ2.
We note (see [41, eqn. (1.2.24)]) that

[(J0 − (z + z−1))−1]nm = −(z−1 − z)−1[z|m−n| − zm+n] (6.13)

Thus

[δJ(J0−(z+z−1))−1]nn = −(z−1−z)−1{(an−1−1)(z−z2n−1)+bn(1−z2n)+(an−1)(z−z2n+1)}
(6.14)

which implies:
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Lemma 6.2. If δJ is trace class and z ∈ D, then

Tr(δJ(J0−(z+z−1))−1) = −(z−1−z)−1

{ ∞∑
n=1

bn(1−z2n)+2
∞∑

n=1

(an−1)(z−z2n+1)

}

(6.15)

It also explains the relevance of

Proposition 6.3. Suppose an, bn obey (α)–(γ) of Theorem 5.1. Then

T (z; J) = lim
N→∞

[
−(z−1−z)−1

N∑
n=1

bn(1−z2n)+2
N∑

n=1

(an−1)(z−z2n+1)

]

(6.16)
exists for all z ∈ D and the convergence is uniform for compact subsets
of D.

Proof. z2� ∈ `2 for z ∈ D uniformly on compact subsets, so (α) implies
∞∑

n=1

bnz
2n and

∞∑
n=1

(an − 1)z2n+1

converge absolutely to an analytic limit.
(β) plus

∑∞
n=1|an − 1|2 < ∞ implies limN→∞

∑N
n=1(an − 1) exists,

and this plus (γ) implies the existence of the remaining terms. ¤
Definition. If (α)–(γ) of Theorem 5.1 hold, we define

Lren(z, J) = det2(1 + δJ(J0 − (z + z−1))−1)eT (z;J) (6.17)

Proposition 6.4. Let z ∈ D. Lren(z, J) = 0 if and only if z + z−1 ∈
σ(J).

Proof. det2(1 + A) = 0 if and only if 1 + A is not invertible (see [38,
Chapter 9]). Since 1+ δJ(J0− (z + z−1))−1 = (J − (z + z−1))(J0− (z +
z−1)), this happens if and only if z + z−1 ∈ σ(J). ¤

By (6.1), (6.11), and (6.15), we have that

Proposition 6.5. If
∑∞

n=1|an − 1|+ |bn| < ∞, then

Lren(z, J) = L(z, T ) (6.18)

Theorem 6.6. If (α)–(γ) of Theorem 5.1 hold, then for all z ∈ D so
z + z−1 /∈ σ(J),

M(z, J) =
zLren(z; J (1))

Lren(z; J)
(6.19)

and

z−nwn(z) =

( n−1∏
j=1

aj

)
Lren(z; J (n))

Lren(z; J)
(6.20)
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Proof. (6.20) is implied by (6.19) and (5.7), so we need only prove
(6.19). Define Jn to be the Jacobi matrix with

a
(n)
j =

{
aj j ≤ n− 1

1 j ≥ n
(6.21)

b
(n)
j =

{
bj j ≤ n

0 j ≥ n + 1
(6.22)

Then, by (α),

‖Jn − J‖2 → 0 (6.23)

so ‖δJn − δJ‖2 → 0, so by (6.12),

det2(1+δJn(J0−(z+z−1))−1) → det2(1+δJ(J0−(z+z−1))−1) (6.24)

It is easy to see that T (z, Jn) → T (z, J). Thus, using (6.18), uniformly
on compacts of D,

lim
n→∞

L(z, Jn) = lim
n→∞

Lren(z, Jn) = Lren(z, J) (6.25)

The same is true for J
(1)
n and J (1). Therefore, since u(z, J) 6= 0, (6.4)

implies (6.19). ¤

We therefore have the second proof of the hard part of Theorem 5.1:

Theorem 6.7. Let (α)–(γ) of Theorem 5.1 hold. Then uniformly on
compact subsets of D\{z | z + z−1 ∈ σ(J)},

z−nwn(z) → u(z)−1 (6.26)

where

u(z) =

(
lim

n→∞

n∏
j=1

aj

)−1

Lren(z, J) (6.27)

Proof. By (6.20), this is equivalent to

lim
n→∞

Lren(z, J
(n)) = 1 (6.28)

uniformly on compacts. It is easy to see that limn→∞ T (z, J (n)) = 0.
Since ‖J (n) − J0‖2 → 0,

det2(1 + δJn(J0 − (z + z−1))−1) → 1

This proves (6.28). ¤
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7. Geronimo-Case Equations

Given a set {an, bn}∞n=1 of real Jacobi parameters, the Geronimo-Case
polynomials cn(z), gn(z) are defined by the recursion relations:

cn+1(z) = a−1
n+1[(z

2 − bn+1z)cn(z) + gn(z)] (7.1)

gn+1(z) = a−1
n+1[((1− a2

n+1)z
2 − bn+1z)cn(z) + gn(z)] (7.2)

with initial conditions

c0(z) = g0(z) = 1 (7.3)

They were introduced in a slightly different form by Geronimo-Case
[14] who, under a condition that

∑
n[|an− 1|+ |bn|] < ∞, proved that

for z ∈ D, limn→∞ gn(z) exists and defined it to be the Jost function. In
Paper II of our current series [8], we will reexamine these equations to
prove convergence in D if

∑
n|an−1|+ |bn| < ∞ and, most importantly,

identify what cn and gn are, namely,

cn(z) = znpn

(
z +

1

z

)
(7.4)

where pn are the orthonormal polynomials. Moreover, if J̃` is defined
like J` (see (6.21)/(6.22)) but with a different cutoff on aj, that is,

ã
(`)
j =

{
aj j ≤ `

1 j ≥ ` + 1
(7.5)

b̃
(`)
j =

{
bj j ≤ `

0 j ≥ ` + 1
(7.6)

then

gn(z, J) = u(z, J̃n) (7.7)

the conventional Jost function for J̃n, that is,
(limm→∞ z−mwm(z, J̃n))−1.

Our goal here is to extend Theorem 5.1 by proving:

Theorem 7.1. The following are equivalent:
(a) For some ε ∈ (0, 1), limn→∞ cn(z) exists for |z| = ε uniformly in

such z.
(b) For all z ∈ D, limn→∞ cn(z) and limn→∞ gn(z) exist uniformly on

compacts of D, and lim gn(z) is the Jost function u(z; J).
(c) Conditions (α)–(γ) of Theorem 5.1 hold.

Proof. That (a) ⇒ (c) is just (ii) ⇒ (iv) in Theorem 5.1, and (b) ⇒
(a) is trivial. So we only need (c) ⇒ (b). Convergence of cn is just (iv)
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⇒ (i) of Theorem 5.1, so we only need convergence of gn. To see this,
we use (7.7), (6.17), and (6.27). ‖J̃n − J‖2 → 0, so

det2(1+δJ̃n(J0− (z +z−1))−1) → det2(1+δJ(J0− (z +z−1))−1) (7.8)

Clearly, T (z; J̃n) → T (z; J). Thus, gn converges to the Jost function
for J . ¤

The point of this theorem is that we establish the validity of the GC
equations for defining u in the general context of Theorem 5.1. There
is a second point — we want to turn this analysis around and directly
use the GC equations to prove that, when (α)–(γ) hold, cn(z) and gn(z)
have limits for z ∈ D, thereby providing a third proof of the hard part
of Theorem 5.1. The key is the following theorem of Coffman [5]:

Theorem 7.2 ([5]). Let J be a d × d diagonal matrix with entries
λ1, . . . , λd along the diagonal. Let An be a sequence of d × d matrices
so
(i)

∞∑
n=1

‖An‖2 < ∞ (7.9)

(ii) J and {J + An}∞n=1 are all invertible.
Consider solutions yn ∈ Cd of

yn+1 = (J + An)yn (7.10)

with some initial condition y1. Suppose λj is a simple eigenvalue with
|λj| 6= |λ`| for ` 6= j. Let

f(n) =
n−1∏
m=1

[λj + (Am)jj] (7.11)

Then there exists an initial condition y1 so that

lim
n→∞

yn,j

f(n)
(7.12)

exists and is nonzero, while for ` 6= j,

lim
n→∞

yn,`

f(n)
= 0 (7.13)

Remarks. 1. Coffman’s result is a discrete analog of continuum (ODE)
results of Hartman-Wintner [18]. Related work includes Ford [13],
Benzaid-Lutz [1], and Janas-Moszyński [19].

2. Coffman [5] only requires that λj be a simple eigenvalue and allows
others can have Jordan blocks. In (7.9), he allows 2 to be replaced by
p ∈ [1, 2], but such assumptions imply (7.9)!
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3. A pedagogical presentation of Theorems 7.1 and 7.2
will appear in the second edition of [41]. Until that second
edition appears, the section will be available on the web at
http://www.math.caltech.edu/opuc.html.

Corollary 7.3. Let J be a d×d matrix with simple eigenvalues λ1 = 1,
λ2, . . . , λd with |λi| 6= |λj| if i 6= j and λ2, . . . , λd ∈ D. Let y(0) be the
eigenvector of J with Jy(0) = y(0). Suppose An obeys (7.9) and

lim
N→∞

N∑
n=1

An

exists. Then for any initial condition y1, the solution of (7.10) obeys

lim
n→∞

yn = c(y1)y
(0) (7.14)

As a preliminary, note that if
∑N

n=1 an has a limit and
∞∑

n=1

|an|2 < ∞ (7.15)

then
∏N

j=1(1 + an) has a finite limit which is nonzero if all an 6= −1.

For
∑∞

n=1 log(1 + an)− an is absolutely convergent by (7.15).

Proof. By this remark and Theorem 7.2, there are solutions y
(k)
n with

y(k)
n λ−n

k → multiple of eigenvector of J with eigenvalue λk

(7.14) follows since λ1 = 1 while |λk| < 1 for k 6= 1. ¤
Remark. By using Perron’s theorem, one can show that only |λj| < 1
for j ≥ 2 is needed, not |λj| 6= |λk|.

Here is the promised third proof of the hard part of Theorem 5.1:

Theorem 7.4. Let conditions (α)–(γ) of Theorem 5.1 hold. Let cn, gn

be defined by (7.1)–(7.3). Then(
cn

gn

)
(z) → f(z)

(
(1− z2)−1

1

)
(7.16)

Proof. Let J =
(

z2 1
0 1

)
with z ∈ D. J has eigenvalues z2 ∈ D and 1,

and the eigenvector for eigenvalue 1 is ((1− z2)−11)t. Let

An =

( −bn+1z 0
(1− a2

n+1)z
2 − bn+1z 0

)

which obeys the hypothesis of Corollary 7.3 by (α)–(γ). This corollary
plus existence of the limit

∏∞
j=1 aj imply (7.16). ¤
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Remark. One can also apply Theorem 7.2 directly to the recursion
relation (2.1) to see that there exist solutions ∼ Czn, that is, Jost
solutions.

8. L2 Convergence on the Boundary

Our goal in this section is to prove:

Theorem 8.1. Let dρ have the form (1.1) and suppose {an, bn}∞n=1

obey (α)–(γ) of Theorem 5.1. Then

lim
n→∞

∫ 2

−2

|pn(x)− (sin θ)−1 Im(ū(eiθ)ei(n+1)θ)|2 f(x) dx = 0 (8.1)

with θ = arccos(x
2
), and

lim
n→∞

∫
|pn(x)|2 dρs(x) = 0 (8.2)

Remark. Unfortunately, there are some errors in the analogous formula
in [42], namely, (13.3.15) should have

ū(x)ei(n+1)θ − u(x)e−i(n+1)θ

2i sin θ
(8.3)

where it has
ū(x)ei(n−1)θ − u(x)ei(n−1)θ

4 sin θ
(8.4)

and pn, not Pn. As a check, when bn ≡ 0, an ≡ 1, pn(2 cos θ) = sin(n+1)θ
sin θ

and u ≡ 1.

This is an analog of what Szegő proved in [46] for OPUC and then
translated [47] to exactly this form for OPRL with supp(dρ) ⊂ [−2, 2].
Peherstorfer-Yudistkii [32] proved precisely this when (1.5) and (1.13)
hold. While the underlying core idea behind the proof we use is that
of those authors, our technicalities are much more complex.

For all these proofs, the key is to prove what is essentially a weak L2

convergence that in the current context is

lim
n→∞

∫ 2π

0

einθpn(2 cos θ)u(eiθ)−1(1− e2iθ)
dθ

2π
= 1 (8.5)

In Szegő case, u(z)−1 is an H2-function, so the left side of (8.5) is just
[znpn(z + 1

z
)u(z)−1(1− z2)]

∣∣
z=0

, which converges to 1 by the asymp-
totic result inside the circle. If there are finitely many bound states,
u(z)−1 has finitely many poles. Using the fact that eigenfunctions
go to zero, it is easy to accommodate the poles. For the case that
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Peherstorfer-Yuditskii study, the argument is more subtle but, by cut-
ting off Blaschke products, still involves a contour integral around the
whole unit circle.

In contrast, our u(z)−1 is so singular at ±1 that we do not see how to
directly deal with the integral in (8.1). Instead, we will deal with arcs
by mapping a sector to the unit disk and relating this to distributional
convergence of suitable boundary values of analytic functions. As noted
in the introduction, this argument has some elements in common with
work of Denisov-Kupin [10] which was done subsequently to our work.
In turn, we were all motivated by some arguments of Killip [23].

The technical core of our proof is the following:

Proposition 8.2. Let (α)–(γ) of Theorem 5.1 hold. Fix a sector on
D,

S = {z | |z| < 1, 0 < θ0 ≤ arg z ≤ θ1 < π} (8.6)

Then there exist N and C so that for all n and all z ∈ S,
∣∣∣∣znpn

(
z +

1

z

)
(1− z2)u(z)−1

∣∣∣∣ ≤ C(1− |z|)−N (8.7)

Moreover, C and N are uniformly bounded for S fixed for all
{an, bn}∞n=1 with

sup
N

(∣∣∣∣
N∑

n=1

log(an)

∣∣∣∣ +

∣∣∣∣
N∑

n=1

bn

∣∣∣∣
)

+
∞∑

n=1

|an − 1|2 + |bn|2 < K (8.8)

Remarks. 1. What is critical is the C and N are n independent. N is
also S independent, but C is S dependent and diverges as S approaches
the real axis, that is, as we approach the singularities at z = ±1.

2. As noted in the introduction, by using ideas of Denisov-Kupin
[10], we can likely prove this with N = 1; we will have N = 5

2
.

3. We defer the proof until the end of the section.

Definition. If f(z) is a function analytic on D, with

f(z) =
∞∑

n=0

f̂(n)zn (8.9)

and if f obeys

|f(z)| ≤ C(1− |z|)−N (8.10)

so

|f̂(n)| ≤ 4C(n + 1)N (8.11)
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(obtained by writing f̂(n) as a contour integral over a circle of radius
1− (n + 1)−1), we define the distributional boundary values of f by

∫
f(eiθ)g(eiθ)

dθ

2π
≡

∞∑
n=0

f̂(n)

∫
einθg(eiθ)

dθ

2π
(8.12)

for C∞ functions g on ∂D.

Power bounds like (8.7) are important because of

Proposition 8.3. Let fn(z) be a sequence of functions analytic on D
so that for some fixed C,N and all n,

|fn(z)| ≤ C(1− |z|)−N (8.13)

Suppose fn → f∞ uniformly on compacts of D. Then the distributional
boundary values converge in (weak) distributional sense.

Proof. Let f ∈ C∞(∂D) and ĝ(−n) the integral in (8.12). Write

∞∑

k=0

|f̂n(k)− f̂∞(k)| |ĝ(−k)| ≤ 1 + 2

where 2 =
∑∞

k=K+1 and 1 =
∑K

k=1. Then, by (8.11) and (8.13), for

g fixed, we can choose K so | 2 | < ε. By the assumed convergence,

f̂n(k) → f̂∞(k) for each k, so 1 → 0. ¤

Proposition 8.4. For any sector S of the form (8.6), there is an
analytic bijection ϕ : D→ S and constant C so that

(1− |ϕ(z)|)−1 ≤ C(1− |z|)−1 (8.14)

Proof. By compactness, we only need to prove this near points where
|ϕ(z)| = 1. Such points are on the part of ∂D that maps into ∂S ∩ ∂D,
that is, an arc. At interior points, ϕ is locally linear and (8.14) holds,
so we only need to worry about neighborhoods, N, of the points that
map to corners. In suitable local coordinates, ζ, the corner maps to 0,
N∩D maps to C+∩{ζ | |ζ| < ε} and ϕ is transformed to ϕ(z(ζ)) =

√
ζ

mapping C+ to a 90◦ corner. In these local coordinates, 1 − |ϕ(z)| ∼
Im
√

ζ and 1− |z| ∼ Im ζ, and (8.14) says

1

Im
√

ζ
=

2 Re
√

ζ

Im ζ
≤ C

Im ζ

which is immediate since |ζ| is small. Thus, (8.14) holds locally, and
so globally. ¤
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Given a sector S of the form (8.6) and ϕ : D → S, we can define
analytic functions on D,

fn(z) = gn(ϕ(z)) (8.15)

where

gn(z) = znpn

(
z +

1

z

)
u(z)−1(1− z2) (8.16)

This allows us to consider boundary values of fn, and so gn, as distri-
butions. But gn, and so fn, also has pointwise boundary values, and
we want to prove that the distributional boundary value is given by
the function. We have

Lemma 8.5. For any sector S of the form (8.6), there is an H2 func-
tion h and a function q analytic in a neighborhood of D ∪ S̄ so that

u(z)−1 = h(z)q(z) (8.17)

Remark. The point is that q(z) is analytic in ∂S, so the boundary
values of u−1 on ∂S are given by the well-studied theory of boundary
values of H2 functions [34, 11].

Proof. We use the representation (5.31). Define

H(θ) =

{
Im M(eiθ) eiθ ∈ T ∪ T̄

|sin θ| eiθ /∈ T ∪ T̄
(8.18)

where T is a slightly enlarged ∂S ∩ ∂D, but not so enlarged that it
includes +1 or −1. Let

h(z) = exp

(
1

4π

∫
eiθ + z

eiθ − z
log

(
H(θ)

sin θ

)
dθ

)
(8.19)

Since H(θ)
sin θ

> 0 (by (5.32)),
∫

log

(
H(θ)

sin θ

)
> −∞ (8.20)

and, by (5.32) again,
∫ (

H(θ)

sin θ

)
dθ

2π
< ∞ (8.21)

the function (8.19) is in H2 by the standard approximant argument of
Szegő (see [41, Section 2.4]).

Thus, we define q(z) = u(z)−1h(z)−1 and need to show that it is
analytic in a neighborhood of D ∪ S. By (5.31), we can write

q(z) = q1(z)q2(z)q3(z)q4(z) (8.22)
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where

q1(z) =

( ∞∏
j=1

aj

)α(a)

exp

(
1
2
β(z)

∞∑
j=1

bj

)
(8.23)

is clearly analytic away from ±1. We have that q2 is the inverse of the
renormalized Blaschke product is analytic away from R by Theorem 3.3.
Next,

q3(z) = exp

(
1

4π

∫
Q(z, eiθ) log

(
Im M

H(θ)

)
dθ

)
(8.24)

is analytic since log( Im M
H(θ)

) is supported on ∂D\(T ∪ T̄ ) and Q(z, eiθ)

has singularities only at z = ±1,±eiθ. Finally,

q4(z) = exp

(
1

4π

∫
[Q(z, eiθ)− P (z, eiθ)] log

(
H(θ)

sin θ

)
dθ

)
(8.25)

is analytic since log(H(θ)
sin θ

) is even, so we can replace Q−P by Q(z, eiθ)−
1
2
P (z, eiθ)− 1

2
P (z, eiθ) and this kernel is only singular at z = ±1. ¤

Given θ0 ∈ [0, 2π), let Rθ0 be the region

Rθ0 =

{
z

∣∣∣∣ 1 > |z| > 1
2
, arg(1− e−iθ0z) <

π

4

}
(8.26)

a region of nontangential approach to θ0. Define the maximal function,

M(θ0) = sup
z∈Rθ0

|u(z)−1| (8.27)

Given Lemma 8.5, standard H2 theory [34, 11, 22] implies that

Proposition 8.6. u(reiθ)−1 has boundary values as r ↑ 1 for a.e. θ ∈
(0, 2π). Indeed, for a.e. θ,

lim
|z|↑1

z∈Rθ0

u(z)−1 = u(eiθ0)−1 (8.28)

Moreover, for every η > 0,∫ π−η

η

M(θ0)
2 dθ

2π
< ∞ (8.29)

This implies

Proposition 8.7. Let S be a sector of the form (8.6) and fn be given
by (8.15)/ (8.16). Let S̃ ⊂ ∂D be the image of ∂S ∩ ∂D under ϕ−1

and let Tfn denote the distribution induced by fn on ∂D. Let t(θ) be a

function in C∞(S̃int). Then

Tfn(t) =

∫

S̃

t(θ)gn(ϕ(eiθ))
dθ

2π
(8.30)
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where gn is defined by the pointwise boundary value of u−1.

Proof. By the definition of (8.12) and the absolute convergence of the
sum,

Tfn(t) = lim
r↑1

∫

S̃

t(θ)gn(ϕ(reiθ))
dθ

2π
(8.31)

By the continuity of ϕ ¹ {reiη | η ∈ supp(t)}, for all r close enough
to 1, ϕ(reiθ) ∈ Rϕ(eiθ), so gn(ϕ(reiθ)) → gn(ϕ(eiθ)) by (8.28), and by

(8.29) and |tgn| ≤ 2|t|M sup|t|≤1|znpn(z + 1
z
)|, we have domination by a

function in L2, and so in L1. Thus, (8.30) follows from the dominated
convergence theorem. ¤
Proposition 8.8. For each C∞ function, let S be a sector of the form
(8.6) and ϕ an analytic map of D to S. Let t be a C∞ function with
support in Sint. Then

lim
n→∞

∫

S̃

t(θ)gn(ϕ(eiθ))
dθ

2π
=

∫
t(θ)

dθ

2π
(8.32)

Proof. By (8.7) and (8.14), plus Theorem 5.1 (which implies gn(z) → 1
for z ∈ D and so for z ∈ S) and Proposition 8.3, Tfn → 1 in distribu-
tional sense. This implies (8.32), given Proposition 8.7. ¤

These lengthly preliminaries imply the key to L2 convergence on the
boundary:

Theorem 8.9. Let u(eiθ)−1 be the boundary values of u−1 on ∂D. Let
gn be given by (8.16) on ∂D. Then
(1) ∫ 2π

0

|gn(eiθ)|2 dθ

2π
≤ 2 (8.33)

(2) gn → 1 in weak-L2(∂D, dθ
2π

).

Proof. (1) We begin with some preliminaries concerning the measure
dµac on ∂D obtained by using θ = arccos(x

2
) to move the a.c. part of

dρ, that is, f(x) dx to ∂D. Since eiθ → 2 cos θ is 2 − 1 from ∂D to
[−2, 2] (see [42, Section 13.15]),

dµac(θ) = |sin θ|f(2 cos θ) dθ (8.34)

By (5.3) and standard theory of Stieltjes transforms,

f(2 cos θ) =
|Im M(eiθ)|

π
(8.35)

so, by (5.32),

dµac =
sin2(θ)

|u(eiθ)|2
dθ

π
(8.36)
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=
1

2

|1− e2iθ|2
|u(eiθ)|2

dθ

2π
(8.37)

Thus,
∫ 2π

0

|gn(eiθ)|2 dθ

2π
= 2

∫ 2π

0

|pn(2 cos θ)|2 dµac(θ)

= 2

∫ 2

−2

|pn(x)|2 dρac(x)

≤ 2

∫ 2

−2

|pn(x)|2 dρ(x) = 2

proving (8.33).

(2) By (1), the functions gn are uniformly bounded in L2, so it suffices
to prove that ∫

t(eiθ)gn(eiθ)
dθ

2π
→

∫
t(eiθ)

dθ

2π
(8.38)

for a total set of t’s. If t is C∞ and supported in some sector S of the
form (8.6), (8.38) follows from Proposition 8.8 (there is a Jacobian to
go from dϕ(θ) to dθ, but it is C∞ on Sint and occurs on both sides of
(8.38)). Since such t’s are total, (2) is proven. ¤
Proof of Theorem 8.1. Define in L2([−2, 2], f(x) dx),

j+
n (x) = (2 sin θ)−1 u(eiθ) ei(n+1)θ (8.39)

j−n (x) = j+
n (x) (8.40)

where θ(x) ∈ (0, π) is given by x = 2 cos(θ(x)). By (8.35) and (5.32),

f(x) =
sin θ

π|u(eiθ)|2 (8.41)

Thus, by a change of variables,
∫ 2

−2

|j+
n (x)|2f(x) dx =

∫ 2

−2

1

4
sin−2 θ|u|2 sin θ

π|u|2 dx

=
1

2

∫ π

0

dθ

π
=

1

2
(8.42)

On the other hand, by the same change of variables,

〈j−n , pn〉L2(f dx) =

∫ 2

−2

(2 sin θ)−1 u(eiθ) einθeiθpn(2 cos θ)
sin θ

π|u|2 dx

=

∫ π

0

u(eiθ)−1

[
(1− z2)znpn

(
z +

1

z

)∣∣∣∣
z=eiθ

] −1

2i

dθ

π
(8.43)



A CONDITION FOR SZEGŐ ASYMPTOTICS 39

→ i

2
(8.44)

by Theorem 8.9. (8.43) uses

eiθ 1

2 sin θ
sin θ d(2 cos θ) = eiθ sin θ =

−1

2i
(1− e2iθ)

Similarly, since pn is real,

〈j+
n , pn〉L2(f dx) → − i

2
(8.45)

Finally, by the same change of variables that led to (8.42),

〈j+
n , j−n 〉L2(f dx) =

1

2

∫ π

0

e−2i(n+1)θ u(eiθ)

u(eiθ)

dθ

π
→ 0 (8.46)

since u
ū
∈ L2(∂D, dθ

2π
) and e−2i(n+1)θ) → 0 weakly.

Now,

pn(x)− (sin θ)−1 Im(ūei(n+1)θ) = pn(x)− i−1[j+
n − j−n ] (8.47)

so, by (8.42), (8.43), (8.45), and (8.44) (all norms in L2(f dx)),

0 ≤ lim inf ‖LHS of (8.47)‖2

= lim inf(‖pn‖2 + ‖j+
n ‖2 + ‖j−n ‖2 − 2 Re〈j+

n , j−n 〉
+ 2 Re〈pn, ij+

n 〉 − 2 Re〈pn, ij−n 〉)
= lim inf(‖pn‖2 + 1

2
+ 1

2
− 0− 1− 1)

= lim inf ‖pn‖2 − 1

Thus, since ‖pn‖2
L2(f dx) ≤ 1, we conclude

lim ‖pn‖2
L2(f dx) = 1

so ‖pn‖L2(dρs) → 0 and, by the above calculation, LHS of (8.47) →
0. ¤

Thus, Theorem 8.1 is reduced to the proof of Proposition 8.2, to
which we now turn. As a preliminary, we want to exploit the proof of
Lemma 8.5:

Proposition 8.10. Let S be a sector of the form (8.6) and let K be
given. Then there exists C depending only on S and K so that if (8.8)
holds, then for z ∈ S,

|u(z)−1| ≤ C(1− |z|)−1/2 (8.48)
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Proof. As in Lemma 8.5, we construct the factorization (8.17). The
proof shows that ‖h‖H2 and ‖q‖S,∞ ≡ supz∈S|q(z)| are bounded by
constants C1 and C2 depending only on K and S.

Let h(z) =
∑∞

j=0 hjz
j, then ‖h‖H2 = (

∑∞
j=0|hj|2)1/2, so, by the

Schwarz inequality,

|h(z)| ≤ ‖h‖H2

( ∞∑
j=0

|z|2j

)1/2

= ‖h‖H2(1− |z|2)−1/2

≤ C1(1− |z|)−1/2

so, by (8.17), we have (8.48) with C = C1C2. ¤
Our proof will exploit (2.11) where yn = w̃n and xn = cn−1. We are

interested in controlling u−1xn, which means controlling u−1y−1
n and

ratios yn/yn−j, that is, the functions u−1w̃−1
n and w̃n/w̃n−j. So we turn

first to u−1w̃−1
n and then w̃n/w̃n−j.

Let J (n) be the Jacobi matrix given after (5.3) and make the J-
dependence of wn explicit. Then:

Proposition 8.11. Let w̃n(z, J) be given by (2.2)/ (2.3). Then

w̃n(z, J)−1u(z, J)−1 = anu(z, J (n))−1 (8.49)

In particular, if (8.8) holds, then for any S obeying (8.6), there is a C
so

sup
n
|w̃n(z, J)−1u(z, J)−1| ≤ C(1− |z|)−1/2 (8.50)

Remarks. 1. In order to get (8.48), one does not need a bound on

supN |
∑N

1 bn| but only on limN |
∑N

1 bn| (and similarly for log(an)). But

to get (8.50), we need control on supN limM(
∑N+M

N bn) — and that is
why we state (8.8) in the form we do.

2. One can also prove this result using the fact that uwn is the unique
solution asymptotic to zn.

Proof. By (5.7),

w̃n(z, J) =

(
M(z)

z

)(
a1M1(z)

z

)
. . .

(
an−1Mn−1(z)

z

)

from which it follows that

w̃n+k(z, J) = anw̃n(z, J)w̃k(z, J
(n)) (8.51)

Taking k to infinity using (2.3) and w̃∞ = u−1, we obtain

u(z, J)−1 = anw̃n(z, J)u(z, J (n))−1
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which is (8.49). ¤

Proposition 8.12. For any J,
(i)

|w̃n(z, J)| ≤ π

4
|z|−nε−1(1− |z|)−1 (8.52)

when arg z ∈ (ε, π − ε) and 0 < |z| < 1.
(ii) ∣∣∣∣

w̃n+k(z, J)

w̃n(z, J)

∣∣∣∣ ≤
π

4
an|z|−kε−1(1− |z|−1) (8.53)

when arg z ∈ (ε, π − ε) and 0 < |z| < 1.

Proof. (i) By (2.2),

|w̃n(z, J)| ≤ ‖(z + z−1 − J)−1‖ |z|−n

≤ |Im(z + z−1)|−1 |z|−n

since σ(J) ⊂ R and J is selfadjoint. But if z = reiϕ with 0 < r < 1,

|Im(z + z−1)| = (r−1 − r)|sin ϕ| (8.54)

For ϕ ∈ (ε, π − ε),

|sin ϕ| ≥ 2

π
ε (8.55)

and

r−1 − r = (1− r)(r−1 + 1) ≥ 2(1− r) (8.56)

Thus (8.52) holds.

(ii) (8.53) follows immediately from (8.52) and (8.51). ¤

Proof of Proposition 8.2. By (2.11) and the proof of Theorem 2.2,

|cn(z)| ≤
n−1∑
j=0

a−1
n−j

w̃n+1

w̃n+1−jw̃n−j

z2j + z2n w̃n+1

w̃1

(8.57)

Define

A = sup
n

(|an|, |an|−1) < ∞

since an → 1. Then, by (8.57),

sup
n
|cn(z)u(z)−1| ≤ A(1− |z|)−1 sup

n,j

∣∣∣∣
w̃n+1z

j

w̃n+1−j

∣∣∣∣ sup
n,j

1

|w̃n−ju|

+ sup
n

∣∣∣∣
w̃n+1z

n

w̃1

∣∣∣∣|u|−1

(8.58)
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By (8.53), with ε chosen so S ⊂ {z | arg z ∈ (ε, π − ε)}, we have

sup
n,j

∣∣∣∣
w̃n+1z

j

wn+i−j

∣∣∣∣ ≤
πA

4
ε−1(1− |z|)−1

By (8.50),

sup
n,j

∣∣∣∣
1

w̃n−ju

∣∣∣∣ ≤ C(1− |z|)−1/2

Thus, (8.58) implies that
∣∣∣∣znpn

(
z +

1

z

)
(1− z2)u(z)−1

∣∣∣∣ ≤ C(1− |z|)−5/2

where C depends on S and the constant K in (8.8). ¤
This completes the proof of Theorem 8.1. We note that what is

missing is proving that wave operators exist. One can use (8.1) to
prove that for a.e. θ, the transfer matrix is bounded along a subsequence
and so obtain an alternate proof of the Deift-Killip theorem [9] when
(β), (γ) hold. Of course, we use the Killip-Simon sum rule which also
implies that theorem. Still it is interesting that one has plane waves
like solutions in L2 sense in [−2, 2]. The deeper and interesting open
question is pointwise convergence for a.e. θ.

9. Bound States

One knows that with regard to Szegő asymptotics, sometimes simple-
looking assumptions are really quite restrictive: for instance (see, e.g.,
[42, Chapter 13]), if supp(dµ) ⊂ [−2, 2], then (β) of Theorem 5.1 im-
plies all of (α)–(γ) and all the other hypotheses of that theorem. Also
(see [44]), if (β) holds and f is given by (1.1), then

N±∑
j=1,±

(|E±
j | − 2)1/2 < ∞ (9.1)

if and only if ∫ 2

−2

(log f)(4− x2)−1/2 dx > −∞ (9.2)

Here we want to show that (β), (γ) alone do not imply spectral restric-
tions. In particular, we want to show that for each q < 3

2
, there is a

Jacobi matrix obeying (α)–(γ) where

N±∑
j=1,±

(|E±
j | − 2)q = ∞ (9.3)
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Of course, by [24], (α) implies

N±∑
j=1,±

(|E±
j | − 2)3/2 < ∞ (9.4)

Our construction will have an ≡ 1 and bn nonzero in blocks. In [42,
Section 13.9], examples with bn nonzero in a sequence of isolated points
are constructed where (α)–(γ) hold and (9.3) holds for p arbitrarily
close to 1. So this section improves that result. Our construction is
closely related to that in Theorem 5.12 of [6].

Pick α in (1
2
, 1) and p so that

α

1− α
> p >

α

2− α
(9.5)

We will eventually take α to 1
2

and p− α
2−α

→ 0. Pick M0 and C1 so for

m ≥ M0, the distances between the blocks Bm ≡ [mp+1−C1m
p,mp+1+

C1m
p] for m = M0, M0 + 1, . . . are each at least 2. This is easy to do

if one fixes C1 < 1
2
(p + 1). We should use [C1m

p], but for notational
simplicity, we will pretend that C1m

p is an integer. We pick bn by

bn =





n−α n ∈ B2k, 2k ≥ M0

−n−α n ∈ B2k+1, 2k + 1 ≥ M0

0 otherwise

(9.6)

Lemma 9.1. an ≡ 1 and bn in (9.6) obey (α)–(γ) of Theorem 5.1.

Proof. Since |bn| ≤ n−α and α > 1
2
, condition (α) holds and (β) is

trivial. So we only need to check (γ). Since d
dn

n−α = −αn−α−1, if
n ∈ Bm, then

|n−α −m−(p+1)α| ≤ Cm−(p+1)(α+1)mp

= Cm−[(p+1)α+1]

Thus, ∣∣∣∣
∑

n∈Bm

|bn| − 2C1m
−α(p+1)+p

∣∣∣∣ ≤ C2m
−1m−α(p+1)+p (9.7)

We claim
α(p + 1) > p (9.8)

which implies, first, that the estimate on the right of (9.7) is absolutely
summable and, second, that

∑
m(−1)mm−α(p+1)+p is conditionally sum-

mable, proving (γ).
To prove (9.8), note that it is equivalent to α > p(1−α) or p < α

1−α
,

which is true by (9.5). ¤
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For m even, we will pick ϕm to be the trial vector supported in Bm,
which is 1 at the center of Bm (i.e., at n = mp+1), 0 at the end points,
and constant slope in between. For m odd, we do the same construction
and then multiply by (−1)n.

Consider m even first. Since an ≡ 1,

〈ϕm, (J0 − 2)ϕm〉 = −
∑

n

|ϕm(n + 1)− ϕm(n)|2 (9.9)

≥ −mp

[
C

mp

]2

= −C2m−p (9.10)

since the slope ∼ m−p and there are O(mp) nonzero terms in the sum
(9.9). On the other hand, since bn > C3m

−α(p+1) on Bm and, on aver-
age, |ϕm|2 ≥ 1

4
on Bm,

〈ϕm, bϕm〉 ≥ C3m
pm−α(p+1) (9.11)

It is easy to see that p > α
2−α

is equivalent to 2p > α(p + 1), so for
m ≥ M1 for some M1,

〈ϕm(J0 + b− 2)ϕm〉 ≥ 1
2
C3m

pm−α(p+1) (9.12)

Since ‖ϕm‖2 ≤ C4m
p, we see that

〈ϕm, (J0 + b− 2)ϕm〉
‖ϕm‖2

≥ C4m
−α(p+1) (9.13)

for m even. Similarly, for m odd,

〈ϕm, (J0 + 2 + b)ϕm〉
‖ϕm‖2

≤ −C4m
−α(p+1) (9.14)

Since 〈ϕm, ϕk〉 = 0 = 〈ϕm, (J0+b)ϕk〉 for m 6= k, a variational argument
proves for m large,

||E±
m| − 2| ≥ 1

2
C4m

−α(p+1) (9.15)

Thus, (9.3) holds if qα(p + 1) < 1. Taking α ↓ 1
2
, p ↓ 1

3
, we see

q ↑ ((1
2
)(4

3
))−1 = 3

2
. Thus,

Theorem 9.2. For any q < 3
2
, there is a set of Jacobi parameters for

which (α)–(γ) of Theorem 5.1 hold, but for which (9.3) also holds.
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10. A Remark on Schrödinger Operators

In this section, we want to show how the ideas of Section 6 provide
a simple proof of

Theorem 10.1. Suppose V ∈ L2(0,∞) and

lim
x→∞

∫ x

0

V (y) dy (10.1)

exists. Then for any κ with κ > 0, there is a solution of

−u′′ + V u = −κ2u (10.2)

so that

lim
x→∞

eκxu(x) = 1 (10.3)

This result is not new. It was proven by Hartman-Winter [18] using
sophisticated ODE asymptotic methods. Even with the simplification
of Harris-Lutz [17], the proof is involved (see Eastham [12] for a partic-
ularly clear discussion of this proof). Here, as in Section 6, we will use
renormalized determinants to construct u. The same argument shows
that if (10.1) does not have a finite limit, then there is a solution so
u(x)/ exp[f(x)] → 1, where

f(x) = −κx +
1

2κ

∫ x

0

V (y) dy (10.4)

also a result of Hartman-Wintner [18].
In the argument below, we will use unfactorized kernels (i.e., V G0)

rather than factorized kernels (i.e., V 1/2G0|V |1/2). By using factorized
kernels, one should be able to extend this theorem to the case where
V ∈ L2 is replaced by

∑
n(

∫ n+1

n
|V (x)| dx)2 < ∞.

The starting point is a formula of Jost-Pais [21] for the Jost function
extended to get the Jost solutions.

Proposition 10.2. Let G0(−κ2) be the operator (H0 +κ2)−1 where H0

is − d2

dx2 with u(0) boundary conditions, so G0 has integral kernel

G0(x, y;−κ2) = (2κ)−1[e−κ|x−y| − e−κ(x+y)] (10.5)

For any V ∈ L2 of compact support and any x0 > 0, let K(x0; κ) be
the operator with integral kernel

K(x, y; x0; κ) = V (x + x0)G0(x, y;−κ2) (10.6)

Then K is trace class and

u(x0) ≡ e−κx0 det(1 + K(x0; κ)) (10.7)
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obeys (10.2), and for x large,

u(x) = e−κx (10.8)

Remark. (10.8) is trivial since V has compact support, which means
K ≡ 0 for x0 large.

Proof. This is essentially Proposition 2.9 of [40]. That paper uses a
factorized kernel, but by the Birman-Solomyak theorem (see [38, Chap-
ter 4], K is trace class, and so the determinants are equal. As noted,
(10.8) is immediate. ¤
Proposition 10.3. If V ∈ L2 and (10.1) holds, then K(x0; κ) is
Hilbert-Schmidt and

u(x0) = e−κx0 det2(1 + K(x0; κ)) exp

(
(2κ)−1

∫ ∞

x0

V (y)[1− e−2κy] dy

)

(10.9)
Moreover, u obeys (10.2).

Proof. If V has compact support, (10.9) is just (10.7) since
Tr(K(x0; κ)) =

∫∞
x0

V (y)(2κ)−1[1−e−2κy] dy and we have (6.11). Given

general V, let VL(x) be given by

VL(x) =

{
V (x) x ≤ L

0 x > L

and uL given by (10.1). Since V ∈ L2, KL(x0, κ) → K(x0; κ) in Hilbert-
Schmidt norm, so det2 converges. By (10.1), the exponentials converge.
Thus, uL → u. This means u is a distributional solution of (10.2) and
so, by elliptic regularity, a solution L2 at infinity. ¤
Proof of Theorem 10.1. K(x0; κ) → 0 in Hilbert-Schmidt norm as
x0 →∞, so det2(1+K(x0; κ)) → 1. The integral goes to 0 as x0 →∞.
Thus, u(x0)e

κx0 → 1. ¤
The point here is that it is natural to try to construct u as a limit

of uL’s, and then prove asymptotics of u. The fact that we have an
explicit formula in terms of renormalized determinants allows us to
control both the limit as L →∞ and then as x →∞.
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