
THE ESSENTIAL SPECTRUM OF SCHRÖDINGER,
JACOBI, AND CMV OPERATORS

YORAM LAST1,3 AND BARRY SIMON2,3

Abstract. We provide a very general result that identifies the
essential spectrum of broad classes of operators as exactly equal to
the closure of the union of the spectra of suitable limits at infinity.
Included is a new result on the essential spectra when potentials
are asymptotic to isospectral tori. We also recover with a unified
framework the HVZ theorem and Krein’s results on orthogonal
polynomials with finite essential spectra.

1. Introduction

One of the most simple but also most powerful ideas in spectral the-
ory is Weyl’s theorem, of which a typical application is (in this intro-
duction, in order to avoid technicalities, we take potentials bounded):

Theorem 1.1. If V, W are bounded functions on Rν and
lim|x|→∞[V (x)−W (x)] = 0, then

σess(−∆ + V ) = σess(−∆ + W ) (1.1)

Our goal in this paper is to find a generalization of this result that
allows “slippage” near infinity. Typical of our results are the following:

Theorem 1.2. Let V be a bounded periodic function on (−∞,∞)

and HV the operator − d2

dx2 + V (x) on L2(R). For x > 0, define

W (x) = V (x +
√

x) and let HW be − d2

dx2 + W (x) on L2(0,∞) with
some selfadjoint boundary conditions at zero. Then

σess(HW ) = σ(HV ) (1.2)
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Theorem 1.3. Let α be irrational and let H be the discrete Schrödinger

operator on `2(Z) with potential λ cos(αn). Let H̃ be the discrete
Schrödinger operator on `2({0, 1, 2, . . . }) with potential λ cos(αn+

√
n).

Then

σess(H̃) = σ(H) (1.3)

Our original motivation in this work was extending a theorem of
Barrios-López [9] in the theory of orthogonal polynomials on the unit
circle (OPUC); see [76, 77].

Theorem 1.4 (see Example 4.3.10 of [76]). Let {αn}∞n=0 be a sequence
of Verblunsky coefficients so that for some a ∈ (0, 1), one has

lim
n→∞

|αn| = a lim
n→∞

αn+1

αn

= 1 (1.4)

Then the CMV matrix for αn has essential spectrum identical to the
case αn ≡ a.

This goes beyond Weyl’s theorem in that αn may not approach a;
rather |αn| → a but the phase is slowly varying and may not have a
limit. The way to understand this result is to realize that αn ≡ a is a
periodic set of Verblunsky coefficients. The set of periodic coefficients
with the same essential spectrum is, for each λ ∈ ∂D (D = {z | |z| <
1}), the constant sequence αn = λa. (1.5) says in a precise sense that
the given αn is approaching this isospectral torus. We wanted to prove,
and have proven, the following:

Theorem 1.5. If a set of Verblunsky coefficients or Jacobi parameters
is asymptotic to an isospectral torus, then the essential spectrum of
the corresponding CMV or Jacobi matrix is identical to the common
essential spectrum of the isospectral torus.

In Section 5, we will be precise about what we mean by “asymp-
totic to an isospectral torus.” Theorem 1.5 positively settles Conjec-
ture 12.2.3 of [77].

In the end, we found an extremely general result. To describe it, we
recall some ideas in our earlier paper [48]. We will first consider Jacobi
matrices (bn ∈ R, an > 0)

J =




b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3

. . .
...

...
. . . . . .


 (1.5)
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where, in line with our convention to deal with the simplest cases in
this introduction, we suppose there is a K ∈ (0,∞) so

sup
n
|bn|+ sup

n
|an|+ sup

n
|an|−1 ≤ K (1.6)

A right limit point of J is a double-sided Jacobi matrix, J (r), with

parameters {a(r)
n , b

(r)
n }∞n=−∞ so that there is a subsequence nj with

anj+` → a
(r)
` bnj+` → b

(r)
` (1.7)

as j →∞ for each fixed ` = 0,±1,±2, . . . . In [48], we noted that

Proposition 1.6. For each right limit point, σ(J (r)) ⊂ σess(J).

This is a basic result that many, including us, regard as immediate.
For if λ ∈ σ(J (r)) and ϕ(m) is a sequence of unit trial functions with
‖(J (r) − λ)ϕ(m)‖ → 0, then for any j(m) → ∞, ‖(J − λ)ϕ(m)(· +
nj(m))‖ → 0, and if j(m) is chosen going to infinity fast enough, then

ϕ(m)(·− nj(m)) → 0 weakly, so λ ∈ σess(J).
Let R be the set of right limit points. Clearly, Proposition 1.6 says

that ⋃
r∈R

σ(J (r)) ⊂ σess(J) (1.8)

Our new realization here for this example is that

Theorem 1.7. If (1.6) holds, then
⋃
r∈R

σ(J (r)) = σess(J) (1.9)

Remark. It is an interesting question whether anything is gained in
(1.9) by taking the closure—that is, whether the union is already closed.
In every example we can analyze the union is closed. V. Georgescu has
informed us that the methods of [26] imply that the union is always
closed and that the details of the proof of this fact are the object of a
paper in preparation

Surprisingly, the proof will be a rather simple trial function argu-
ment. The difficulty with such an argument tried naively is the follow-
ing: To say J (r) is a right limit point means that there are Lm →∞ so
that J ¹ [nj(m) − Lm, nj(m) + Lm] shifted to [−Lm, Lm] converges uni-

formly to J (r) ¹ [−Lm, Lm]. But Lm might grow very slowly with m.
Weyl’s criterion says that if λ ∈ σess(J), there are trial functions, ϕk,
supported on [nk− L̃k, nk + L̃k] so ‖(J−λ)ϕk‖ → 0. By a compactness
argument, one can suppose the nk are actually nj(m)’s for some right
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limit. The difficulty is that L̃m might grow much faster than Lm, so
translated ϕk’s are not good trial functions for J (r).

The key to overcoming this difficulty is to prove that one can localize
trial functions in some interval of fixed size L, making a localization
error of O(L−1). This is what we will do in Section 2. In this idea, we
were motivated by arguments in Avron et al. [6], although to handle
the continuum case, we will need to work harder.

The use of localization ideas to understand essential spectrum, an
implementation using double commutators, is not new—it goes back to
Enss [22] and was raised to high art by Sigal [73]. Enss and Sigal, and
also Agmon [1] and Garding [24], later used these ideas and positivity
inequalities to locate inf σess(H), which suffices for the HVZ theorem
but not for some of our applications.

What distinguishes our approach and allows stronger results is that,
first, we use trial functions exclusively and, second, as noted above, we
study all of σess rather than only its infimum. Third, and most signifi-
cantly, we do not limit ourselves to sets that are cones near infinity and
instead take balls. This gives us small operator errors rather than com-
pact operator errors (although one can modify our arguments and take
ball sizes that go to infinity slowly, and so get a compact localization
error). It makes the method much more flexible.

While this paper is lengthy because of many different applications,
the underlying idea is captured by the mantra “localization plus com-
pactness.” Here compactness means that resolvents restricted to balls
of fixed size translated to zero lie in compact sets. We have in mind
the topology of norm convergence once resolvents are multiplied by the
characteristic functions of arbitrary fixed balls.

Because we need to control ‖(A−λ)ϕ‖2 and not just 〈ϕ, (A−λ)ϕ〉, if
we used double commutators, we would need to control [j, [j, (A−λ)2]],
so in the continuum case we get unbounded operators and the double
commutator is complicated. For this reason, following [6] and [35], we
use single commutators and settle for an inequality rather than the
equality one gets from double commutators.

After we completed this paper and released a preprint, we learned
of some related work using C∗-algebra techniques to compute σess(H)
as the closure of a union of spectra of asymptotic Hamiltonians at
infinity; see Georgescu-Iftimovici [26] and Mantoiu [55]. Further work
is in [4, 25, 27, 28, 56, 70].

We also learned of very recent work of Rabinovich [66], based in part
on [47, 61, 64, 65, 67, 68], using the theory of Fredholm operators to
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obtain results on essential spectrum as a union of spectra of suitable
limits at infinity.

Thus, the notion that in great generality the essential spectra is a
union of spectra of limits at infinity is not new. Our contributions are
twofold: First, some may find our direct proof via trial functions more
palatable than arguments relying on considerable machinery. Second,
our examples of Section 4, Section 5, and Section 7(b),(c) are, so far
as we know, new, although it is certainly true that the methods of
[26, 55, 66], can analyze some or even all these examples. In particular,
we settle Conjecture 12.2.3 of [77].

There is obviously considerable overlap in philosophies (which, after
all, both extend the ideas of the HVZ theorem) and results. The tech-
niques seem to be rather different, although we suspect a translation of
the C∗-algebra machinery to more prosaic terms will show similarities
that are, for now, not clear to us.

The paper [27] has results stated without reference to C∗-algebras
(although the proofs use them) and, in particular, our Theorems 3.7
and 3.12 are special cases of Theorem 1.1 of [27].

We present the localization lemmas in Section 2 and prove our main
results in Section 3. Section 4 discusses an interesting phenomena in-
volving Schrödinger operators with severe oscillations at infinity. Sec-
tion 5 has the applications to potentials asymptotic to isospectral tori
and includes results stronger than Theorems 1.2, 1.3, and 1.5. In partic-
ular, we settle positively Conjecture 12.2.3 of [77]. Section 6 discusses
the HVZ theorem, and Section 7 other applications. Section 8 discusses
magnetic fields.

We can handle the common Schrödinger operators associated to
quantum theory with or without magnetic fields as well as orthogo-
nal polynomials on the real line (OPRL) and unit circle (OPUC).

It is a pleasure to thank D. Damanik and R. Killip for useful dis-
cussions, and V. Georgescu, M. Mantoiu, V. Rabinovich, A. Sobolev
and B. Thaller for useful correspondence. This research was completed
during B. S.’s stay as a Lady Davis Visiting Professor at The Hebrew
University of Jerusalem. He would like to thank H. Farkas for the
hospitality of the Einstein Institute of Mathematics at The Hebrew
University.

2. Localization Estimates

Here we will use localization formulae but with partitions of unity
that are concentrated on balls of fixed size in place of the previous
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applications that typically take j’s that are homogeneous of degree
zero near infinity. Also, we use single commutators.

Let H be a separable Hilbert space and A a selfadjoint operator on
H. Let {jα} be a set of bounded selfadjoint operators indexed by either
a discrete set, S, like Zν or by α ∈ Rν . In the latter case, we suppose
jα is measurable and uniformly bounded in α. We assume that {jα} is
a partition of unity, namely,

∑
α∈S

j2
α = 1 or

∫

α∈Rν

j2
α dνα = 1 (2.1)

where the convergence of the sum or the meaning of the integral is in
the weak operator topology sense. Two examples that will often arise
are where H = `2(Zν), ψ ∈ `2(Zν) is real-valued with

∑
n ψ(n)2 = 1,

and {jm}m∈Zν is multiplication by ψ(·−m), or where H = L2(Rν , dνx),
ψ ∈ L2(Rν , dνx)∩L∞(Rν , dνx) is real-valued with

∫
ψ(x)2 dνx = 1, and

{jy}y∈Rν is multiplication by ψ(·− y).
Assume that for each α, jα maps the domain of A to itself and let ϕ

be a vector in the domain of A. Notice that

‖Ajαϕ‖2 = ‖(jαA + [A, jα])ϕ‖2

≤ 2‖jαAϕ‖2 + 2‖[A, jα]ϕ‖2 (2.2)

Thus

Proposition 2.1.∑
α

‖Ajαϕ‖2 ≤ 2‖Aϕ‖2 + 〈ϕ,Cϕ〉 (2.3)

where
C = 2

∑
α

−[A, jα]2 (2.4)

Remark. Since [A, jα] is skew-adjoint, −[A, jα]2 = [jα, A]∗[jα, A] ≥ 0.

Proof. (2.3) is immediate from (2.2) since∑
α

‖jαAϕ‖2 =
∑

α

〈Aϕ, j2
αAϕ〉 = ‖Aϕ‖2 (2.5)

and
‖[A, jα]ϕ‖2 = −〈ϕ, [A, jα]2ϕ〉 (2.6)

¤
Theorem 2.2. There exists an α so that jαϕ 6= 0 and

‖Ajαϕ‖2 ≤
{

2

(‖Aϕ‖
‖ϕ‖

)2

+ ‖C‖
}
‖jαϕ‖2 (2.7)
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Proof. Call the quantity in { } in (2.7) d. Then, since ‖ϕ‖2 =∑
α ‖jαϕ‖2, (2.3) implies

∑
α

[‖Ajαϕ‖2 − d‖jαϕ‖2] ≤ 0

so at least one term with ‖jαϕ‖ 6= 0 is nonpositive. ¤
To deal with unbounded A’s, we will want to suppose that

√
C is

A-bounded:

Theorem 2.3. Suppose A is unbounded and

〈ϕ, Cϕ〉 ≤ δ(‖Aϕ‖2 + ‖ϕ‖2) (2.8)

Then there is an α with jαϕ 6= 0 so that

‖Ajαϕ‖2 ≤
{

(2 + δ)
‖Aϕ‖2

‖ϕ‖2
+ δ

}
‖jαϕ‖2 (2.9)

Proof. By (2.3) and (2.8), we have
∑

α

‖Ajαϕ‖2 ≤ (2 + δ)‖Aϕ‖2 + δ‖ϕ‖2

so, as before, (2.9) follows. ¤

3. The Essential Spectrum

This is the central part of this paper. We begin with Theorem 1.7,
the simplest of the results:

Proof of Theorem 1.7. We already proved (1.8) in the remarks after
Proposition 1.6, so suppose λ ∈ σess(J). Recall Weyl’s criterion, λ ∈
σess(J) ⇔ there exist unit vectors ϕm

w−→ 0 with ‖(J − λ)ϕm‖ → 0.
Given ε, pick a trial sequence {ϕm}, such that each ϕm is supported

in {n | n > m}, so that

‖(J − λ)ϕm‖2 ≤ 1
3
ε2‖ϕm‖2 (3.1)

which we can do, by Weyl’s criterion, since fj
w−→ 0 implies∑

n<m|fj(n)|2 → 0 for each m.
For L = 1, 2, 3, . . . , let

ψL(n) =





n−1
L

n = 1, 2, . . . , L
2L−1−n

L
n = L,L + 1, . . . , 2L− 1

0 n ≥ 2L− 1

(3.2)

and let
c2
L =

∑
n

|ψL(n)|2 (3.3)
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so that cL ∼ L1/2 in the sense that for some 0 < a ≤ b < ∞,

aL1/2 ≤ cL ≤ bL1/2 (3.4)

For α = 1, 2, . . . , let

jα,L(n) = c−1
L ψL(n + α) (3.5)

so, by (3.3), ∑
α

j2
α,L ≡ 1 (3.6)

Since |ψL(n + 1)− ψL(n)| ≤ L−1, we see that

|〈δn, [jα,L, J ]δm〉| =
{

supn|an| c−1
L L−1 if |n−m| = 1 and |n− α− L| ≤ L

0 otherwise

(3.7)
Therefore, C ≡ ∑

α 2[jα,L, J ]2 is a 5-diagonal matrix with matrix ele-
ments bounded by

2 · 2(2L)c−2
L L−2

(
sup

n
|an|

)2
(3.8)

where the second two comes from the number of k’s that make a
nonzero contribution to 〈δn, [jα,L, J ]δk〉〈δk, [jα,L, J ]δm〉. By (3.4), there
is a constant K depending on supn|an| so that

‖C‖ ≤ KL−2 (3.9)

Picking L so KL−2 < ε2/3, we see, by Theorem 2.2, there is a jαm so
‖jαmϕm‖ 6= 0 and

‖(J − λ)jαmϕm‖ ≤ ε‖jαmϕm‖ (3.10)

The intervals

Im = [αm + 1, αm + 2L− 1]

which support jαmϕm, have fixed size, and move out to infinity since
Im ⊂ {n | n ≥ m − L}. Since the set of real numbers with |b| + |a| +
|a|−1 ≤ K is compact and L is finite, we can find a right limit point
J (r) so that a subsequence of J ¹ Im translated by αm +L converges to
J (r) ¹ [1 − L,L − 1]. Using translations of the trial functions jαmϕm,
we find ψm so

lim
m→∞

‖(J (r) − λ)ψm‖
‖ψm‖ ≤ ε (3.11)

which means

dist(λ, σ(J (r))) ≤ ε (3.12)

Since ε is arbitrary, we have λ ∈ ∪σ(J (r)). ¤
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We have been pedantically careful about the above proof so that
below we can be much briefer and just relate to this idea as “localization
plus compactness” and not provide details.

We turn next to the CMV matrices defined by a sequence of Verblun-
sky coefficients {αj}∞j=0 with αj ∈ D. We define the unitary 2×2 matrix

Θ(α) =
(

α ρ
ρ −α

)
where ρ = (1 − |α|2)1/2 and L = Θ0 ⊕ Θ2 ⊕ Θ4 ⊕ · · · ,

M = 1 ⊕ Θ1 ⊕ Θ3 + · · · , where 1 is a 1 × 1 matrix and Θj = Θ(αj).
Then the CMV matrix is the unitary matrix C = LM. Given a
two-sided sequence {αj}∞j=−∞, we define L̃ = · · ·Θ−2 ⊕ Θ0 ⊕ Θ2 and

M̃ = Θ−1⊕Θ1⊕Θ3⊕· · · on `2(Z) where Θj acts on the span of δj and

δj+1. We set C̃ = L̃M̃. See [76, 77] for a discussion of the connection
of CMV and extended CMV matrices to OPUC.

In [76, 77], C̃ is used for the transpose of C (alternate CMV matrix).
Its use here is very different!

If {αj}∞j=0 is a set of Verblunsky coefficients with

sup
j
|αj| < 1 (3.13)

we call {βj}∞j=−∞ a right limit point if there is a sequence mj so that
for ` = 0,±1, . . . ,

lim
j→∞

αmj+` = β` (3.14)

and we call C̃(β) a right limit of C(α). We have

Theorem 3.1. Let C(α) be the CMV matrix of a sequence obeying
(3.13). Let R be the set of right limit extended CMV matrices. Then

σess(C(α)) =
⋃
R
C̃(β) (3.15)

Proof. The arguments of Section 2 extend to unitary A if −[jα, A]2 is
replaced by [jα, A]∗[jα, A]. Matrix elements of [jα, C] are bounded by
supn,|k|≤2|jα(n + k)− jα(n)| since C has matrix elements bounded by 1
and is 5-diagonal. Thus, C is 9-diagonal, but otherwise the argument
extends with no change since {α | |α| ≤ supj|αj|} is a compact subset
of D. ¤

Next, we want to remove the condition that sup|αj| < 1 in the OPUC
case and the conditions sup|bj| < ∞ and inf|aj| > 0 in the OPRL case.
The key, of course, is to preserve compactness, that is, existence of
limit points, and to do that, we need only extend the notion of right
limit.

If {αj}∞j=−∞ is a two-sided sequence in D, one can still define C̃(αj)
since Θ(αj) makes sense. If |αj| = 1, then ρj = 0 and Θ(αj) =
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(
αj 0
0 −αj

)
is a direct sum in such a way L and M both decouple into

direct sums on `2(−∞, j] ⊕ `2[j + 1,∞) so C decouples. If a single αj

has |αj| = 1, we decouple into two semi-infinite matrices (both related
by unitary transforms to ordinary CMV matrices), but if more than
one αj has |αj| = 1, there are finite direct summands.

In any event, we can define C̃(αj) for {αj} ∈ ×∞
j=−∞D and define

right limit points of C(αj) even if sup|αj| = 1. Since matrix elements of

C are still bounded by 1, C is still 5-diagonal and×∞
j=−∞D is compact,

we immediately have

Theorem 3.2. With the extended notion of C̃, Theorem 3.1 holds even
if (3.13) fails.

For bounded Jacobi matrices, we still want sup(|an| + |bn|) < ∞,
but we do not need inf|an| > 0. Again, the key is to allow two-sided
Jacobi matrices, Jr, with some an = 0, in which case Jr decouples on
`2(−∞, n]⊕ `2[n+1,∞). If a single an = 0, there are two semi-infinite
matrices. If more than one an = 0, there are finite Jacobi summands.
Again, with no change in proof except for the change in the meaning

of right limits to allow some a
(r)
n = 0, we have

Theorem 3.3. Theorem 1.7 remains true if (1.6) is replaced by

sup
n

(|an|+ |bn|) < ∞ (3.16)

so long as J (r) are allowed with some a
(r)
n = 0.

In Section 7, we will use Theorems 3.2 and 3.3 to complement the
analysis of Krein (which appeared in Akhiezer-Krein [3]) for bounded
Jacobi matrices with finite essential spectrum, and of Golinskii [29] for
OPUC with finite derived sets.

Our commutator argument requires that |an| is bounded, but one
can also handle lim sup|bn| = ∞. It is useful to define:

Definition. Let A be a possibly unbounded selfadjoint operator. We
say that +∞ lies in σess(A) if σ(A) is not bounded above, and −∞ lies
in σess(A) if σ(A) is not bounded below.

We now allow two-sided Jacobi matrices, J̃ , with bn = +∞ and/or
bn = −∞ (and also an = 0). If |bn| = ∞, we decouple into `2(−∞, n−
1]⊕`2[n+1,∞) and place bn in “σess(J̃).” With this extended definition,
we still have compactness, that is, for any intervals in Z+, I1, I2, . . .
of fixed finite size, `, with `−1

∑
j∈In

j → ∞, there is a subsequence
converging to a set of Jacobi parameters with possibly bn = +∞ or
bn = −∞. We therefore have
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Theorem 3.4. Theorem 1.7 remains true if (1.6) is replaced by

sup
n
|an| < ∞ (3.17)

so long as J (r) are allowed to have some a
(r)
n = 0 and/or some b

(r)
n =

±∞.

Remarks. 1. This includes the conventions on when ±∞ lies in σess(J).
To prove this requires a simple separate argument. Namely, 〈δn, Jδn〉 =
bn, so bn ∈ numerical range of J = convex hull of σ(J). Thus, if
bnj

→ ±∞, then ±∞ ∈ σ(J).
2. If supn|an| = ∞, σess can be very subtle; see [42, 43].

Next, we turn to Jacobi matrices on Zν (including ν = 1), that is, J
acts on `2(Zν) via

(Ju)(n) =
∑

|m−n|=1

a(n,m)u(m) +
∑

n

bnu(n) (3.18)

where the bn’s are indexed by n ∈ Zν and the a(n,m)’s by bonds {m,n}
(unordered pairs) with |m − n| = 1. For simplicity of exposition, we
suppose

sup
|m−n|=1

(|a(n,m)|+ |a(n,m)|−1) + sup
n
|bn| < ∞ (3.19)

although we can, as above, also handle some limits with a(n,m) = 0
or some |bn| = ∞. With no change, one can also control finite-range
off-diagonal terms, and with some effort on controlling [jα, J ], it should
be possible to control infinite-range off-diagonal terms with sufficiently
rapid off-diagonal decay.

Let us call J̃ a limit point of J at infinity if and only if there are
points nj ∈ Zν with nj →∞ so that for every finite k, `,

bnj+` → b̃` a(nj+`,nj+k) → ã(k,`) (3.20)

Let L denote the set of limits J̃ . Then

Theorem 3.5. Let J be a Jacobi matrix of the form (3.18) on `2(Zν).
Suppose (3.19) holds. Then

σess(J) =
⋃

J̃∈L
σ(J̃) (3.21)

Proof. We can define partitions of unity jα,L indexed by α ∈ Zν with
jα(n) 6= 0 only if |n − α| ≤ L and with −∑

α[jα, J ]2 bounded by
O(L−2). With this, the proof is the same as in the one-dimensional
case. ¤
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It is often comforting to only consider limit points in a single direc-
tion. Because the sphere is compact, this is easy.

Definition. Let e ∈ Sν−1, the unit sphere in Rν . We say J̃ is a limit
point in direction e if the nj in (3.20) obey nj/|nj| → e. We let Le

denote the limit points in direction e.

Suppose J̃ is a limit point for J with sequence nj. Since Sν−1 is
compact, we can find a subsequence nj(k) so nj(k)/|nj(k)| → e0 for some

e0. The subsequence also converges to J̃ so J̃ is a limit point for
direction e0. Thus,

Theorem 3.6. Let J be a Jacobi matrix of the form (3.18) on `2(Rν).
Suppose (3.19) holds. Then

σess(J) =
⋃

e∈Sν−1

⋃

J̃∈Le

σ(J̃) (3.22)

For example, if ν = 1, we can consider left and right limit points.
Finally, we turn to Schrödinger operators. Here we need some kind of

compactness condition of the −∆+V that prevents V from oscillating
wildly at infinity (but see the next section). We begin with a warmup
case that will be the core of our general case:

Theorem 3.7. Let V be a uniformly continuous, bounded function
on Rν. For each e ∈ Sν, call W a limit of V in direction e if and
only if there exists xj ∈ Rν with |xj| → ∞ and xj/|xj| → e so that
V (xj + y) → W (y). Then, with Le the limits in direction e,

σess(−∆ + V ) =
⋃
e

⋃
W∈Le

σ(−∆ + W ) (3.23)

Remarks. 1. While we have not stated it explicitly, there is a result for
half-line operators.

2. Uniform continuity means ∀ε, ∃δ, so |x−y| < δ ⇒ |V (x)−V (y)| <
ε. It is not hard to see this is equivalent to {V (· + y)}y∈Zν being
equicontinuous.

3. This result appears in a more abstract formulation in Georgescu-
Iftimovici [27].

Proof. As noted, uniform continuity implies uniform equicontinuity so,
by the Arzela-Ascoli theorem (see [69]), given any sequence of balls
{x | |x − yj| ≤ L}, there is an e and a W in Le so V (· + yj) → W (·)
uniformly on {x | |x| ≤ L}. This is the compactness needed for our
argument.
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To handle localization, pick any nonnegative rotation invariant C∞

function ψ supported on {x | |x| ≤ 1} with
∫

ψ(x)2 dνx = 1. Define
jx,L as the operator of multiplication by the function

jx,L(y) = L−ν/2ψ(L−1(y − x))

and note that ∫
j2
x,L dνx = 1

With A = (−∆ + V − λ) and C = 2
∫ −[A, jx,L]2 dνx, we have (2.8)

with δ = O(L−2), since C = L−2(c1∆ + c2) for constants c1 and c2 (for
C is translation and rotation invariant and scale covariant).

(3.23) follows in the usual way. ¤

Our final result in this section concerns Schrödinger operators with
potentially singular V ’s. As in the last case, we will suppose regularity
at infinity. In the next section, we will show how to deal with irregular
oscillations near infinity. Recall the Kato class and norm [2, 19] is
defined by

Definition. V : Rν → R is said to live in the Kato class, Kν , if and
only if

lim
α↓0

[
sup

x

∫

|x−y|≤α

|x− y|2−ν |V (y)| dνy

]
= 0 (3.24)

(If ν = 1, 2, the definition is different. If ν = 2, |x − y|2−ν is replaced
by log[|x− y|−1], and if ν = 1, we require supx

∫
|x−y|≤1

|V (y)| dy < ∞.)

The Kν norm is defined by

‖V ‖Kν = sup
x

∫

|x−y|≤1

|x− y|2−ν |V (y)| dνy (3.25)

We introduce here

Definition. V : Rν → R is called uniformly Kato if and only if V ∈ Kν

and

lim
y↓0

‖V − V (·− y)‖Kν = 0 (3.26)

Example 3.8. Let

V (x) = sin(x2
1) (3.27)

Then V ∈ Kν , but for (x0)1 large and y = (π/2(x0)1, y2, . . . ), [(x0 +
y)1]

2 = (x0)
2
1+π+O(1/(x0)1), so for x near x0, V (x)−V (x−y) ∼ 2V (x),

and because of the |V (·)| in (3.25), we do not have (3.26). We discuss
this further in the next section.
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Example 3.9. We say p is canonical for Rµ if p = µ/2 where µ ≥ 3,
p > 2 if µ = 2, and p = 1 if µ = 1. If

sup
x

∫

|x−y|≤1

|V (y)|p dµy < ∞ (3.28)

then V ∈ Kµ (see [19]). Moreover, if

lim
|x|→∞

∫

|x−y|≤1

|V (y)|p dµy = 0 (3.29)

it is easy to see that (3.26) holds because V is small at infinity, and
(3.26) holds for Lp norm if V ∈ Lp.

Example 3.10. If π : Rν → Rµ is a linear map onto Rµ and W ∈ Kµ,
then V (x) = W (πx) is in Kν and the Kν norm of V is bounded by a
π-dependent constant times the Kµ norm of W. If W obeys (3.26), so
does V.

We will combine Examples 3.9 and 3.10 in our study of the HVZ
theorem.

Proposition 3.11. Let V be a uniformly Kato potential on Rν and
let Hx = −∆ + (· − x). Then for any sequence xk → ∞, there is
a subsequence xk(m) and a selfadjoint operator H∞ so that for z ∈
C\[a,∞) for some a ∈ R, we have

∥∥[(Hxk(m)
− z)−1 − (H∞ − z)−1]χS‖ → 0 (3.30)

for χS, the characteristic function of an arbitrary bounded set.

Remark. Formally, H∞ is a Schrödinger operator of the form H0 +V∞,
but V∞, as constructed, is only in the completion of Kν , and that is
known to include some distributions (see [30, 54]).

Proof. It is known that if W ∈ Kν , then W is −∆ form bounded with
relative bound zero with bounds depending only on Kν norms (see
[19]). Thus, since all Vx’s have the same Kν norm, we can find a so
Hx ≥ a for all x. It also means that for each z ∈ C\[a,∞), we can
bound ‖|W |1/2(Hx − z)−1∆1/2‖ by c‖W‖Kν with c only z-dependent
and ‖V ‖Kν -dependent.

Let ϕ be a C∞ function of compact support and note (constants are
z- or ‖V ‖Kν -dependent)

‖|W |1/2[(H − z)−1, ϕ]‖ ≤ ‖W 1/2(H − z)−1[∆, ϕ](H − z)−1‖
≤ c‖W 1/2(H − z)−1∆1/2‖ ‖∇ϕ‖



THE ESSENTIAL SPECTRUM 15

This in turn implies that if S1 is a ball of radius r fixed about x0 and
S2 a ball of radius R > r, then

‖W 1/2(1− χS2)(H − z)−1χS1‖ → 0

as R → ∞. So if ‖(Wn − W )χS‖Kν → 0 for all balls, and
supn ‖Wn‖Kν < ∞, then

‖((−∆ + Wn − z)−1 − (−∆ + W − z)−1)χS‖ → 0

for all S.
In this way, we see that if V is uniformly Kato and Vxn → V∞ in Kν

uniformly on all balls, then

‖[(Hxn − z)−1 − (H∞ − z)]−1χS‖ → 0 (3.31)

The condition of V being uniformly Kato means convolutions of V
with a C∞ approximate identity converge to V in Kν norm. Call the
approximations V (m). Each is C∞ with bounded derivatives and so, by
the equicontinuity argument in Theorem 3.7, we can find xjm(n) and

V
(m)
∞ so

‖[(−∆ + V (m)
xjm(n)

− z)−1 − (−∆ + V (m)
∞ − z)−1]χS‖ → 0

Since V
(m)
x → Vx uniformly in x, a standard ε/3 argument (see [69])

shows that one can find xj(m) so ‖[(Hxm − z)−1 − (Hxm′ − z)−1]χS‖ is
small for each S as m,m′ → ∞. In this way, we obtain the necessary
limit operator. ¤

Given V uniformly Kato, the limits constructed by Proposition 3.11
where xn/|xn| → e are called limits of H in direction e. Again, the
next result appears in a more abstract setting in Georgescu-Iftimovici
[27].

Theorem 3.12. Let V be uniformly Kato. Let Le denote the limits of
H in direction e. Then,

σess(H) =
⋃
e

⋃
H∞∈Le

σ(H∞) (3.32)

The papers that use C∗-algebras [26, 55] study h(p) + V in place of
−∆ + V . These papers only required that h(p) → ∞ as p → ∞. It
seems likely that for many such h’s, our methods will work. h(p) →∞
as p → ∞ is critical in our approach to assure that if ϕn → 0 weakly
and ‖(H − E)ϕn‖ → 0 then χ{x||x|<R}ϕn → 0.

It is likely that one can develop a theory for h(p) + V (x) without
supposing h(p) → ∞ or even f(p, x), but one would need to consider
limits at infinity in phase space, not just on configuration space.
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Proof. We pick a so Hx ≥ a for all x. Pick z ∈ (−∞, a) and let
Ãx = (Hx − z)−1. As above, ‖[Ãx, jα]‖ ≤ c‖∇jα‖ for any jα in C∞

0 .
For λ ∈ σess(H), let A = (Hx− z)−1− (λ− z)−1. Theorem 2.2 provides
the necessary localization estimate. Proposition 3.11 provides the nec-
essary compactness. (3.32) is then proven in the same way as earlier
theorems. ¤

4. Schrödinger Operators With Severe Oscillations at
Infinity

This section is an aside to note that the lack of uniformity at infinity
that can occur if V is merely Kν is irrelevant to essential spectrum. We
begin with Example 3.8, the canonical example of severe oscillations at
infinity:

Proposition 4.1. Let

W (x) = sin(x2) (4.1)

on (0,∞) and let H0 = − d2

dx2 with u(0) = 0 boundary conditions. Then
(1) W (H0 + 1)−1 is not compact.
(2) (H0 + 1)−1/2W (H0 − 1)−1/2 is compact.

Remarks. 1. Our proof of (1) shows that Wf(H0) is noncompact for
any continuous f 6≡ 0 on (0,∞).

2. Consideration of W = ~∇ · ~Q potentials goes back to the 1970’s;
(see [8, 11, 12, 16, 17, 20, 39, 40, 57, 71, 72, 78]).

Proof. (1) Let ϕ be a nonzero C∞
0 (0,∞) function in L2 and let

ψn(x) = [(H0 + 1)ϕ](x− n) (4.2)

Then

‖W (H0 + 1)−1ψn‖2 =

∫
W (x)2ϕ(x− n)2 dx

= 1
2

∫
ϕ(x)2 dx− 1

2

∫
cos(2x2)ϕ(x− n)2 dx

→ 1
2

∫
ϕ(x)2 dx 6= 0 (4.3)

by an integration by parts. Since ψn
w−→ 0, this shows W (H0− 1)−1 is

not compact.

(2) Since d
dx

[− 1
2x

cos(x2)] = sin(x2) + O(x−2), we see Q(x) =

limy→∞−
∫ y

x
W (z) dz exists and obeys

|Q(x)| ≤ c(x + 1)−1 (4.4)
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Thus W = [ d
dx

, Q], so

(H0 + 1)−1/2W (H0 + 1)−1/2 =

(
(H0 + 1)−1/2 d

dx

)
(Q(H0 + 1)−1/2) + cc

Since (H0 + 1)−1/2 d
dx

is bounded and Q(H0 − 1)−1/2 is compact (by

(4.4)), (H0 + 1)−1/2W (H0 + 1)−1/2 is compact. ¤

Thus, oscillations at infinity are irrelevant for essential spectrum!
While the slick argument above somewhat obscures the underlying
physics, the reason such oscillations do not matter has to do with the
fact that σess(H) involves fixed energy, and oscillations only matter
at high energy. Our proof below will implement this strategy more
directly.

We begin by noting that the proof of Proposition 3.11 implies the
following:

Theorem 4.2. Suppose Vn is a sequence of multiplicative operators so
that
(i) For any ε > 0, there is Cε so that

〈ϕ, |Vn|ϕ〉 ≤ ε‖∇ϕ‖2 + Cε‖ϕ‖2 (4.5)

for any n and all ϕ ∈ Q(−∆).
(ii) For any ball S about zero,

‖(−∆ + 1)−1/2χS(Vn − Vm)(−∆ + 1)−1/2‖ → 0 (4.6)

as n,m →∞.
Then for any ball and z ∈ C\[a,∞),

‖[(−∆ + Vn − z)−1 − (−∆ + Vm − z)−1]χS‖ → 0 (4.7)

Moreover, if (4.6) holds as n →∞ with Vm replaced by some V∞, then

lim
n→∞

‖[(−∆ + Vn − z)−1 − (−∆ + V∞ − z)−1]χS‖ = 0 (4.8)

As an immediate corollary, we obtain

Theorem 4.3. Let V ∈ Kν obey

lim
R→∞

sup
|x|≥R

∫

|x−y|≤1

|x− y|−(ν−2)|V (y)| dνy = 0 (4.9)

Then

σess(−∆ + V ) = [0,∞) (4.10)

Remark. If (4.9) holds, we say that V is Kν small at infinity.
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Proof. By Theorem 4.2, if xn →∞,

‖[(−∆ + V (·− xn)− z)−1 − (−∆− z)−1]χS‖ → 0 (4.11)

so, in a sense, −∆ is the unique limit point at infinity. The standard
localization argument proves (4.10). ¤

Here is the key to studying general V ∈ Kν with no uniformity at
infinity:

Proposition 4.4. Let Vn be a sequence of functions supported in a
fixed ball {x | |x| ≤ R}. Suppose

lim
α↓0

sup
n,x

∫

|x−y|≤α

|x− y|−(ν−2)|Vn(y)| dνy = 0 (4.12)

Then there is a subsequence Vn(j) so

lim
j,k→∞

‖(−∆ + 1)−1/2(Vn(j) − Vn(k))(−∆ + 1)−1/2‖ = 0 (4.13)

Proof. Given K, let PK be the projection in momentum space onto
|p| ≤ K and QK = 1− PK . (4.12) implies that for any ε > 0,

〈ϕ, |Vn|ϕ〉 ≤ ε‖∇ϕ‖2 + Cε‖ϕ‖2 (4.14)

for a fixed Cε and all n. This implies that

‖|Vn|1/2(−∆ + 1)−1/2QK‖2 ≤ ε + Cε(K
2 + 1)−1/2 (4.15)

so

lim
K→∞

sup
n
‖|Vn|1/2(−∆ + 1)−1/2QK‖ = 0 (4.16)

Thus, by a standard diagonalization argument, it suffices to show
that for each K, there is a subsequence so that

lim
j,k→∞

‖(−∆ + 1)−1/2PK(Vn(j) − Vn(k))PK(−∆ + 1)−1/2‖ = 0 (4.17)

In momentum space,

Qn = (−∆ + 1)−1/2PKVnPK(−∆ + 1)−1/2 (4.18)

has an integral kernel

Qn(p, q) = χ|p|≤K(p)(p2 + 1)−1/2V̂n(p− q)χ|q|≤K(q)(q2 + 1)1/2 (4.19)

By (4.12) and the fixed support hypothesis, we have

sup
n

(‖Vn‖L1 + ‖~x Vn‖L1) < ∞ (4.20)

so that

sup
n

(|V̂n(k)|+ |∇V̂n(k)|) < ∞ (4.21)
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which means {Vn(k) | |k| ≤ 2K} is a uniformly equicontinuous family,
so we can find a subsequence so

lim
j,k→∞

sup
|k|≤2K

|V̂n(j)(k)− V̂n(`)(k)| = 0 (4.22)

It follows from (4.19) that
∫
|Qn(j)(p, q)−Qn(`)(p, q)|2 dpdq → 0 (4.23)

so (4.17) holds since the Hilbert-Schmidt norm dominates the operator
norm. ¤

Given V ∈ Kν , we say H̃ is a limit point at infinity in direction e
if there exists xn →∞ with xn/|xn| → e so that for the characteristic
function of any ball and z ∈ C\[a,∞), we have

lim
n→∞

‖[(−∆ + V (x− xn)− z)−1 − (H̃ − z)−1]χS‖ = 0 (4.24)

Let Le denote the set of limit points in direction e. Then our standard
argument using Theorem 4.2 and Proposition 4.4 to get compactness
implies

Theorem 4.5. Let V ∈ Kν. Then

σess(−∆ + V ) =
⋃
e

⋃

eH∈Le

σ(H̃) (4.25)

5. Potentials Asymptotic to Isospectral Tori

As a warmup, we will prove the following result which includes The-
orem 1.2 as a special case. We will consider functions f : Rν → Rν

so

lim
|x|→∞

sup
|y|≤L

|f(x)− f(x + y)| = 0 (5.1)

for each L. For example, if f is C1 outside some ball and |∇f(x)| → 0
(e.g., f(x) =

√
x x
|x|), then (5.1) holds.

Theorem 5.1. Let V be a function on Rν, periodic in ν independent
directions, so V is uniformly Kato (e.g., V ∈ Lp

loc with p a canonical
value for Rν). Suppose either V is bounded or |f(x) − f(y)| ≤ (1 −
ε)|x − y| for some ε > 0. Let f obey (5.1). Let W (x) = V (x + f(x)).
Then

σess(−∆ + W ) = σ(−∆ + V ) (5.2)
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Remark. The condition that V is bounded or f is globally Lifschitz is
needed to assure W is locally L1. We thank V. Georgescu for pointing
out to us the need for this condition, which was missing in our original
preprint.

Proof. Let L be the integral lattice generated by some set of periods
so V (x + `) = V (x) if ` ∈ L. Let π : Rν → Rν/L be the canonical pro-
jection. If xj ∈ Rν , since Rν/L is compact, we can find a subsequence
m(j) so π((xm(j)) + f(xm(j))) → x∞. Then

−∆ + W (·− xm(j)) → −∆ + V (x− x∞)

so the limits are translates of −∆+V, which all have the same essential
spectrum. (5.2) is immediate from Theorem 3.12. ¤

Our next result includes Theorem 1.3.

Theorem 5.2. Let W : Rd → R be bounded and continuous, and obey

W (x + a) = W (x) (5.3)

if a ∈ Zd. Let (α1, . . . , αd) be such that {(α1n, α2n, . . . , αdn) | n ∈ Z}
is dense in Rd/Zd (i.e., 1, α1, . . . , αd are rationally independent). Let
f : Z→ Rd obey

lim
n→∞

sup
|m|≤L

|f(n)− f(n + m)| = 0

for each L. Let V0(n) = W (αn) and let

V (n) = W (αn + f(n)) (5.4)

On `2(Z), let (h0u)(n) = u(n + 1) + u(n− 1). Then

σess(h0 + V ) = σ(h0 + V0) (5.5)

Proof. For each x ∈ Rd/Zd, define

Vx(n) = W (αn + x) (5.6)

Then a theorem of Avron-Simon [7] (see [19]) shows that σ(h0 + Vx) is
independent of x (and purely essential). Given any sequence nj, find
a sequence nj(m) so f(nj(m)) → x∞ in Rd/Zd. Then V (n + nj(m)) →
Vx∞(n), so by Theorem 1.7,

σess(h0 + V ) =
⋃
x

σ(h0 + Vx) = σ(h0 + V0) ¤

Next, we turn to Theorem 1.5 in the OPUC case. Any set of periodic
Verblunsky coefficients {αn}∞n=0 with

αn+p = αn (5.7)
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for some p defines a natural function on C\{0}, ∆(z) = z−p/2Tr(Tp(z)),
where Tp is a transfer matrix; see Section 11.1 of [77]. (If p is odd, ∆
is double-valued; see Chapter 11 of [77] for how to handle odd p.) ∆
is real on ∂D and σess(C(α)) is a union of ` disjoint intervals; ` ≤ p
(generically, ` = p). As proven in Chapter 11 of [77],

{β ∈ Dp | ∆(z; {βn mod p}∞n=0) = ∆(z; α)} ≡ Tα (5.8)

is an `-dimensional torus called the isospectral torus. Moreover, the
two-sided CMV matrix, defined by requiring (5.8) for all n ∈ Z, has

σ(C̃(β)) = σess(C(α)) (5.9)

for any β ∈ Tα.
Given two sequences {κn}∞n=0 and {λn}∞n=0 in Dp, define

d(κ, λ) ≡
∞∑

n=0

e−n|κn − λn| (5.10)

Convergence in d-norm is the same as sequential convergence. We
define

d(κ, Tα) = inf
β∈Tα

d(κ, β)

A sequence γn is called asymptotic to Tα if

lim
m→∞

d({γn+m}∞n=0, Tα) = 0 (5.11)

Then the OPUC case of Theorem 1.5 (settling Conjecture 12.2.3 of
[77]) says

Theorem 5.3. Let (5.11) hold. Then

σess(C({γn}∞n=0)) = σess(C({αn}∞n=0)) (5.12)

Proof. The right limit points are a subset of {C̃({βn mod p}∞n=−∞) |
{β}p−1

n=0 ∈ Tα}, so by Theorem 3.1 and (5.9), (5.12) holds. ¤
By the same argument using isospectral tori for periodic Jacobi ma-

trices [23, 45, 46, 82] and for Schrödinger operators [21, 51, 58], one
has

Theorem 5.4. If T is the isospectral torus of a given periodic Jacobi
matrix, J̃ , and J has Jacobi parameters obeying

lim
n→∞

min
ã,b̃∈T

∞∑

`=1

[|an+` − ã`|+ |bn+` − b̃`|]e−` = 0 (5.13)

then
σess(J) = σ(J̃) (5.14)
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Theorem 5.5. Let T be the isospectral torus of a periodic potential,
V0, on R and V on [0,∞) in K1 and

lim
|x|→∞

inf
W∈T

∫ ∞

0

|V (y + x)−W (y)|e−|y| dy = 0 (5.15)

then

σess

(
− d2

dx2
+ V

)
= σ

(
− d2

dx2
+ V0

)
(5.16)

where − d2

dx2 + V is defined on L2(0,∞) with u(0) = 0 boundary condi-

tions and − d2

dx2 + V0 is defined on L2(R, dx).

The following provides an alternate proof of Theorem 4.3.8 of [76]:

Theorem 5.6. Let {αj}∞j=0 and {βj}∞j=0 be two sequences of Verblunsky
coefficients. Suppose there exist λj ∈ ∂D so that

(i) βjλj − αj → 0 (5.17)

(ii) λj+1λ̄j → 1 (5.18)

Then
σess(C({αj}∞j=0)) = σess(C({βj}∞j=0)) (5.19)

Proof. Let {γj}∞j=−∞ be a right limit of {βj}∞j=0, that is, β`+nk
→ γ`

for some nk. By passing to a subsequence, we can suppose λnj
→ λ∞,

in which case (5.18) implies λnj+` → λ∞ for each ` fixed. By (5.17),

{λ∞γj}∞j=−∞ is a right limit of {αj}∞j=0. Since σ(C̃({λγj}∞j=−∞)) is λ-
independent, (5.19) follows from (3.15). ¤

6. The HVZ Theorem

For simplicity of exposition, we begin with a case with an infinity-
heavy particle; eventually we will consider a situation even more general
than arbitrary N -body systems. Thus, H acts on L2(Rµ(N−1), dx) with

H = −
N−1∑
j=1

(2mj)
−1∆xj

+
N−1∑
j=1

V0j(xj) +
∑

1≤i<j≤N−1

Vij(xj − xi) (6.1)

where x = (x1, . . . , xN−1) with xj ∈ Rµ. Here the V ’s will be in Kµ

with Kµ vanishing at infinity. a will denote a partition (C1 . . . C`) of
{0, . . . , N − 1} onto ` ≥ 2 clusters. We say (ij) ⊂ a if i, j are in the
same cluster, C ∈ a, and (ij) 6⊂ a if i ∈ Ck and j ∈ Cm with k 6= m,

H(a) = H −
∑

ij 6⊂a
i<j

Vij(xj − xi) (6.2)

with x0 ≡ 0. The HVZ theorem says that
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Theorem 6.1. If each Vij is in Kµ, Kµ vanishing at infinity, then

σess(H) =
⋃
a

σ(H(a)) (6.3)

Since H(a) commutes with translations of clusters, H has the form
H(a) = T a ⊗ 1 + 1⊗Ha where T a is a Laplacian on Rµ(`−1), and thus,
if Σ(a) = inf σ(Ha), then σ(H(a)) = [Σ(a),∞). So (6.3) says

σess(H) = [Σ,∞) Σ ≡ inf
a

Σ(a) (6.4)

This result is, of course, well-known, going back to Hunziker [36],
van Winter [83], and Zhislin [87], with geometric proofs by Enss [22],
Simon [74], Sigal [73], and Garding [24]. Until Garding [24], all proofs
involved some kind of combinatorial argument if only the existence of
a Ruelle-Simon partition of unity. Like Garding [24], we will be totally
geometric with a straightforward proof exploiting our general machine.
C∗-algebra proofs can be found in Georgescu-Iftimovici [26, 27] and
have a spirit close to our proof below. Rabinovich [66] has a proof of
HVZ using his notion of invertibility at infinity that also has overlap
with our philosophy.

There is one subtlety to mention. Consider the case µ = 1, N = 3,
so Rµ(N−1) = R2 = {(x1, x2) | x1, x2 ∈ R}. There are then clearly
six special directions: ±(1, 0), ±(0, 1), and ±( 1√

2
, 1√

2
). For any other

direction ê, if xn/|xn| → ê, V → 0, and the limit in that direction is
H0 = H({0}, {1}, {2}).

For e = ±(1, 0), |(xn)1| → ∞ and |(xn)1 − (xn)2| → ∞, so the only
limit at infinity would appear to be H({0, 2}, {1}). But this is wrong!
To say xn has limit ±(1, 0) says xn/|xn| → ±(1, 0), so (xn)1 → ±∞.
But it does not say (xn)2 → 0, only (xn)2/(xn)1 → 0. For example, if
(xn)2 →∞, the limit is H0. As we will see (it is obvious!), the limits are
precisely H0 and translates of H({0, 2}, {1}). This still proves (6.3),
but with a tiny bit of extra thought needed.

We want to note a general form for extending HVZ due to Agmon
[1]. We consider linear surjections πj : Rν → Rµj with µj ≤ ν. Let
Vj : Rµj → R be in Kµj

vanishing in Kµj
sense at infinity. Then

H = −∆ +
∑

j

Vj(πjx) (6.5)

will be called an Agmon Hamiltonian.
Given e ∈ Sν−1, define

He = −∆ +
∑

{j|πje=0}
Vj(πjx) ≡ −∆ + Ve (6.6)
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Notice that since He commutes with x → x+λe, He has the form He =
−∆e⊗1+1⊗(−∆e⊥+Ve), so σ(He) = [Σe,∞) with Σe = inf spec(He).

In general, if ∩j ker(πj) 6= {0}, H has some translation invariant
degrees of freedom and can, and should, be reduced, but the HVZ
theorem holds for the unreduced case (and also for the reduced case,
since the reduced H which acts on Rν/ ∩j ker(πj) has the form (6.5)).
So we will not consider reduction in detail.

By using πj to write Vij(xi − xj) in terms of mass scaled reduced
coordinates, any N -body Hamiltonian has the form (6.5), and (6.5)
allows many-body forces. For the case of Theorem 6.1, if e is given,
define a to be the partition with (ij) ⊂ a if and only if ei = ej (with
e0 ≡ 0). Then He = H(a) and (6.7) below is (6.3).

Theorem 6.2. For any Agmon Hamiltonian,

σess(H) =
⋃

e∈Sν−1

σ(He) (6.7)

Proof. If xn/|xn| → e, we can pass to a subsequence where each πjxn

has a finite limit, or else has |πjxn| → ∞. It follows that the limit
at infinity for xn is a translation (by lim πjxn) of He or of a limit at

infinity of He. Thus, for any H̃ in Le, the set of limits in direction e,

σ(H̃) ⊂ σ(He)

and so, ⋃

eH∈Le

σ(H̃) = σ(He)

and (6.7) is (4.25). ¤

Remark. It is not hard to see that as e runs through Sν−1, σ(He) has
only finitely many distinct values, so the closure in (6.7) is superfluous.

Because we control σess(H) directly and do not rely on the a priori
fact that one only has to properly locate inf σess(H) (as do all the
proofs quoted above, except the original H,V,Z proofs and Simon [74]),
we can obtain results on N -body interactions where the particles move
in a fixed background periodic potential with gaps that can produce
gaps in σess(H).

7. Additional Applications

We want to consider some additional applications of our machinery
that shed light on earlier works:
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(a) Sparse bumps, already considered by Klaus [44] using Birman-
Schwinger techniques, by Cycon et al. [19] using geometric meth-
ods, and by Hundertmark-Kirsch [35] using methods that are es-
sentially the same as the specialization of our argument to this
example. Georgescu-Iftimovici [27] also have a discussion of sparse
potentials that overlaps our discussion.

(b) Jacobi matrices with an → 0 and CMV matrices with |αn| → 1 al-
ready studied by Maki [53], Chihara [13] (Jacobi), and by Golinskii
[29] (CMV).

(c) Bounded Jacobi matrices and CMV matrices with finite essential
spectrum already studied by Krein (in [3]) and Chihara [14] (Jacobi
case), and by Golinskii [29] (CMV case).

Remark. Golinskii [29] for (b) and (c) did not explicitly use CMV ma-
trices but rather studied measures on ∂D, but his results are equivalent
to statements about CMV matrices.

Here is the sparse potentials result:

Theorem 7.1 ([44, 19]). Let W be an L1 potential of compact support
on R. Let x0 < x1 < · · · < xn < · · · so xn+1 − xn →∞. Let

V (x) =
∞∑

j=0

W (x− xj) (7.1)

Then

σess

(
− d2

dx2
+ V (x)

)
= σ

(
− d2

dx2
+ W

)
(7.2)

Remarks. 1. That W has compact support is not needed. W (x) → 0
sufficiently fast (e.g., bounded by x−1−ε) will do with no change in
proof.

2. Discrete eigenvalues of − d2

dx2 + W are limit points of eigenvalues

for − d2

dx2 + V.
3. There is a higher-dimensional version of this argument; see [35].

Proof. The limits at infinity are − d2

dx2 and − d2

dx2 + W (x− a). Now use
Theorem 3.12 or Theorem 4.5. ¤
Remark. This example is important because it shows that one needs

σ(H̃) and not just σess(H̃).

As for an → 0:

Theorem 7.2 ([13]). Let J be a bounded Jacobi matrix with an → 0.
Let S be the limit points of {bn}∞n=1. Then

σess(J) = S (7.3)
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Proof. The limit points at infinity are diagonal matrices with diagonal
matrix elements in S, and by a compactness argument, every s ∈ S is a
diagonal matrix element of some limit. Theorem 3.3 implies (7.3). ¤
Theorem 7.3 ([29]). Let C({αn}∞n=0) be a CMV matrix of a sequence
of Verblunsky coefficients with

lim
n→∞

|αn| = 1 (7.4)

Let S be the set of limit points of {−ᾱj+1αj}. Then

σess(C({αj}∞j=1)) = S (7.5)

Proof. By compactness of ∂D, if s ∈ S, there is a sequence nj so αnj+`

has a limit, β`, for all ` and s = −β̄1β0. The limiting CMV matrices
have |β`| = 1 by (7.4), so are diagonal with matrix elements −β̄`+1β`.
Thus, the spectra of limits lie in S, and by the first sentence, any such
s ∈ S is in the spectrum of a limit. Now use Theorem 3.2. ¤

Finally, we turn to the case of finite essential spectrum, first for
Jacobi matrices.

Theorem 7.4. Let x1, . . . , x` ∈ R be distinct. A bounded Jacobi matrix
J has

σess(J) = {x1, . . . , x`} (7.6)

if and only if
(i)

lim
n→∞

anan+1 . . . an+`−1 = 0 (7.7)

(ii) If k ≤ l and nj is such that

anj
→ 0 anj+k → 0 (7.8)

anj+m → ãm 6= 0 m = 1, 2, . . . , k − 1 (7.9)

bnj+m → b̃m m = 1, 2, . . . , k (7.10)

then the finite k × k matrix,

J̃ =




b̃1 ã1

ã1 b̃2 ã2

. . . . . . . . .
. . . . . . ãk

ãk−1 b̃k




(7.11)

has spectrum a k-element subset of {x1, . . . , x`}.
(iii) Each xj occurs in at least one limit of the form (7.11)
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Proof. By Theorem 3.3, (7.6) holds if and only if the limiting J̃ ’s have
spectrum in {x1, . . . , x`} and there is at least one J̃ with each xj in

the spectrum. J̃ is a direct sum of finite and/or semi-infinite and/or
infinite pieces. The semi-infinite pieces correspond to Jacobi matrices
with nontrivial measures which have infinite spectrum. The two-sided
infinite pieces also have infinite spectrum. Finite pieces of length m,
which have a’s nonzero, have m points in their spectrum, so no limit can
have a direct summand of length `+1 or more. Thus, by compactness,
(7.7) holds, that is, any set of ` a’s in the limit must have at least
one zero. (ii) is then the assertion that the limits have spectrum in
{x1, . . . , x`}, and (iii) is that each xj occurs. ¤
Theorem 7.5. (a) J obeys

σess(J) ⊂ {x1, . . . , x`} (7.12)

if and only if every right limit, J̃ , obeys

∏̀
j=1

(J̃ − xj) ≡ P (J̃) = 0 (7.13)

(b) J obeys (7.12) if and only if P (J) is compact.

Proof. (a) (7.13) holds if and only if σ(J̃) ⊂ {x1, . . . , x`}, so this follows
from Theorem 3.3.

(b) P (J) has finite width. Thus, it is compact if and only if all
matrix elements go to zero, which is true (by compactness of translates
of J) if and only if (7.13) holds for all limits. ¤

We have now come full circle—for Theorem 7.5(b) is precisely Krein’s
criterion (stated in [3]), whose proof is immediate by the spectral map-
ping theorem and the analysis of the spectrum of compact selfadjoint
operators. However, our Theorem 7.4 gives an equivalent, but subtly
distinct, way to look at the limits. To see this, consider the case ` = 2,
that is, two limiting eigenvalues x1 and x2.

This has been computed by Chihara [15], who found necessary and
sufficient conditions for σess(J) = {x1, x2} are (there is a typo in [15],
where we give (bn − x1)(bn − x2) in (7.14); he gives, after changing to
our notation, (bn − x1)(bn+1 − x2)):

lim
n→∞

(a2
n + a2

n−1 + (bn − x1)(bn − x2)) = 0 (7.14)

lim
n→∞

(an(bn + bn+1 − x1 − x2)) = 0 (7.15)

lim
n→∞

(anan+1) = 0 (7.16)
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To see this from the point of view of (J − x1)(J − x2), note that

〈δn, (J − x1)(J − x2)δn〉 = a2
n + a2

n−1 + (bn − x1)(bn − x2) (7.17)

〈δn+1, (J − x1)(J − x2)δn〉 = an(bn − x2) + an(bn+1 − x1) (7.18)

〈δn+2, (J − x1)(J − xn)δn〉 = anan+1 (7.19)

If we think in terms of limit points, we get a different-looking set of
equations. Consider limits, J̃ . Of course, (7.16) is common

ãnãn+1 = 0 (7.20)

But the conditions on summands of J̃ become

ãn = ãn−1 = 0 ⇒ b̃n = x1 or b̃n = x2 (7.21)

ãn 6= 0 ⇒ b̃n+1 + b̃n = x1 + x2 and b̃nb̃n+1 − ã2
n = x1x2 (7.22)

For (7.21) is the result for 1 × 1 blocks, and (7.22) says 2 × 2 blocks
have eigenvalues x1 and x2. It is an interesting exercise to see that
(7.20)–(7.22) are equivalent to

ã2
n + ã2

n+1 + (b̃n − x1)(b̃n − x2) = 0 (7.23)

ãn(b̃n + b̃n+1 − x1 − x2) = 0 (7.24)

ãnãn+1 = 0 (7.25)

One can analyze CMV matrices similar to the above analysis. The
analog of Theorem 7.4 is:

Theorem 7.6. Let λ1, . . . , λ` ∈ ∂D be distinct. A CMV matrix C has

σess(C) = {λ1, . . . , λ`} (7.26)

if and only if
(i)

lim
n→∞

ρnρn+1 . . . ρn+`−1 = 0 (7.27)

(ii) If k ≤ ` and nj is such that

ρnj
→ 0 ρnj+k → 0 (7.28)

αnj+m → α̃m m = 0, 1, 2, . . . , k − 1, k

with |α̃m| 6= 1, m = 1, . . . , k − 1 (by (7.28), |α̃0| = |α̃k| = 1), then
the matrix (1 = 1× 1 unit matrix)

C̃ = [Θ(α̃1)⊕· · ·⊕Θ(α̃k−1)][−α̃01⊕Θ(α̃2)⊕· · ·⊕Θ(α̃k−2)⊕ ¯̃αk1] (7.29)

if k is even and

C̃ = [Θ(α̃1)⊕· · ·⊕Θ(α̃k−2)⊕ ¯̃αk1][−α̃01⊕Θ(α̃2)⊕· · ·⊕Θ(α̃k−1)] (7.30)

if k is odd has eigenvalues k elements among λ1, . . . , λ`.
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(iii) Each of λ1, . . . , λ` occurs as an eigenvalue of some C̃.
Proof. Same as Theorem 7.4. ¤

The analog of Theorem 7.5 is

Theorem 7.7. Let λ1, . . . , λ` ∈ ∂D be distinct.
(a) C obeys

σess(C) ⊂ {λj, . . . , λ`} (7.31)

if and only if every right limit C̃ obeys

∏̀
j=1

(C̃ − λj) ≡ P (C̃) = 0 (7.32)

(b) C obeys (7.31) if and only if P (C) is compact.

Proof. Same as Theorem 7.5. ¤
We have come to Golinskii’s OPUC analog of Krein’s theorem [29].

Again, it is illuminating to consider the case ` = 2. We will deal directly
with limits of αj, call them α̃j. The Theorem 7.6 view of things is

ρ̃nρ̃n+1 = 0 (7.33)

ρ̃n = ρ̃n+1 = 0 ⇒ − ¯̃αn+1α̃n = λ1 or − ¯̃αn+1α̃n = λ2 (7.34)

ρ̃n 6= 0 ⇒ − ¯̃αnα̃n−1 − ¯̃αn+1α̃n = λ1 + λ2 and α̃n−1
¯̃αn+1 = λ1λ2

(7.35)

(7.35) comes from the fact that the matrix C of (7.29) is(
¯̃αn ρ̃n

ρn −α̃n

)(−α̃n−1 0
0 ¯̃αn+1

)
(7.36)

where the determinant is α̃n−1
¯̃αn+1 and the trace is − ¯̃αnα̃n−1−α̃n

¯̃αn+1.
From the point of view of Theorem 7.7, using the CMV matrix is

complicated since (C − λ1)(C − λ2) is, in general, 9-diagonal! As noted
by Golinskii [29], it is easier to use the GGT matrix (see Section 4.1 of
[76]), since it immediately implies

ρ̃nρ̃n+1 = 〈δn+2,G2δn〉 = 0 (7.37)

and once that holds, G becomes tridiagonal! Thus, one gets from
〈δn+1, (G − λ1)(G − λ2)δn〉 = 0 that

ρ̃n(− ¯̃αnα̃n−1 − ¯̃αn+1α̃n − λ1 − λ2) = 0 (7.38)

and from 〈δn, (G − λ1)(G − λ2)δn〉 = 0,

(− ¯̃αn+1α̃n − λ1)(− ¯̃αnα̃n−1 − λ2)− ρ̃2
n
¯̃αn+1α̃n−1 − ρ2

n+1
¯̃αn−2α̃n+1 = 0

(7.39)
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Again, it is an interesting exercise that (7.33)–(7.35) are equivalent to
(7.37)–(7.39).

8. Magnetic Fields

A magnetic Hamiltonian acts on Rν via

H(a, V ) = −
ν∑

j=1

(∂j − iaj)
2 + V (8.1)

where a is vector-valued. The magnetic field is the two-form defined
by

Bjk = ∂jak − ∂kaj (8.2)

If λ is a scalar function, then

ã = a +∇λ (8.3)

produces the same B, and one has gauge covariance

H(ã, V ) = eiλH(a, V )e−iλ (8.4)

While the mathematically “natural” conditions on a are either a ∈ L4
loc,

∇ · a ∈ L2
loc, or a ∈ L2

loc (see [19, 50, 75]), for simplicity, we will suppose
here that B is bounded and uniformly Hölder continuous, that is, for
some δ > 0,

sup
x,j,k

|Bjk(x)| < ∞ sup
j,k,|x−y|≤1

|x− y|−δ|Bjk(x)−Bjk(y)| < ∞ (8.5)

It is certainly true that one can allow suitable local singularities. We
will see later what (8.5) implies about choices of a. With this kind of
regularity on B, it is easy to prove that for a shift between different
gauges of the type we consider below, the formal gauge covariance (8.4)
is mathematically valid. Indeed, more singular gauge changes can be
justified (see Leinfelder [49]).

If aj → 0 at infinity, it is easy to implement the ideas of Sections 3
and 4 with no change in the meaning of limit point at infinity; the limits
all have no magnetic field. But as is well known, aj → 0 requires, very
roughly speaking, that B goes to zero at least as fast as |x|−1−ε, so this
does not even capture all situations where Bij → 0 at infinity. Miller
[59] (see also [19, 60]) noted that, in two and three dimensions, the way
to control B → 0 at infinity is to make suitable gauge changes in Weyl
sequences—and that will also be the key to what we do here.

We will settle for stating a very general limit theorem and not at-
tempt to apply this theorem to recover the rather extensive literature
on HVZ theorems and on essential spectra in periodic magnetic fields
[5, 10, 18, 31, 32, 33, 34, 37, 38, 41, 62, 63, 81, 84, 85, 86, 88, 89, 90, 91].
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We have no doubt that can be done and that the ideas below will be
useful in future studies. We note that it should be possible to extend
Theorem 5.1 with “slipped periodic” magnetic fields.

Definition. A set of gauges, ax, depending on x is said to be “regular
at infinity” if and only if, for every R, we have for some δ > 0,

sup
|x−y|≤R

|ax(y)| < ∞ sup
x,y,z

|y−z|<1
|x−y|<R

|y − z|−δ|ax(y)− ax(z)| < ∞ (8.6)

Proposition 8.1. If (8.5) holds, there exists a set of gauges regular at
infinity.

Proof. The transverse gauge, ~ax0 , based at x0 is defined by

ax0;j(x0 + y) =
∑

k

[∫ 1

0

sBkj(x0 + sy) ds

]
yk (8.7)

That this is a gauge is known (see below), and clearly, if |x0 − y| ≤ R,

|~ax0(y)| ≤ 1
2
R sup

x
‖B(x)‖

and if |y − z| < 1 and |x0 − y| < R,

|~ax0(y)−~ax0(z)| ≤ 1
2

{
sup

x
‖B(x)‖+(R−1) sup

|y−z|≤1

[|y−z|−δ‖B(y)−B(z)‖]}

¤
Remarks. 1. We will call the choice (8.7) the local transverse gauge.

2. Transverse gauge goes back at least to Uhlenbeck [80], who calls
them exponential gauge. They have been used extensively by Loss-
Thaller [52] (see also Thaller [79]) to study scattering.

3. To see that (8.7) is a gauge is a messy calculation if done directly,
but there is a lovely indirect argument of Uhlenbeck [80]. Without
loss, take x0 = 0. Call a gauge transverse if ~a(0) = 0 and ~x ·~a = 0.
Transverse gauges exist, for if ~a0 is any gauge and

ϕ(~x) = −
∫ 1

0

~x · a0(s~x) ds (8.8)

then ~x ·∇ϕ = r ∂
∂r

ϕ = −~x · a0(x), so a = a0 +∇ϕ is transverse. Next,
note that if ~a is a transverse gauge, then∑

xkBkj = (x ·∇)aj − ~∇j(x · a) + aj

=
∂

∂r
raj (8.9)

Integrating (8.9) shows (8.7) with y = 0 is not only a gauge but the
unique transverse gauge.
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If ax is a set of gauges regular at infinity, we say H̃ is a limit at
infinity of H(a, V ) in direction ê if and only if with

(Uxϕ)(y) = ϕ(y − x) (8.10)

we have that for some sequence xn, |xn| → ∞, xn/|xn| → e, and for
each R < ∞ and z ∈ C\[α,∞),

Uxn((H(axn , V )− z)−1)U−1
xn

χR → (H̃ − z)−1χR (8.11)

with χR the characteristic function of a ball of radius R about 0. As
usual, Le denotes the limits at infinity in direction e.

Theorem 8.2. If V ∈ Kν and B obeys (8.5), then

σess(H(a, V )) =
⋃

e∈Sν−1

⋃

eH∈Le

σ(H̃) (8.12)

In (8.12), we get the same union if, instead of all regular gauges at
infinity, we take only the local transverse gauges.

Proof. By using gauge-transformed Weyl sequences as in [19], it is easy
to see the right side of (8.12) is contained in σess(H(a, V )). To com-
plete the proof, we need only show the right side, restricted to local
transverse gauges, contains σess(H(a, V )).

Localization extends effortlessly since [j, H(a, V )] = ~∇j · (~∇− i~a) +

(~∇− i~a) · ~∇j and ‖(~∇− i~a)ϕ‖2 is controlled by H(a, V ). Thus, we only
need compactness of the gauge-transformed operators. Since (8.6) says
the ax’s translated to 0 are uniformly equicontinuous, compactness of
the a’s is immediate. V ’s are handled as in Section 4. ¤
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