
TWO EXTENSIONS OF LUBINSKY’S UNIVERSALITY

THEOREM

BARRY SIMON∗

Abstract. We extend some remarkable recent results of Lubin-
sky and Levin–Lubinsky from [−1, 1] to allow discrete eigenvalues
outside σess and to allow σess to first be a finite union of closed
intervals and then a fairly general compact set in R (one which is
regular for the Dirichlet problem).

1. Introduction

This paper primarily discusses orthogonal polynomials on the real
line (OPRL) [36, 9, 25]. To set notation, µ will be a measure of compact
support, σ(dµ), on R, positive but not necessarily normalized. Its
Lebesgue decomposition is

dµ(x) = w(x) dx + dµs(x) (1.1)

where w ∈ L1(R, dx) and µs is Lebesgue singular. σess(dµ) will denote
σ(dµ) with isolated points removed and σs(dµ) = σ(dµs).

Pn(x, dµ) will denote the monic orthogonal polynomials and
pn(x, dµ) the orthonormal polynomials. The Jacobi parameters
{an, bn}

∞
n=1 are defined by the recursion relation

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.2)

We note for later use that

p0(x) =

(
1

µ(R)

)1/2

(1.3)

and that (‖ · ‖ means L2(R, dµ) norm)

‖Pn‖ = a1 . . . anµ(R)1/2 (1.4)
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The main focus of this paper is the CD (for Christoffel–Darboux)
kernel (for x, y ∈ R)

Kn(x, y; dµ) =

n∑

j=0

pn(x, dµ)pn(y, dµ) (1.5)

We will often drop dµ or consider several measures, say µ, µ♯, and use
Kn(x, y), K♯

n(x, y). Kn is the integral kernel of the orthogonal projec-
tion in L2(R, dµ) onto the polynomials of degree at most n. So if Qn(x)
is such a polynomial, then (the reproducing property)

Qn(x) =

∫
Kn(x, y)Qn(y) dµ(y) (1.6)

and, in particular (an expression that Kn is the kernel of a projection),
∫

Kn(x, y)Kn(y, z) dµ(y) = Kn(x, z) (1.7)

Going back to Faber [6], Fekete [7], and Szegő [35], it has been known
that there are deep connections between potential theory and asymp-
totics of polynomials; see Stahl–Totik [34] and Simon [30]. We will be
interested especially in the potential theory associated to E = σess(dµ).
We will call E ⊂ R a regular set if it is compact, regular for the Dirich-
let problem on C and with an equilibrium measure, dρ, of the form
ρ(x) dx. Thus, with C(E), the capacity of E,

∫

E

ρ(y) dy = 1 (1.8)

and

GE(x) =

∫

E

log|x − y|ρ(y) dy − log C(E) (1.9)

is continuous on C with

GE(y) = 0 if y ∈ E GE(z) > 0 if z /∈ E (1.10)

Stahl–Totik introduce the important notion of regular measure: If µ
is a measure of compact support, we call it regular if and only if

lim
n→∞

(a1 . . . an)1/n = C(E) (1.11)

where E = σess(dµ). (They use E = σ(dµ), but since σ(dµ) \ σess(dµ)
is countable, it has zero capacity, and so there is no difference.) One
reason this is natural is that it is always true that

lim sup
n→∞

(a1 . . . an)1/n ≤ C(E) (1.12)
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(An elegant way to see this (see Widom [43] or [30]) is to note that when
µ(R) = 1, a1 . . . an = ‖Pn‖2 ≤ ‖Tn‖∞ with Tn the Chebyshev polyno-
mial for E and use Szegő’s theorem [35] that lim ‖Tn‖

1/n = C(E).)
More generally than (1.12), one has the results of Stahl–Totik [34]

(see also [30]) that

Theorem 1.1 ([34]). If E = σess(dµ) and µ is regular, then

lim sup
n→∞

|pn(z, dµ)|1/n ≤ eGE(z)

uniformly on compact subsets of C. In particular, if E is regular, for

any ε, there is a δ and C so

sup
dist(y,E)≤δ

|pn(y, dµ)| ≤ Ceεn (1.13)

One connection between K and ρ is (an analog of Theorem 8.2.6 of
[25]; see Simon [32]):

Theorem 1.2 ([32]). For any regular measure µ,

1

n
Kn(x, x) dµ → dρE (1.14)

the equilibrium measure for E = σess(dµ). In (1.14), the convergence

is weakly as probability measures on supp(dµ).

If E is regular, if dµ given by (1.1) is regular, and if 1
n
Kn(x, x) has

a uniform limit as n → ∞ for x ∈ I some open interval, then by
(1.14), that limit must be ρ(x)/w(x) (and w(x) must be continuous
and nonvanishing on I). This motivates

Definition. We say that µ has normal limits on a closed interval I =
[a, b] if and only if for any xn → x ∈ I,

1

n
Kn(xn, xn) →

ρE(x)

w(x)
(1.15)

with convergence which is uniform in the sense that for any ε, there is
N and δ so that n ≥ N and |xn−x| < δ implies the difference in (1.15)
is less than ε.

Normal limits for xn ≡ x has an ancient history for orthogonal poly-
nomials on the unit circle (OPUC) and for E = [−1, 1], going back to
Szegő with important contributions by Erdös, Turán, and Freud. This
history is discussed in the fundamental paper by Máté–Nevai–Totik
[20] who obtained very strong results on pointwise convergence for µ’s
supported on [−1, 1] or OPUC supported on ∂D. The refinement of
allowing xn → x is one critical idea in a recent wonderful paper of
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Lubinsky [17] who provides a result on off-diagonal behavior of Kn

also:

Theorem 1.3 ([17]). Suppose I = [a, b] is a closed interval in

(−1, 1) and dµ is a regular measure with support [−1, 1] and that

supp(dµs) ∩ I = ∅. Suppose on I, dµ(x) = w(x) dx with w continuous

and nonvanishing. Then µ has normal limits on I, and for x0 ∈ I and

α, β ∈ R,

lim
n→∞

Kn(x0 + α
n
, x0 + β

n
)

Kn(x0, x0)
=

sin(πρ(x0)(β − α))

πρ(x0)(β − α)
(1.16)

uniformly if |α|, |β| ≤ A, x0 ∈ I for any A > 0.

Remarks. 1. Continuity “on I” here means continuous at each point in
I as a function on [−1, 1], that is, continuity at a, b involves values of w
outside but near [a, b]. Thus, the continuity hypothesis is nonvacuous
if a = b, and the theorem is interesting in that case.

2. The earliest results of the form (1.16) come from the random
matrix and Riemann–Hilbert literatures; see [13].

3. Lubinsky [17] does not use ρ(x0) = (π
√

1 − x2
0)

−1 for (1.16),
but scales using w(x)Kn(x, x) ∼ nρ(x). This gives a form that makes
contact with the Riemann–Hilbert literature and is also suitable for
end points and Freud weights.

4. As we will explain in Section 4, Levin–Lubinsky [16] use (1.16) to
control asymptotics of zeros of pn.

Our goal in this paper is to extend Theorem 1.3 in two ways:
(a) Instead of requiring σ(dµ) = [−1, 1], we want to allow σess(dµ) =

[−1, 1], as is natural if one makes assumptions on {an, bn}
∞
n=1

rather than directly on dµ.
(b) We want to replace [−1, 1] by a general finite gap set.

A third important extension involves (1.16) pointwise for a.e. x0 ∈ I
for situations where dµ obeys a local Szegő condition on I. I had
intended to combine Lubinsky’s strategy with ideas of Máté–Nevai–
Totik [20] and especially Totik [37], but I was informed by Totik that
Findley [8] and he [39] have results along this line. So I decided to
focus here only on (a) and (b).

Both of these extensions, while important, are not especially difficult.
Because of Lubinsky’s clever inequality (see (4.1)), it is only necessary
to find a suitable universal model for E and to control the diagonal
kernel.
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A key will be to relate Kn(x, x) to the Christoffel function,

λn(x0) = min{‖Q‖2
L2(R,dµ) | Q(x0) = 1, deg Q ≤ n} (1.17)

The minimizer is

Qn(x, x0) = K(x0, x0)
−1

n∑

j=0

pj(x)pj(x0) (1.18)

for which

λn(x0) = K(x0, x0)
−1 (1.19)

To handle extension (a) will be easy: One can eliminate the point
masses distant from E by adding explicit zeros to a trial polynomial
and control the point masses near E with some exponential decay.

The key to (b) will be to construct a suitable model that is well-
behaved, and following Lubinsky’s strategy (he uses Legendre polyno-
mials as his model), it will be easy to extend Theorem 1.3. Our model
will be the measure associated to a point in the isospectral torus associ-
ated to E where the analysis will depend on results of Sodin–Yuditskii
[33], Peherstorfer–Yuditskii [23], and Christiansen–Simon–Zinchenko
[5].

The most subtle part of the model will be establishing (1.16) which
will follow from Jost asymptotics. Jost asymptotics are the key to
proving clock behavior for zeros in [27, 28, 15]. In a sense, using the
Levin–Lubinsky strategy, we can regard (1.16) as a kind of infinitesimal
Jost asymptotics.

To obtain control of the diagonal CD kernel, all we will need is a
single model, µ♯, obeying
(i) σess(µ

♯) = E
(ii) w♯ is continuous and nonvanishing in E.
(iii) For any closed interval I ⊂ Eint, and ε > 0,

sup
x∈I

e−εnK♯
n(x, x) → 0 (1.20)

(iv) For any closed interval I ⊂ Eint,

lim sup
ε↓0

[
lim sup

n→∞

K♯
(1+ε)n(x, x)

K♯
n(x, x)

]
= 1 (1.21)

It is known [43, 41, 34, 30] that (ii) implies that µ♯ is regular. Of
course, we will have

1

n
K♯

n(x, x) →
ρ(x)

w♯(x)
(1.22)
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from which (1.20) and (1.21) follow. We state the result in this form
to allow for future work where the model focuses on a single point in
Eint where w vanishes or blows up at some rate.

In Section 3, we will prove:

Theorem 1.4. Suppose E is a regular set and there exists a model,

µ♯, obeying (i)–(iv). Let µ be a measure with σess(µ) = E, µ regular,

and w continuous and nonvanishing on I = [a, b] ⊂ Eint. Suppose that

σs(µ) ∩ I = ∅. Then for any xn → x ∈ I,

Kn(xn, xn)

K♯
n(xn, xn)

→
w♯(x)

w(x)
(1.23)

uniformly in the sense discussed after (1.15).

Remark. By (1.22), we have normal behavior on I.

In Section 4, we will prove:

Theorem 1.5. Suppose E is a regular set and there exists a model, µ♯,

obeying (i)–(iv) so that K♯ obeys (1.16) uniformly for x in compacts of

Eint, and |α|, |β| < A. Let µ be a measure with σess(µ) = E, µ regular,

and w continuous and nonvanishing on I = [a, b] ⊂ Eint. Suppose that

σs(µ) ∩ I = ∅. Then K obeys (1.16) uniformly on I and |α| < A,

|β| < A.

Given Theorem 1.4, we will obtain Theorem 1.5 by following Lubin-
sky’s argument virtually word for word. It will also, following Levin–
Lubinsky, imply uniform clock behavior of the zeros in I in the sense
of Last–Simon [15] (if a < b).

In Section 2, we will obtain µ♯ obeying (i)–(iv) when E is a finite
union of intervals and (1.16), therefore accomplishing extensions (a)
and (b).

All our arguments extend with little change to finite gap OPUC and
to zeros of paraorthogonal polynomials [3, 4, 10, 12, 29, 44].

During the preparation of this manuscript, I learned that Totik [39]
was also working on extending Lubinsky universality to general sets.
After I finished the above and Sections 2–4 below, Totik and I ex-
changed manuscripts. His technical methods are different from what I
do in Section 2. After I got his manuscript, I realized that Lubinsky’s
inequality ((4.1) below) is so strong that it is easy to go from finite gap
to general compact sets and prove

Theorem 1.6. Let E ⊂ R be an arbitrary regular compact set so that

I = [a, b] ⊂ Eint. Let µ be a measure with σess(µ) = E, µ regular in

the sense of Stahl–Totik [34], and µ ↾ [a − ε, b + ε] is purely absolutely
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continuous with w = dµ
dx

continuous and nonvanishing on [a, b]. Let

ρE(x) dx be the density for the equilibrium measure for E restricted to

I (it is not hard to see ρE is purely a.c. on I; see [30]). Then uniformly

for x ∈ [a, b],

Kn(x, x) →
ρE(x)

w(x)
(1.24)

and uniformly for x0 ∈ [a, b], |α|, |β| ≤ A, one has (1.16), and so (as
in Section 4 following [16]), clock behavior for the zeros.

Remark. (1.24) is not new. It is essentially in Totik [37].

The proof of this theorem is sketched in Section 5. We will also note
there that it suffices to prove the results in Section 2 when each interval
has rational harmonic measure so that one can use Floquet theory in
place of the more subtle analysis of [33, 23, 5].

It is a pleasure to thank D. Lubinsky, P. Nevai, and V. Totik for
useful correspondence.

2. Models

Let E be a finite gap set, that is,

E =

k+1⋃

j=1

[αj , βj] (2.1)

where α1 < β1 < α2 < · · · < βk+1 are reals. Associated with any such
E is an isospectral torus of Jacobi matrices defined by the fact that
their m-functions are Herglotz functions extendable to minimal degree
meromorphic functions on the two-sheeted Riemann surface associated
to [

∏k+1
j=1(z−αj)(z−βj)]

1/2. For OPUC, this is discussed, for example,

in [26], and for OPRL in [31].
The spectral measure µ♯ for any such Jacobi matrix has the form

(see [33, 23, 5])
dµ♯ = w♯(x) dx + dµs (2.2)

where dµs is a pure point measure with at most one pure point in each
gap of E and none in E and

w♯ > 0 (2.3)

and real analytic on Eint.
Our goal in this section is the prove the following

Theorem 2.1. Let µ♯ be the probability measure associated to a Jacobi

matrix in the isospectral torus for E. Then, uniformly for x in any

interval [a, b] in Eint, we have
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(i)

K♯
n(x, x) =

ρE(x)

w(x)
n + O(1) (2.4)

(ii) Uniformly in |α|, |β| < L,

w(x)

n
K♯

n

(
x +

α

n
, x +

β

n

)
=

sin(πρE(x)(β − α))

π(β − α)
+ O

(
1

n

)
(2.5)

We obtain this from results [33, 23, 5] on Jost solutions, that is,
solutions of

an+1un+2 + (bn+1 − x)un+1 + anun = 0 (2.6)

an equation solved by

un = pn−1(x)

Jost solutions, un(x), solve (2.6) for x ∈ E and obey
(i)

un(x) = einθ(x)fn(x) (2.7)

(ii) On any I ⊂ Eint, fn is analytic in x and its derivatives are uni-
formly bounded in n and x ∈ I.

(iii)

θ′(x) = πρE(x) (2.8)

(iv)

u0(x) = 1 (2.9)

(v)

u1(x) 6= u1(x) (2.10)

(vi) The Wronskian

an(un+1ūn − ūn+1un) (2.11)

is n-independent (but x-dependent).
(vii) While we do not need it, we note that fn(x) is almost periodic in

n.
Because of (2.9)/(2.10), un and ūn are linearly independent, so pn is

a linear combination of un+1 and ūn+1, and thus,

pn(x) =
un+1 − un+1(x)

u1(x) − ū1(x)
(2.12)

Define

gn(x) =
eiθ(x)fn+1(x)

[u1(x) − ū1(x)]
(2.13)

so (2.12) becomes

pn(x) = gn(x)einθ(x) + gn(x) e−inθ(x) (2.14)
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and constancy of the Wronskian becomes

an+1[gn+1(x)ḡneiθ(x) − gn(x) gn+1(x) e−iθ(x)] = c(x) (2.15)

x-dependent but not n-dependent.
We will also need the CD formula

K♯
n(x, y) = an+1

[
pn+1(x)pn(y) − pn(x)pn+1(y)

x − y

]
(2.16)

for x 6= y and its limit at x = y,

K♯
n(x, x) = an+1[p

′
n+1(x)pn(x) − pn+1(x)p′n(x)] (2.17)

Proof of Theorem 2.1. By (ii), (iii), and (v), and

p′n(x) = inθ′(x)[gn(x)einθ(x) − gn(x) e−inθ(x)] + O(1) (2.18)

where O(1) is bounded uniformly in x ∈ I and in n. Thus, by (2.14),
(2.15), (2.17), and (2.18),

K♯
n(x, x) = 2inθ′(x)c(x) + O(1) (2.19)

Therefore, 1
n
Kn(x, x) converges uniformly on I to 2iθ′(x)c(x), so by

(1.14),

2iθ′(x)c(x) =
ρE(x)

w(x)
(2.20)

and (2.19) is (2.4).
Similarly, by (2.14), (2.8), and (ii),

pn

(
x +

α

n

)
= gn(x)einθ(x)eiαπρ(x) + gn(x) e−inθ(x)e−iαπρ(x) + O

(
1

n

)

(2.21)
uniformly in |α| < A.

Plugging this into (2.16) shows

Kn

(
x +

α

n
, x +

β

n

)
= 2in

sin((β − α)πρ(x))

β − α
c(x) + O(1) (2.22)

By (2.20) and (2.8), c(x) = 1/2πiw(x), so (2.22) is (2.5). �

3. Asymptotics of the Diagonal CD Kernel

Our goal here is to prove Theorem 1.4. The key is an idea of Nevai
[21] that lets one exponentially localize CD minimizers, augmented by
the regularity ideas of Máté–Nevai–Totik [20], and a simple extension
that accommodates discrete spectrum.
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Lemma 3.1. Let E be a regular subset of R. Let µ, µ♯ be two mea-

sures both regular for E. Let I be a closed interval in Eint with

I ∩ [σs(µ) ∪ σs(µ
♯)] = ∅. Fix C1 larger than the diameter of E. Then

for all sufficiently small δ and each ε > 0, there is a constant C2 and

positive integer J depending on µ, µ♯, and ε so that for all m and ℓ,

λn(x0, µ
♯) ≤ sup

|y−x0|≤δ

(
w♯(y)

w(y)

)
λm(x0, µ) + C2e

εm

(
1 −

δ2

C2
1

)2ℓ

(3.1)

for all x0 ∈ I where n = m + 2ℓ + 2J .

Remarks. 1. While we apply this to w positive and continuous near
x0, it is stated in a way that should be applicable to situations where
w and w♯ vanish or blow up in the same way (the sup in (3.1) is then
interpreted as an essential sup).

2. One should be able, as in Lubinsky [18], to accommodate end
points with these methods.

Proof. Let Qm(x, x0; µ) be the optimal trial function for the CD prob-
lem at x0, that is,

Qm(x, x0; µ) = Km(x0, x0)
−1

m∑

n=0

pm(x, µ0)pm(x0, µ0) (3.2)

By (1.13), there is a δ1 and C3 so that

sup
dist(y,E)≤δ1

x0∈I

|Qm(x, x0; µ)| ≤ C3 eεm/2 (3.3)

We use here the fact that by (1.13) for dist(y, E) ≤ δ1 with δ1 suitable,

|pm(y)| ≤ cem/6

and m ≤ 6em/6. By shrinking δ1, we can also be sure that

x0 ∈ I, dist(y, E) ≤ δ1 ⇒ |x0 − y| ≤ C1 (3.4)

We now define J to be the number of points, x, in supp(µ♯) with
dist(x, E) ≥ δ1, which is finite since σess(dµ♯) = E, and let {xj}

J
j=1

be those points. We take for our trial polynomials for λn(x0, µ
♯) with

n = m + 2ℓ + 2J ,

Q(x) = Qm(x, x0; µ)

(
1 −

(x − x0)
2

C2
1

)ℓ J∏

j=1

(
1 −

[
(x − x0)

(xj − x0)

]2)
(3.5)
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Pick δ so small that {x | dist(x, I) ≤ δ} is disjoint from σs(µ)∪σs(µ0)
and δ < δ1. If y ∈ supp(dµ♯) and |y − x0| ≥ δ, we use (3.3) to see

|Q(y)| ≤ C4 eεm/2

(
1 −

δ2

C2
1

)ℓ

(3.6)

where

C4 = C3 max
such y
x0∈I

∣∣∣∣
J∏

j=1

(
1 −

[
(y − x0)

(xjx0)

]2)∣∣∣∣

(3.3) does not hold at xj but the product
∏J

j=1 vanishes at such points.

Thus,
∫
|y−x0|≥δ

|Q(y)|2 dµ♯(y) is bounded by the second term in (3.1).

On the other hand, since the second two factors in (3.4) are bounded
by 1 on [x0 − δ, x0 + δ], |Q(y)| ≤ |Qm(y)|, so, since there is no singular
spectrum there,

∫

|y−x0|≤δ

|Q(y)|2 dµ♯ ≤ sup
|x−y|≤δ

[
w♯(y)

w(y)

] ∫

|y−x0|≤δ

|Qm(y)|2 dµ

≤ sup
|x−y|≤δ

[
w♯(y)

w(y)

]
λm(x0, µ)

since adding the part of the integral with |y − x0| > δ only makes the
integral larger. �

Proof of Theorem 1.4. Let µ∗ = µ♯ be the model obeying (i)–(iv). Once

δ is fixed, we can pick η so (1 − δ2

C2
1

)2η ≤ e−2. Then in (3.1), we pick

ℓ = ηεm. The second term in (3.1) is thus O(e−εm).
Divide by λm(x, µ♯). By (1.20), the second term in (3.1) goes to zero,

and so (3.1) implies

lim inf
λm(xm, µ)

λm(xm, µ∗)
≥ sup

|x0−y|≤2δ

(
w∗(y)

w(y)

)
lim inf

(
λ∗

n

λ∗
m

)
(3.7)

Here we used xm − x0 → 0 so |x0 − y| ≤ 2δ for m large.
Taking ε ↓ 0, by (1.21), the lim inf on the right goes to 1. Thus, by

continuity, taking δ ↓ 0, we have

lim inf
λm(xm, µ)

λm(xm, µ∗)
≥

w∗(x0)

w(x0)
(3.8)

Now we interchange µ and µ∗ in (3.1) but now divide by λn(xn, µ∗)
and use the same arguments to get

lim sup
λn(xn, µ)

λn(xn, µ∗)
≤

w∗(x0)

w(x0)
(3.9)
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(3.8) and (3.9) complete the proof. All the arguments are uniform in
x0 ∈ I. �

4. Off-Diagonal CD Asymptotics and Clock Behavior

In this section, we will prove Theorem 1.5 and note its consequences
for zeros of the OPRL. Given Theorem 1.4, this is essentially a straight-
forward translation of [17] and [16]. We note that earlier Freud [9] had
noted that the universality result, (1.16), (which he only had under
very restrictive assumptions) implies clock behavior of zeros.

Proof of Theorem 1.5. Let µ ≤ µ∗. Then, as noted by Lubinsky [17],
for any x, y,

|Kn(x, y) − K∗
n(x, y)|2 ≤ K∗

n(y, y)[Kn(x, x) − K∗
n(x, x)] (4.1)

This critical result—which we dub Lubinsky’s inequality—is proven in
a few lines in [17].

Given µ and x0, let µ̃ be that multiple of the model µ♯ with w̃(x0) =
w(x0). Let µ♯ = sup(µ, µ̃). By the lemma below, µ♯ is regular. Thus,
by Theorem 1.4, we see that

Kn(x0 + α
n
, x0 + α

n
)

K∗
n(x0 + β

n
, x0 + β

n
)
→ 1 (4.2)

and
K̃n(x0 + α

n
, x0 + α

n
)

K∗
n(x0 + β

n
, x0 + β

n
)
→ 1 (4.3)

uniformly if |α|, |β| < A and x0 ∈ I.
From this and (4.1), we find (dividing by K∗

n(y, y)) that

Kn(x0 + α
n
, x0 + β

n
)

K̃n(x0 + α
n
, x0 + β

n
)
→ 1 (4.4)

also uniformly in |α|, |β| < A, x0 ∈ I. (1.16) for K̃n and (4.2)–(4.4)
imply (1.16) for Kn. �

Lemma 4.1. Suppose µ, µ∗ are two measures with σess(µ) = σess(µ
∗) ≡

E and µ ≤ µ∗. Then µ regular implies µ∗ is regular.

Proof. Regularity means

lim
n→∞

‖Pn( · , dµ∗)‖1/n = C(E) (4.5)

By (1.12),

lim sup ‖Pn( · , dµ∗)‖1/n ≤ C(E) (4.6)



TWO EXTENSIONS OF LUBINSKY’S UNIVERSALITY THEOREM 13

By µ ≤ µ∗ and ‖Pn( · , dν)‖ = min{‖Qn‖L2(dν) | deg Qn = n, Qn(x) =
xn + lower order},

‖Pn( · , dµ)‖ ≤ ‖Pn( · , dµ∗)‖ (4.7)

(4.5), (4.7), and
lim

n→∞
‖Pn( · , dµ)‖1/n = C(E) (4.8)

imply (4.5). �

Last–Simon [15] define clock behavior and uniform clock behavior.
Theorem 1.5 implies

Theorem 4.2. Let µ be a measure obeying the hypothesis of Theo-

rem 1.5 (so, in particular, E must have a suitable model). If a = b,
there is clock behavior for the zeros of pn(x, dµ) at a. If a < b, there is

uniform clock behavior on I. The density of zeros in the clock behavior

is ρE(x).

Remark. In particular, E can be a finite gap set by Theorem 2.1. Thus,
we recover and vastly generalize the results of [28].

Proof. We need only follow the ideas of [16]:

Step 1. By the CD formula, pn+1(y)
pn(y)

= pn+1(x)
pn(x)

for y 6= x if and only

if Kn(x, y) = 0. Thus, with γ ≡ pn+1(x0)
pn(x0)

, we see by (1.16) that there

is a zero of pn+1(y) − γpn(y) within 1
nρ(x0)

+ o( 1
n
) of x0. Since zeros of

pn+1 − γpn and of pn interlace, we conclude there are zeros of pn(x)
within 1

nρ(x0)
+ o( 1

n
) of x0 ∈ I.

Step 2. By the CD formula, for x 6= y, if pn(x) = 0, then pn(y) = 0
if and only if Kn(x, y) = 0. Thus, by (1.16), there are no two zeros of
pn(x) within (1− ε) 1

nρ(x0)
for any ε > 0, that is, we have an O( 1

n
) lower

bound.

Step 3. By the CD formula and (1.16), if pn(x0 + α
n
) = 0, there exist

zeros which are at x0 + α
n

+ k
nρ(x0)

+ o( 1
n
) for |k| ≤ K, and, by Step 2,

they are unique.

All these arguments are uniform in x0, so we have uniform clock
behavior. �

5. General Sets

As explained in the introduction, this section was written after I saw
[39] and realized my results plus Lubinsky’s inequality easily allowed
one to obtain universality for intervals with continuous a.c. weight in
arbitrary compact sets, and also allowed an alternative to Section 2
that only requires Floquet theory.
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Proof of Theorem 1.6. R \ E as an open set is a union of countably
many maximal open intervals whose total size, after the two semi-
infinite ones are removed, is finite. Thus, for any q > 0, only finitely
many are of size larger than 2

q
, so for any positive integer q, Eq = {x |

dist(x, E) ≤ 1
q
} is a finite gap compact set.

Let ρ(x) be the equilibrium density for E (restricted to I) and ρq(x)
for Eq. By balayage ideas, dρq ↾ I is nonincreasing, and by some
potential theory using the real analyticity of ρq and ρ on I,

ρq(x) ↑ ρ(x) (5.1)

uniformly on I (see [2, 11, 14, 24, 30, 34, 40] for background on the
needed potential theory).

For each q, pick a multiple, cqpq(x), of the equilibrium measure so
supI cqpq < infI w(x), and let µq = u∨cqpq, the measure theoretic max.
This is regular for Eq by Lemma 4.1. Thus, if xm → x0 ∈ I,

K(q)
m (xm, xm) →

ρq(x)

w(x)

where w = dµ
dx

. The trial functions for µq used in proving (3.8) can be
used for µ, that is, we can get upper bounds directly and see that

lim sup nλn(xn, µ) ≤
w(x)

ρq(x)
(5.2)

for each q. Since (5.1) is uniform on I, we see

lim sup nλn(xn, µ) ≤
w(x)

ρ(x)
(5.3)

uniformly for x ∈ I and xn → x (as in Section 3, this means that
for any ε, there are N and δ so if n ≥ N and |xn − x| ≤ δ, then

nλn(xn, µ) ≤ w(x)
ρ(x)+ε

+ ε).

We can use the polynomials pn(x, µ) as trial functions for µq and so
still get (3.1), but unlike in Section 3, we cannot take ε to zero for q
fixed and so not take ℓ

n
→ 0. Instead for a fixed q, there is η(q) and

we have to take ℓ ≥ nη(q). But as q → ∞, η(q) → 0. We obtain

(1 + η(q)) lim inf nλn(xn, µ) ≥
w(x)

ρq(x)
(5.4)

Since η(q) → 0 and ρq(x) → ρ(x), we therefore prove

lim nλn(xn, µ) =
w(x)

ρ(x)
(5.5)



TWO EXTENSIONS OF LUBINSKY’S UNIVERSALITY THEOREM 15

The limit argument is essentially one used several years ago by Totik
[37], the only difference being that we make uniform assumptions (i.e.,
continuity) on w and conclude uniformity in (5.5) with variable points.

Now use (4.1) with K∗ = Kq, the CD kernel, for µq ≥ µ by con-

struction. Replace (x, y) by (x0 + α
n
, x0 + β

n
). Divide by nρ(x0)

w(x0)
and take

n → ∞ using (1.15) and (1.16) for µq, and (5.4) to get

lim sup
n→∞

∣∣∣∣
Kn(x0 + α

n
, x0 + β

n
)

Kn(x0, x0)
−

sin
∏

ρq(x0)(β − α)∏
ρ(x0)(β − α)

∣∣∣∣
2

≤
ρq(x0)

ρ(x0)

[
1−

ρq(x0)

ρ(x0)

]

(5.6)
Note the mixed ρq

ρ
in the ratio on the left side. Taking q → ∞ yields

the desired limit result. �

As a final remark, we note that we can use the same approximation
idea to go from finite gap E’s with all rational harmonic measures to
general finite gap E’s. For it is a result of Bogatyrëv [1], Peherstorfer
[22], and Totik [38] that any finite gap E with ℓ gaps can be approx-
imated by rational harmonic measure sets Eq ⊃ E so |Eq \ E| → 0.
The arguments above can get results for general E from the Eq. The
point of this remark is that the construction in Section 2 relies on Jost
solutions. For E’s with rational harmonic measures, the Jacobi param-
eters are periodic, and Jost solutions can be constructed with Floquet
theory rather than the more elaborate methods of [33, 23, 5].
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