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Abstract. We prove −∆+V has purely discrete spectrum if V ≥
0 and, for all M , |{x | V (x) < M}| < ∞ and various extensions.

1. Introduction

Our main goal in this note is to explore one aspect of the study of
Schrödinger operators

H = −∆ + V (1.1)

which we’ll suppose have V ’s which are nonnegative and in L1
loc(R

ν),
in which case (see, e.g., Simon [15]) H can be defined as a form sum.
We’re interested here in criteria under which H has purely discrete
spectrum, that is, σess(H) is empty. This is well known to be equivalent
to proving (H +1)−1 or e−sH for any (and so all) s > 0 is compact (see
[9, Thm. XIII.16]). One of the most celebrated elementary results on
Schrödinger operators is that this is true if

lim
|x|→∞

V (x) = ∞ (1.2)

But (1.2) is not necessary. Simple examples where (1.2) fails but H

still has compact resolvent were noted first by Rellich [10]—one of the
most celebrated examples is in ν = 2, x = (x1, x2), and

V (x1, x2) = x2
1x

2
2 (1.3)

where (1.2) fails in a neighborhood of the axes. For proof of this and
discussions of eigenvalue asymptotics, see [11, 16, 17, 20, 21].
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There are known necessary and sufficient conditions on V for discrete
spectrum in terms of capacities of certain sets (see, e.g., Maz’ya [6]),
but the criteria are not always so easy to check. Thus, I was struck by
the following simple and elegant theorem:

Theorem 1. Define

ΩM(V ) = {x | 0 ≤ V (x) < M} (1.4)

If (with | · | Lebesgue measure)

|ΩM(V )| < ∞ (1.5)

for all M, then H has purely discrete spectrum.

I learned of this result from Wang–Wu [25], but there is much related
work. I found an elementary proof of Theorem 1 and decided to write
it up as a suitable tribute and appreciation of A. Ya. Povzner, whose
work on continuum eigenfunction expansions for Schrödinger operators
in scattering situation [7] was seminal and inspired me as a graduate
student forty years ago!

The proof has a natural abstraction:

Theorem 2. Let µ be a measure on a locally compact space, X with

L2(X, dµ) separable. Let L0 be a selfadjoint operator on L2(X, dµ) so

that its semigroup is ultracontractive ([1]): For some s > 0, e−sL0 maps

L2 to L∞(X, dµ). Suppose V is a nonnegative multiplication operator

so that

µ({x | 0 ≤ V (x) < M}) < ∞ (1.6)

for all M. Then L = L0 + V has purely discrete spectrum.

Remark. By L0 + V , we mean the operator obtained by applying the
monotone convergence theorem for forms (see, e.g., [13, 14]) to L0 +
min(V (x), k) as k → ∞.

The reader may have noticed that (1.3) does not obey Theorem 1
(but, e.g., V (x1, x2) = x2

1x
4
2+x4

1x
2
2 does). But out proof can be modified

to a result that does include (1.3). Given a set Ω in R
ν , define for any

x and any ℓ > 0,

ωℓx(Ω) = |Ω ∩ {y | |y − x| ≤ ℓ}| (1.7)

For example, for (1.3), for x ∈ ΩM ,

ωℓx(ΩM ) ≤
Cℓ

|x| + 1
(1.8)

We will say a set Ω is r-polynomially thin if
∫

x∈Ω

ωℓx(Ω)r dνx < ∞ (1.9)
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for all ℓ. For the example in (1.3), ΩM is r-polynomially thin for any
M and any r > 0. We’ll prove

Theorem 3. Let V be a nonnegative potential so that for any M, there

is an r > 0 so that ΩM is r-polynomially thin. Then H has purely

discrete spectrum.

As mentioned, this covers the example in (1.3). It is not hard to see
that if P (x) is any polynomial in x1, . . . , xν so that for no v ∈ R

ν is

~v · ~∇P ≡ 0 (i.e., P isn’t a function of fewer than ν linear variables),
then V (x) = P (x)2 obeys the hypotheses of Theorem 3.

In Section 2, we’ll present a simple compactness criterion on which
all theorems rely. In Section 3, we’ll prove Theorems 1 and 2. In
Section 4, we’ll prove Theorem 3.

It is a pleasure to thank Peter Stollmann for useful correspondence
and Ehud de Shalit for the hospitality of Hebrew University where some
of the work presented here was done.

2. Segal’s Lemma

Segal [12] proved the following result, sometimes called Segal’s
lemma:

Proposition 2.1. For A, B positive selfadjoint operators,

‖e−(A+B)‖ ≤ ‖e−Ae−B‖ (2.1)

Remarks. 1. A + B can always be defined as a closed quadratic form
on Q(A) ∩ Q(B). That defines e−(A+B) on Q(A) ∩ Q(B) and we set it
to 0 on the orthogonal complement. Since the Trotter product formula
is known in this generality (see Kato [5]), (2.1) holds in that generality.

2. Since ‖C∗C‖ = ‖C‖2, ‖e−A/2e−B/2‖2 = ‖e−B/2e−Ae−B/2‖, and
since ‖e−(A+B)/2‖2 = ‖e−(A+B)‖, (2.1) is equivalent to

‖e−A+B‖ ≤ ‖e−B/2e−Ae−B/2‖ (2.2)

which is the way Segal [12] stated it.

3. Somewhat earlier, Golden [4] and Thompson [22] proved

Tr(e−(A+B)) ≤ Tr(e−Ae−B) (2.3)

and Thompson [23] later extended this to any symmetrically normed
operator ideal.

Proof. There are many; see, for example, Simon [18, 19]. Here is the
simplest, due to Deift [2, 3]: If σ is the spectrum of an operator

σ(CD) \ {0} = σ(DC) \ {0} (2.4)
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so with σr the spectral radius,

σr(CD) = σr(DC) ≤ ‖DC‖ (2.5)

If CD is selfadjoint, σr(CD) = ‖CD‖, so

CD selfadjoint ⇒ ‖CD‖ ≤ ‖DC‖ (2.6)

Thus,

‖e−A/2e−B/2‖2 = ‖e−B/2e−Ae−B/2‖ ≤ ‖e−Ae−B‖ (2.7)

By induction,

‖(e−A/2
n

e−B/2
n

)2n

‖ ≤ ‖e−A/2
n

e−B/2
n

‖2n ≤ ‖e−Ae−B‖ (2.8)

Take n → ∞ and use the Trotter product formula to get (2.1). �

In [18], I noted that this implies for any symmetrically normed trace
ideal, IΦ, that

e−A/2e−Be−A/2 ∈ IΦ ⇒ e−(A+B) ∈ IΦ (2.9)

I explicitly excluded the case IΦ = I∞ (the compact operators) because
the argument there doesn’t show that, but it is true—and the key to
this paper!

Since C ∈ I∞ ⇔ C∗C ∈ I∞ and e−(A+B) ∈ I∞ if and only if
e−

1

2
(A+B) ∈ I∞, it doesn’t matter if we use the symmetric form (2.2)

or the following asymmetric form which is more convenient in applica-
tions.

Theorem 2.2. Let I∞ be the ideal of compact operators on some

Hilbert space, H. Let A, B be nonnegative selfadjoint operators. Then

e−Ae−B ∈ I∞ ⇒ e−(A+B) ∈ I∞ (2.10)

Proof. For any bounded operator, C, define µn(C) by

µn(C) = min
ψ1...ψn−1

sup
‖ϕ‖=1

ϕ⊥ψ1,...,ψn−1

‖Cϕ‖ (2.11)

By the min-max principle (see [9, Sect. XIII.1]),

lim
n→∞

µn(C) = sup(σess(|C|)) (2.12)

and µn(C) are the singular values if C ∈ I∞. In particular,

C ∈ I∞ ⇔ lim
n→∞

µn(C) = 0 (2.13)
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Let ∧ℓ(H) be the antisymmetric tensor product (see [8, Sects. II.4,
VIII.10], [9, Sect. XIII.17], and [18, Sect. 1.5]). As usual (see [18,
eqn. (1.14)]),

‖∧m(C)‖ =
m
∏

j=1

µj(C) (2.14)

Since µ1 ≥ µ2 ≥ · · · ≥ 0, we have

lim
n→∞

µn(C) = lim
n→∞

(µ1(C) . . . µn(C))1/n (2.15)

(2.13)–(2.15) imply

C ∈ I∞ ⇔ lim
n→∞

‖∧n(C)‖1/n = 0 (2.16)

As usual, there is a selfadjoint operator, d ∧n (A) on ∧n(H) so

∧n(e−tA) = e−t d∧
n(A) (2.17)

so Segal’s lemma implies that

‖∧n(e−(A+B))‖ ≤ ‖∧n(e−A) ∧n (e−B)‖

= ‖∧n(e−Ae−B)‖ (2.18)

Thus,

lim
n→∞

‖∧n(e−(A+B))‖1/n ≤ lim
n→∞

‖∧n(e−Ae−B)‖1/n (2.19)

By (2.16), we obtain (2.10). �

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. By Theorem 2.2, we need only show C = e∆e−V

is compact. Write

C = Cm + Dm (3.1)

where

Cm = CχΩm
Dm = CχΩc

m
(3.2)

with χS the operator of multiplication by the characteristic function of
a set S ⊂ R

ν .

‖e−V χΩc
m
‖∞ ≤ e−m

and ‖e∆‖ = 1, so

‖Dm‖ ≤ e−m (3.3)

and thus,

lim
m→∞

‖C − Cm‖ = 0 (3.4)
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If we show each Cm is compact, we are done. We know e∆ has
integral kernel f(x − y) with f a Gaussian, so in L2. Clearly, since V

is positive, Cm has an integral kernel Cm(x, y) dominated by

|Cm(x, y)| ≤ f(x − y)χΩm
(y) (3.5)

Thus,
∫

|Cm(x, y)|2 dνxdνy ≤ ‖f‖2
L2(Rν)‖χΩm

‖L2(Rν) < ∞

since |Ωm| < ∞. Thus, Cm is Hilbert–Schmidt, so compact. �

Proof of Theorem 2. We can follow the proof of Theorem 1. It suffices
to prove that e−sL0e−sV is compact, and so, that e−sL0χΩm

is Hilbert–
Schmidt.

That e−sL0 maps L2 to L∞ implies, by the Dunford–Pettis theorem
(see [24, Thm. 46.1]), that there is, for each x ∈ X, a function fx( · ) ∈
L2(X, dµ) with

(e−sL0g)(x) = 〈fx, g〉 (3.6)

and
sup
x

‖fx‖L2 = ‖e−sL0‖L2→L∞ ≡ C < ∞ (3.7)

Thus, e−sL0 has an integral kernel K(x, y) with

sup
x

∫

|K(x, y)|2 dµ(y) = C < ∞ (3.8)

(for K(x, y) = fx(y)). But e−sL0 is selfadjoint, so its kernel is complex
symmetric, so

sup
y

∫

|K(x, y)|2 dµ(x) = C < ∞ (3.9)

Thus,
∫

|K(x, y)χΩm
(y)|2 dµ(x)dµ(y) ≤ Cµ(Ωm) < ∞ (3.10)

and e−sL0χΩm
is Hilbert–Schmidt. �

4. Proof of Theorem 3

As with the proof of Theorem 1, it suffices to prove that for each M,
e∆χΩM

is compact. e∆ is convolution with an L1 function, f . Let QR

be the characteristic function of {x | |x| < R}. Let FR be convolution
with fQR. Then

‖e∆ − FR‖ ≤ ‖f(1 − QR)‖1 → 0 (4.1)

as R → ∞, so
‖e∆χΩM

− FRχΩM
‖ → 0 (4.2)
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and it suffices to prove for each R, M,

CM,R = FRχΩM
(4.3)

is compact. Clearly, this works if we show for some k, (C∗
M,RCM,R)k is

Hilbert–Schmidt.
Let D be the operator with integral kernel

D(x, y) = χΩM
(x)Q2R(x − y)χΩM

(y) (4.4)

Since f is bounded, it is easy to see that

(C∗
M,RCM,R)(x, y) ≤ cD(x, y) (4.5)

for some constant c, so it suffices to show Dk is Hilbert–Schmidt.
Dk has integral kernel

Dk(x, y) =

∫

D(x, x1)D(x1, x2) . . .D(xk−1, y) dx1 . . . , dxk−1 (4.6)

Fix y. This integral is zero unless |x− x1| < 2R, . . . |xk−1 − y| < 2R,
so, in particular, unless |x − y| ≤ 2kR. Moreover, the integrand can
certainly be restricted to the regions |xj − y| ≤ 2kR. Thus,

Dk(x, y) ≤ Q2kR(x − y)

(
∫

|xj−y|≤2kR

k−1
∏

j=1

χΩM
(xj) dx1 . . . dxk−1

)

χΩm
(y)

(4.7)

= Q2kR(x − y)(ω2kR
y (ΩM)k−1)χΩM

(y) (4.8)

by the definition of ωℓx in (1.7).
Thus,

∫

|Dk(x, y)|2 dνxdνy ≤ C(kR)ν
∫

x∈Ω

[ω2kR
x (ΩM)]2k−2 dνx

so if 2k − 2 > r and (1.9) holds, Dk is Hilbert–Schmidt. �
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