THE HILBERT TRANSFORM OF A MEASURE
ALEXEI POLTORATSKI'2, BARRY SIMON®% AND MAXIM ZINCHENKO?

ABSTRACT. Let ¢ be a homogeneous subset of R in the sense of
Carleson. Let p be a finite positive measure on R and H,(z) its
Hilbert transform. We prove that if limy_o tle N {z | |H,(z)| >
t}| = 0, then ps(e) = 0, where ps is the singular part of p.

1. INTRODUCTION

This is a paper about the Hilbert transform of a measure defined as
follows. The Stieltjes transform (also called Borel transform or Markov
function) of a finite (positive) measure, p, is defined on C; = {z |

Imz > 0} by
dp(x)
F, = 1.1
)= [ (1)
For Lebesgue a.e. x € R,
F(z+10) = lifgl F(z +i¢) (1.2)

exists. The Hilbert transform is given by
1
H,(x) = = Re F,,(z + 10) (1.3)
v

It is a result of Loomis [8] that for a universal constant, C, (||u| =
p(R))

Ha [ |Hy(2)| 2 )] < —— (1.4)
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2 A. POLTORATSKI, B. SIMON, AND M. ZINCHENKO

This was earlier proven for the a.c. case by Kolmogorov (attributed by
Zygmund [16]) and, for finite point measures, Boole [1] proved (and
Loomis rediscovered)

i
o | £Hu(2) 2t} ="~ (1.5)
We note that (1.5) was extended by Hruscéév—Vinogradev [7] to all

singular measures; see also [5, 10].

Remark. We do not need an explicit value of C' in (1.4). Davis [3, 4]
has shown the optimal constant in (1.4) is C' = 1.

In distinction, for a.c. measures, du = f dx, we have
i t[{z | |Hyar(2)] > 1)] = 0 (16)

This follows from the fact that if f € L?, Hy g, € L? (indeed, | H gz |l2 =
Il fll2), that L? N L* is dense in L', that (1.6) is trivial if H; g4, is L?
and that for any 6 € [0, 1],

{z [ |f(z) + g(x)] >t}

<o | @) > 00|+ o | lg@) > -y &7
From (1.5), (1.6), and (1.7), one sees
il (o | £H,(2) > 1] = | (1.8)
where
dp = fdx + dus (1.9)

is the Lebesgue decomposition of u (i.e., ys is singular).
In fact, a more general statement holds: for any finite complex mea-
sure u the measures
3 T {a] |Hy(@)2t) 4O
converge in the s-weak topology to the measure |dpus|, see (5.4) or [10].
One can rephrase this. We recall that weak-L! is defined by (this is
not a norm!) setting

1l = sup tl{a [ [£(2)] = 1} (1.10)
and
Ly = {f | 1fll1w < oo} (1.11)
so (1.4) says H, € L. We also define
L= {f e Lyl fim o | /@] =} =0} (112)

and (1.8) implies
H, € Ly, < pus(R)=0 (1.13)
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Our main goal is to provide a local version of this theorem for special
sets singled out by Carleson [2].

Definition. We say that a compact set ¢ C R is homogeneous (with
homogeneity constant ) if there is § > 0, such that for all z € ¢ and
0 < a < diam(e),

leN(z —a,x+a)| > 20a (1.14)

Given a function, f, we use f | e to denote the function fy. with y.
the characteristic function of e. The purpose of this paper is to prove

Theorem 1.1. Let ¢ be homogeneous and let 1 be a measure on R so
that H, | e € Ly,o. Then

11s(e) = 0 (1.15)

Remarks. 1. There is an analog for measures on 0D = {z € C | |z| =
1}.

2. The Hilbert transform can be defined if p, rather than being
finite, obeys [(1+ |z])~* du < oo. Indeed, H, can be defined up to an
additive constant if [(1 + |x]*)~!du(x) < co. Theorem 1.1 extends to
both these cases.

3. It follows from the arguments in Section 2 that a converse to
Theorem 1.1 holds and that H, [ e € L, if and only if H,. € L.
Thus, we have a three-fold equivalence,

Hyle€ Ly Hye € Ly < pis(e) =0 (1.16)

There is a special case that is both important and one motivation
for this work. We recall [9]:

Definition. A finite measure p on R is called reflectionless on ¢ C R,
where ¢ is compact and of strictly positive Lebesgue measure, if and
only if H, [ e=0.

There has been an explosion of recent interest about reflectionless
measures due to work of Remling [12]. Clearly, the zero function lies
in L, so
Corollary 1.2. Let e be homogeneous; let i be a measure on R which
is reflectionless on e. Then (1.15) holds.

This result is not new. For cases where supp(p) C e, it is due to
Sodin—Yuditskii [15], with some extensions due to Gesztesy—Zinchenko
[6]. Recently, Poltoratski-Remling [11] have proven a stronger result
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than Corollary 1.2—instead of requiring that e is homogeneous, they
only need for all xg € ¢ that

llrglsoup g
If (1.17) holds for all zo € e, we call e weakly homogeneous, following
[11].

The property of being reflectionless is not robust in that changing
off ¢ will usually destroy the reflectionless property. As we will see in
Section 2, having H, [ ¢ in L%u;o is robust and explains one reason we
sought this result.

Our proof is quite different from [11]. We note, however, that our
proof, like the one in [11], is essentially a real variable proof (we go
into the complex plane but use no contour integrals), while the earlier
work of [15, 6] is a complex variable argument.

We mention that Corollary 1.2 (and so Theorem 1.1) does not hold
for arbitrary e. Nazarov—Volberg—Yuditkii [9] have examples of reflec-
tionless measures on their supports where (1.17) fails and that have a
singular component.

We want to mention another special case of Theorem 1.1:

Corollary 1.3. Let ¢ be a homogeneous set in R. Let pu be a measure
on R so that there is a set A with
() 4] =0
(i) p(R\A) =0
(iii) A is closed and A C e
Suppose H,, | ¢ € quu;o' Then p = 0.

We will need a strengthening of this special case:

Theorem 1.4. Let ¢ be a homogeneous set in R. There is a constant
Cy depending only on ¢ so that for any measure, i, obeying (1)—(iii) of
Corollary 1.3, we have that

p(e) < Cy litminf t{zr € e| |Hu(z)| > t}] (1.18)
Remarks. 1. In fact, C is only d-dependent; explicitly, one can take
153673
C, = — (1.19)

We have made no attempt to optimize this constant and, indeed, have
made choices to simplify the arithmetic. The §~2 may be optimal, and
certainly it seems that 6! is not possible.

2. There is also a strengthening of Theorem 1.1 of this same form.
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We can say more about weakly homogeneous sets, that is, ones that
obey (1.17), and thereby illuminate and limit Theorem 1.1.

Theorem 1.5. Let ¢ be a compact weakly homogeneous set and p a
measure on R so that H, [ e € L. Then for all z; € e,

u({zo}) =0 (1.20)
that is, v has no pure points in e.

Theorem 1.6. There exists a weakly homogeneous set, ¢, containing
the classical Cantor set so that if j is the conventional Cantor measure,
H, [ e€ L.

In particular, Theorem 1.1 does not extend to weakly homogeneous
sets.

While the gap between homogeneous and weakly homogeneous sets
is not large, we can extend Theorem 1.1 to partly fill it in. We call a
set, e, non-uniformly homogeneous if it is closed and obeys

liminf (2a) e N (x — a,z +a)| > 0 (1.21)

al0

for all € e.

Theorem 1.7. Let ¢ be non-uniformly homogeneous and let p be a
measure on R so that H, | e € L},. Then

p1s(e) = 0 (1.22)

In fact, we will obtain this from a stronger result. We emphasize
that ¢ in the next theorem is not assumed closed.

Theorem 1.8. Let ¢ be a Borel set in R and p a finite measure so that
H, [ e€ Ly, Then

ps({z € e | liml%nf (2a)'eN (z — a,z +a)] > 0}) =0 (1.23)
This is to be compared with the result of Poltoratski-Remling [11]
that if e is Borel and H,, [ ¢ = 0, then
pts({z € ¢ | limsup (2a) " '|e N (z — a,z 4+ a)| > 0}) =0 (1.24)
al0

and the statement that follows from our proof of Theorem 1.5 that if
Lpp is the pure point part of y, then if H, [ e € L. ;. then

w;0’

fipp ({z € ¢ | limsup (2a) '|e N (z — a,z +a)| > 0}) =0
al0

Moreover, it is to be noted that the example in Theorem 1.6 shows
that in Theorem 1.8, we cannot replace (1.23) by (1.24).
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In Section 2, we reduce the proof of Theorem 1.1 to proving Theo-
rem 1.4. In Section 3, we prove Theorem 1.4. In proving Theorem 1.4,
we first show that if [a, b] is an interval on which |F),(z +140)| > ¢, then
|F,(z+i(b—a))| > t/87%. Then we will use this to prove that on most
of [a— (b—a),a] and [b,b+ (b—a)], |F,.(x+1i0)| is a significant fraction
of ¢, which is the key to the proof. In Section 4, we prove Theorems 1.5
and 1.6. In Section 5, we prove Theorem 1.8, and so Theorem 1.7.

We want to thank Jonathan Breuer and Yoram Last for useful dis-

cussions.

2. REDUCTION TO THEOREM 1.4

In this section, we show that Theorem 1.4 implies Theorem 1.1.
Proposition 2.1. Let p have the form (1.9). Then for any set ¢ C R,
Hy,le€ Lyye H, | e€ Ly, (2.1)
In particular, we need only prove Theorem 1.1 for purely singular mea-

sures to get it for all measures.

Remark. This shows the advantage of working with L .,. Purely sin-
gular measures are never reflectionless (for |{z | F,(x +:0) = 0}| =0
and thus, Im F,(z +40) > 0 a.e. on e if H, [ e =0).

Proof. By (1.7) with 6 = £, LY., is a vector space. Since H, — H,, =
Hyg, € LYo, by (1.6), we get (2.1) immediately. O

w;0

Proposition 2.2. Let e be a closed set. Let p be a measure with yu(e)
0. Then
H,lee€ L, (2.2)

Proof. Let pi,, = pu | {z | dist(z,e) > m~'}. Then for x € e,
L[ dpm(y)
N 2.

T y—x
SO -
1, T elloo < — lpm] (2.4)
so Hy,, € L.
By (1.7) with 6 = %, for any m,
i sup 1 {x € ¢ | [H,(2)] 2 £} < 20imsup e € ¢ | [Hyop, (2)] 2 1)

< 20| = o | (2.5)

where C'is the constant in (1.4).
Since (2.5) holds for all m and || — pm|| — 0 (since p(e) = 0), we
conclude Hy, [ ¢ € Ly,. O
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Proposition 2.3. Let ¢ be a closed set. Let v = p | e, that is, v(A) =
pu(e N A). Then

Hy,le€Lyye H,lee L, (2.6)
In particular, it suffices to prove Theorem 1.1 for purely singular mea-
sures supported on e.

Proof. Let n = — v. By Proposition 2.2,

Hyle—H,le=H,lec Ly, (2.7)

Since Ly, is a vector space, (2.7) implies (2.6). O
Proof of Theorem 1.1 given Theorem 1.4. By Proposition 2.3, we can
suppose p is purely singular and supported by e. Thus, there exists
As Cewith [Ay| =0, so p(R\ Ay) = 0.

By regularity of measures, we can find A, C A,,1 C --- C Ay, with
each A, closed, and so

(A \ A,) — 0 (2.8)

Define pi, = p | A, and v, = p— p,,. By (1.7) with 0 = 1, H, | e €
L., and (1.4),

limsup t{z € e| |H,, (v)| > t}| < 2limsup t|{z € ¢| |H,, (z)| > t}|
t—o00 t—o0

< 200u(As \ An) (2.9)

A, obeys (i)-(iii) for p,, so by (1.18),
H(A) = in(e) < 20C,u(An \ A,) (2.10)
As n — oo, u(A,) — ps(e) while, by (2.8), pu(Ax \ An) — 0. So
ps(e) = 0. O

3. PROOF OF THEOREM 1.4

Throughout this section, where we will prove Theorem 1.4 and so
complete the proof of Theorem 1.1, we suppose ¢ is homogeneous with
homogeneity constant d, and p is a measure for which there exists A C e
obeying properties (i)—(iii) of Corollary 1.3. In particular, since pu is
singular, for a.e. x € R,

F,(x+1i0) = nH,(z) (3.1)

We will consider F), throughout.
The key will be to prove for all large t,

, )
Hx €e||Fu(z+1i0)] > 128w2t}

> 2l | |Fe+i0)] > 1] (32)
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We will do this by showing that if I is an interval in R \ A where
|F,,(x 4+ 40)| > ¢, then at most points of the two touching intervals of
the same size, |F,| > 6t/12872. We will do this in two steps. We show
that F'(z) at points over I with Im z = |/| is comparable to t and use
that to control F' on the touching intervals. A Vitali covering map
argument will boost that up to the full sets. We need

Proposition 3.1. Let

I=[c—a,c+al (3.3)
be an interval contained in
{z [ [Fu(z +i0)] = t} (3.4)
Then
|Fl(c+a+ 2ia)| > SL (3.5)

Proof. F, lies in weak L' and is bounded off a compact subset of R.
For z € C4, let

G(z) =\ Fu(2)/i (3.6)

Then G has locally L' boundary values on R and is bounded off a
compact set, so if z =z + 1y,

6 =1 [0S (3.7
arg(G) € [-5, 5], so on R,
Re G(\ +0) > 0 (3.8)
On I, arg(G) = £7, and so for A € I,
Re G(A +1i0) > /t/2 (3.9)

Thus, by (3.7), (3.8), and, (3.9),

ReG(c+ a + 2ia) > l/ 2aRe G(A +10)
(c—l—a— A)?

+ (2
\/(_ Qi t/2 (3.10)

d\
a)?

( )

SO
Fu(c+ a+2ia)| > (ReGlc+a+ 2ia))® > 8i (3.11)
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Lemma 3.2. Fiz ty > 0 and let

F(z)
F = 3.12
0
Then, Im Fy, > 0 on C; and
t
{z | |F(x +1i0)| > to} = {:B Fy(z +10) > 50} (3.13)

Remark. F,, is the Stieltjes transform of a measure associated with a
rank one perturbation (see, e.g., [14, Sect. 11.2]), but that will play no
direct role here.

Proof. The invertible map

z
H(z) = 3.14
B=1i= (3.14)
maps C; to C, and (to, 00) U {oo} U (=00, —tg) to (%, 00). O
For any x > 0, define
I's={x | |F(z+10)| > s} (3.15)
Proposition 3.3. Fizt > 0 and let
4]
tg=—=t 1
07 12872 (8.16)
Suppose
I'=[c—a,c+al CT, (3.17)
and let .
I =[c+a,c+ 3d (3.18)
be the touching interval of the same size as I. Then
~ )
I\ Ty| <ad= 3 7] (3.19)
Proof. By the lemma for x real,
1 . t
Xry, (r) =1~ —arg (Fto (x +1i0) — §O> (3.20)
which is the boundary value of a bounded harmonic function.
Let
20 =c+a+ 2ia (3.21)

Then

t F(z) — fo — £
(o0 =3) =Sy
to
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<F§§O) — 1> (1 : (3.22)
= arg W = arg — W .
—tOO +1 tOO +1
By Proposition 3.1,
F(ZO> t 16
= —>16 3.23
to - 87T2t0 o ( )

since 6 < 1. Thus,

2 2 2
o) ' < o) <—=x1 (3.24)
%+1 |%|_1 15

If |lw| <1 for w € C, then
arg(1 + w) < arcsin(|w]) < g |w] (3.25)

(sin(y) > 2 for y € [0,%] implies for z € [0,1], arcsinz < Zz). By
(3.22),

t 83t
_0) < ot (3.26)

(o) =) <

Thus, if xr, (2) is the harmonic function whose boundary value is
xr,, (), we find, by (3.20), that

87T3t0
1— < — 3.27
(1= xm (20)) € ol (3.27)
By a Poisson formula with 2y = g + iyp as in (3.21),
Yo d)\
m(1 — xr,. (2 :/ 3.28
( o( 0)) R\l (/\ _ x0)2 + yg ( )
1[I\ Ty
- 3.29
since on I, the minimum of yo /(A — x0)? + ¥3) is 1/(2|1]).
Thus, by (3.27) and (3.29),
~ 167T3t0
INT | < —— |1 3.30
T\l < o (3.30)

: 872tg 1
Since # < 7o,

1002 956m3ty  Aw & _ 6
= < = —-<:
1— 82 = 15t 152 2

and (3.30) implies (3.19). O



THE HILBERT TRANSFORM OF A MEASURE 11

Proposition 3.4. Under the notation of Proposition 3.3, let

I* = [c — 3a,c+ 3d] (3.31)
and suppose
eNI #0) (3.32)
and
a < diam(e) (3.33)
Then
Ty, Nen I > g|l| (3.34)

Proof. Pick 2o € e N I. Suppose o > c¢. If not, we pick I to be the
third of I* below I instead of the choice here. By homogeneity,

le N (zg — a,z9 + a)| > 2a0 = 0|I| (3.35)
and the intersection lies in 7 U I. Thus,
Ty, Nen ¥ > len (zo—a,20 +a) — |(ITU N\ Iy, | (3.36)
Since I C I'y C Ty,

(TUDATY = 1T\ Ty| < 3 1] (3.31)

by (3.19). (3.35) and (3.36) imply (3.34). O

Proof of Theorem 1.4. Suppose p # 0. On R\ A, F,(z + i0) is con-
tinuous and real, so {z | |F),(x +i0)| > t} is open, and so a countable
union of maximal disjoint open intervals.

Let I = [¢ — a,c+ a] be the closure of any such interval. On R\ A,
F,(z) has

dp(z)
F = >0 3.38
u(@) / (y — ) (3.38)
If F, >ton I, c+ a must bein A or else Fj,(c 4+ a) < oo and F),(c +
a+¢) € I'y for € small (so I is not maximal). Similarly, if F,, < —t on
I,c—aeA Thus, INA#0,s0oINe#0.
Let
_ xCllul
diam(e)
where C' is the constant in (1.4). Then for ¢t > T, |I';| < diam(e), so
a < diam(e). Thus, by Proposition 3.4,

(3.39)

B
Ty, Nen I > 3 1] (3.40)
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Clearly, the I's and so the (I*)™’s are an open cover of I'; \ A. Thus,
by the Vitali covering theorem (see Rudin [13, Lemma 7.3]), we can
find a subset of mutually disjoint I*’s, call them {I ]ti }, so that

Ty <4 | <12) |1 (3.41)
J J

By the disjointness, with t, given by (3.16),
Ty, Nel =) |IENTy, Ne|
J

J

> 52 Ll (by (3.34))
J
> 2T (by (3.41))
Thus,
li ft|Pm|>1 f(S 0 tT]
im inf Zo|T', Ne| > lim in 51 Toa.2 ULt
Therefore, by (1.8) and (3.1),
o 0% 2(u(A))
lltniglf t{r ee| |Hu(z )|>7§}|_3072 pi——
which is (1.18)/(1.19). 0

4. WEAKLY HOMOGENEOUS SETS
Proof of Theorem 1.5. For xy € ¢ and € > 0, write
= iy + po + p3 (4.1)

with 1 = p | {zo}, p2 = p I [(xo — &0 + ) \ {zo}], s = p |
R\ (xg — €,29 + ¢), and by (1.7), note

{z € elo—mo| <5 [ [Hu(z)| >3t} < {z € el |Hu(z)| > t}]
+ {z | [Hps (2)] >t} + {2 [2 — 20| < 5 [ [Hpus(2)] >t}
(4.2)

By hypothesis, the first term on the right of (4.2) is o(1/t). Since
|H,,(z)| < 2/e, the third term is o(1/t). By (1.4), the second term is
bounded by Cu((zo —e,20 +¢) \ {zo})/t.

So long as ¢t > 2“g{+0} the left of (4.2) is [e N (g — 2“(3{?}) xo +
2ulleol)y| Ty, if

3t
C(z0) = limsup (2s) e N (g — 5,20 + 5)| (4.3)
sl0
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(4.2) implies that
AC (wo)p({zo})

3 < Cul(wo — &, 20 +€) \ {wo}) (4.4)
for any . Since N[(zo — =, 20 + =) \ {zo}] = 0, the right side of (4.4)
goes to zero as € | 0, and we conclude that pu({xo}) = 0. O

To prove Theorem 1.6, we need to describe some sets connected with
the Cantor set. Let K; be the two connected closed sets K1, K
obtained from [0,1] by removing the middle third. At level n, we
have 2" intervals {K,;}7",, each with |K, ;| = 37" so |K,| = (3)".
The Cantor set, of course, is K., = NK,. The Cantor measure is
determined by

W) = 5o (4.5
We order Z = {(n,j) | n = 1,2,...,7 = 1,2,...,2"} with lexi-
graphic order and use (n,j + 1) for the obvious pair if j < 2™ and to
be (n+1,1) if j = 2" Similarly, (n,j — 1) is (n — 1,277 1) if j = 1.
Let E; be the middle closed third of [0, 1]\ K3, so |Ey| = 1/9. Let
E5 be the two middle thirds of the two gaps in K; \ Ks. E,, has 2™~!
closed intervals of size 1/3™"1. There is a unique affine order preserving
map of [0,1] to K, ;. Let E, j, be the image of E,, under this map,
$0 B, jm has 2! intervals, each of size 1/3"T™ ! that is,

| B jm| = 2771 /3044 (4.6)
We want to pick a positive integer m(n, j) for each (n,j) € Z so that
m(n,j+1) >m(n,j) (4.7)
and we define

k(n,j) =n+m(n, j) (4.8)

Given such a choice, we define
¢ = Koo U U En,j,m(n,j) (49)

n,j€L

Our goal will be to prove e is always weakly homogeneous, and that if
m(n, j) grows fast enough, then H, | eisin L.

Lemma 4.1. For any choice of m(n,j), ¢ is weakly homogeneous. In-
deed, for any xq € e,

1
lim sup(29) e N (xg — 6,20 + 6)| > — (4.10)
510 10
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Proof. Let

En,j = En,j,m(n,j) (411)
If 2o € E,;, which is a closed interval, for all small &, (26)"E,; N
(zo — 0,9+ &)| = 1 or 1, depending on whether z, is a boundary or

an interior point. So (4.10) is certainly true.

Thus, we need only consider zy € K. Fix xqg € K. For each n,
zo € K, and so in K, j, for some j,. Let k, = k(n,j,). On level k,,
xo is contained in some interval, Kj, , of size 37%» and on one side or
the other, there is an interval of size 37%~1 in En,jn in a touching gap.
Let

5

b, = = 37kn 4.12
’ (4.12)

Then (xg — d,, o + d,) contains this interval in En’jn. Thus,

; 37kt 1
20,)" — On, On)| > = — 4.1
(260 e o — G +0,)| = T =5 (@
Since d,, — 0 as n — o0, (4.10) holds. O
For each (n,j), we will want to define

fng = p [ Kng URnj1 fing = [t = fin (4.14)

that is, single out the part of the Cantor measure near K, ;, and so
near E, ;. We define

Fog = Funy  Fug = Fp, (4.15)

Lemma 4.2. On U(M)S(n’j)EﬁJ, we have
|Fo ] < 3 (4.16)

Proof. Since ||fi, ;|| < 1, we have
| P ()] < dist(z, Koo \ Knjo1 UK, )" (4.17)
By construction,

dist(E, 3, K o) = 37K (4.18)

so if (71, 7) < (n,j — 1), then for x € Eﬁj,
|[Fj()] < 3RO < (=) (4.19)

since m(7, j) + 1 < m(n,j — 1) implies k(7 j) + 1 < k(n,j — 1).
On the other hand, since we have removed K, ;1 U K, ;,

diSt(Envj U En,j—l; Koo \ (Kn,j U Kn,j—l)) Z 3—n (420)
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Thus, for z in EN’nyj U E’nyj,l, we have that
| Fy ()] < 37 < 3k0mi=l) (4.21)
proving (4.16) on the claimed set. O

Proof of Theorem 1.6. We construct e by using the above construction
where m(n, j) is picked inductively so that

k(n,j+1)=3k(n,j) (4.22)
By Lemma 4.1, ¢ is weakly homogeneous.
Let
I < ¢ < k) (4.23)

Since F}, = F,; + F,,;, by (1.7),
2t € e| [Fu(z)| = 2t} < 2t1{x | |Fo;(z)] = t}] (4.24)
+2t{z € e | [ (2)] = t}] '

By Boole’s equality (1.5), the first term on the right side of (4.24) is
bounded by

Apngr(R) + prg(R) 427" 42277 = 12277 (4.25)

(where we need the 2-27"if j = 1).
By Lemma 4.2, the second term is bounded by

9 . gh(n.) Z 1B 5| (4.26)
(7.0)2(n,5+1)
By (4.6),
B 1 2 k(n,j)
Buol = 53 (3) (1.27)
so using
oo 2 A 2 Yo
> (g) = 3(5) (4.28)
=t
4 9\ k(n:i+1)
(4.26) < 3k(md) g=n (g) (4.29)
By (4.22) and (2)% = & > 3, we see
(4.26) < 27" (4.30)
Thus, if ¢ obeys (4.23), then by (4.24), (4.25), and (4.30),
2tz €e| |Fy(x)] >t} <13-27" (4.31)

Since n — 0o as t — oo, we see F, [ e € L1 ,. O
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5. NON-UNIFORMLY HOMOGENEOUS SETS

Our goal in this section is to prove Theorem 1.8 and then also The-
orem 1.7. For any Borel set ¢, define

en:{er

Proposition 5.1. Let pu be a measure with u(R \ ¢,) = 0. Suppose
H, e€ L, Then pus=0.

1 2
‘v’a<—,|(m—a,x+a)ﬂe|2—a} (5.1)
n n

Proof. We begin by noting that e, is closed, for if z,, — = and |(x,, —
a, Ty, +a)Nel > %‘1, then for all m,
2a
|(z —a,x4+a)Ne| > — — 2|z — 2, (5.2)
n

so x € ¢,. Applying Theorem 1.1 to di and compact homogeneous sets
e, N[N, N] for all N > 1, we get the result. O

Because ¢ is not closed, we cannot use Propositions 2.2 and 2.3 to
restrict to e,,. Instead we need:

Proposition 5.2. Let p and v be two measures on R whose singular
parts are mutually singular. Then for all ¢ > 0,

t{z | [Hu(x)| 2t} n{z | [Hy(x)] = ct}| — 0 (5.3)
ast — oo.

Remark. This result is essentially in Poltoratski [10] (see the last set
out formula in the proof of Theorem 2 in that paper), so we only sketch
the proof.

Sketch. Suppose first that ¢ = 1. We begin with what is essentially
Theorem 1 of [10], that for any positive measure pu, as t — 0o,

3 T, )21y A = dts (5.4)

in the weak-* topology. By (1.6) and (1.7), it suffices to prove this for
1 = f1s. In that case, if ©(®) is the measure with Stieltjes transform,

Fu(2) F(z)

EYYaE) (5:5)

then ([5, 10])

()~
[ (@) do = X o do

(rt)~1

so (5.4) follows from dp, — dp as |a| — 0.
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By (1.8), if u® is the measure on the left side of (5.4), then

21— s (5.6)
By (5.4),
p® — O 2 — (5.7)
SO
liminf || — VO > [l — vl = (1] + [l (5.8)
by the assumed mutual singularity.
But
11 = O = [l ] + [l ]| — 7 (Ihs of (5.3)) (5.9)

(5.6) and (5.8) then imply (5.3) for ¢ = 1.
This implies the result for ¢ > 1 and then, by symmetry, for all

c > 0. U
Proof of Theorem 1.8. For each n, define

fin =ft [ €0 Vp = fiy (5.10)
By (1.7),

Hz c el |Hy, (2)] =2t} < [{z € e | [Hu(z)] = t}]

+ [z | [Hy, (2)] 2 2t, [Hy, (x)] = t}]
(5.11)

By the hypothesis, the first term on the right is o(1/t) and, by Propo-
sition 5.2, the second is o(1/t). Thus, H,, | ¢ € L, and it follows
from Proposition 5.1 that (u,)s = 0, that is, ps(e,) = 0.

Since

- .. 1 B
LnJen ={zee] hrglﬁ)nf(Qa) leN(z—a,z+a)| >0}

we have (1.23). O
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