FINITE GAP JACOBI MATRICES,
II. THE SZEGO CLASS

JACOB S. CHRISTIANSEN!, BARRY SIMON?3,
AND MAXIM ZINCHENKO?

ABSTRACT. Let ¢ C R be a finite union of disjoint closed intervals.
We study measures whose essential support is ¢ and whose discrete
eigenvalues obey a 1/2-power condition. We show that a Szegd
condition is equivalent to

. ai - an

lim sup cap(e)” >0
(this includes prior results of Widom and Peherstorfer—Yuditskii).
Using Remling’s extension of the Denisov—Rakhmanov theorem
and an analysis of Jost functions, we provide a new proof of Szegd
asymptotics, including L? asymptotics on the spectrum. We use
heavily the covering map formalism of Sodin—Yuditskii as presented
in our first paper in this series.

1. INTRODUCTION

In this paper, we study Jacobi matrices, J, and asymptotics of the
associated orthogonal polynomials (OPRL), where oe(J) is a finite
gap set, e. By this we mean that e is a finite union of disjoint closed
intervals,

/41
¢ = U [Oéj,ﬂj] ap < 61 < g < -0 < 6@4_1 (11)

J=1

¢ counts the number of gaps, that is, bounded open intervals in R\ e.
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We recall that a Jacobi matrix is a tridiagonal matrix which we label

bl aq 0
aq bg a9

0 a9 bg (12)

The Jacobi parameters {a,, b, }>2; have a,, > 0 and b,, € R. There is a
one-one correspondence between probability measures, du, of compact
support on R and bounded Jacobi matrices where du is the spectral
measure for J and the vector (1,0,...)". Moreover, du determines J
via recursion relations for the orthonormal polynomials, p,(x), which

are (ag = 0)

:L'pn(:l:') = an+lpn+1($) + bn+lpn($) + anpn—l(x) (1'3)

See [32, 9, 23, 26] for background on OPRL.

This paper is the second in a series—the first, [2], henceforth called
paper I, studied the isospectral torus, an /-dimensional family of two-
sided almost periodic Jacobi matrices with essential spectrum, e, about
which we’ll say more later in this introduction. We note for now that
these matrices have periodic coefficients if and only if the harmonic
measure of the intervals [a;, §;] are all rational (i.e., if dp, is the po-
tential theoretic equilibrium measure for e, then each p.([e;, 5;]) is
rational; for background on potential theory in spectral analysis, see
29, 25]). We'll call this the periodic case.

In the current paper, we want to study Szegd’s theorem for the gen-
eral finite gap case. Of course, the phrase “Szegd’s theorem” can be
ambiguous since Szeg6é was so prolific, but by this we mean a set of
results concerned with leading asymptotics in the theory of orthogonal
polynomials on the unit circle (OPUC). Even here, there is ambiguity
since some of the results can be interpreted in terms of Toeplitz deter-
minants and there are several related objects. Indeed, we’ll distinguish
between what we call Szegé’s theorem and Szeg6 asymptotics.

In the OPUC case, the recursion parameters {a,}52, liein D = {z |
|z| < 1} and are called Verblunsky coefficients. We use ¢, (z) for the
orthonormal polynomials and write the measure du as

Au(0) = w(b) S+ dp (0 (1.4)

where dp is df /27r-singular. One also defines p, = (1 — |, [?)1/? (see
(32, 9, 23, 24, 22] for background on OPUC).
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Then what we’ll call Szegé’s theorem for OPUC says that

Jim ﬂp - exp( / K log<w<e>>§) (1.5)

Notice that since p, < 1, the limit on the left always exists, although
it may be 0. By Jensen’s inequality, the integral on the right is non-
positive, but may diverge to —oo, in which case we interpret the expo-
nential as 0. It is easy to see that the left side is nonzero if and only if
> olan|? < oo. Thus, (1.5) implies

Yol <o e /1og(w(e)) % > —00 (1.6)

By Szegd asymptotics, we mean the fact that when both conditions
in (1.6) hold, there is an explicit nonvanishing function, G, on C\ D so
that for z in that set,

lim z"p,(2) = G(2) (1.7)

n—oo

In terms of the conventional Szeg6 function,

D(2) = exp (/ Zz R 1og(w(e))d9), 2eD (1.8)

— 2 2

we have G(z) = D(1/2) .

Analogs of Szegé’s theorem for OPRL, where ¢ is a single interval
(typically e = [—1,1] or [—2,2]), were found initially by Szegé [31],
with important developments by Shohat [20] and Nevai [13]. These
works suppose no or finitely many eigenvalues outside e. The natural
condition on eigenvalues (see (1.10) and (1.13) below) was found by
Killip-Simon [11] and Peherstorfer—Yuditskii [15]. The best form of
Szeg6’s theorem (with a Szegé condition; see below) is

Theorem 1.1 (Simon-Zlatos). Let J be a Jacobi matriz with essential
spectrum [—2,2], {an, b, }52, its Jacobi parameters, {xy} a listing of its
eigenvalues outside [—2,2], and

du(z) = w(x) dx + dpg(x) (1.9)
its spectral measure. Define

E(T) =3 (lon] =22 (1.10)

K
and

A,=ay--a, A =limsup A, A=liminf A, (1.11)

Consider the three conditions:
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(i) Szegd condition

/ log(w(z))(4 — |z|*) 2 dz > —occ (1.12)

—2
(ii) Blaschke condition
£(J) < 00 (1.13)
(iii) Widom condition
0<A<A<oo (1.14)
Then any two of (1)—(iil) imply the third, and if they hold, the following
have limits as N — oo:

N N
n=1 n=1
and .
> lan — 17+ [ba)* < 00 (1.16)
n=1
Before leaving our summary of the case ¢ = [—2,2], we note that

Damanik—Simon [5] have proven Szeg6 asymptotics in some cases where
the Szegd condition fails. This will not concern us here, but will be
studied in the finite gap case in paper III [3].

In Section 4, we prove a precise analog of the statement “any two of
(i)—(iii) imply the third” for general finite gap sets, e. We note that for
the periodic case, this is a prior result of Damanik-Killip—Simon [4].
There are also prior results for the general finite gap case in Widom
[33], Aptekarev [1], and Peherstorfer—Yuditskii [16, 17]; see Section 4
for more details.

The limit results, (1.15) and (1.16), need modification, however.
First, even in the general one-interval case, one needs a; - - - a, /C™ for
a suitable constant C. The theory of regular measures [29, 25] says
the right value of C' must be cap(e), the logarithmic capacity of e—
a result that, in this context, goes back at least to Widom [33] who
also discovered that a; - - -a,/ cap(e)” doesn’t have a limit but is only
asymptotically almost periodic.

These limit results are expressed most naturally in terms of the
isospectral torus associated to e. For any Jacobi matrix obeying the
analogs of (i)—(iii), there is an element {a,,b,}>>, of the isospectral
torus so that .

nh_)rgo|an_dn| + |bn_bn| =0 (1'17)

This result, which goes back to Aptekarev [1] and Peherstorfer—
Yuditskii [16, 17] wusing variational methods, will be proven
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with our techniques in Section 6, where we’ll also prove that

lim(ay -+ -ay,/a - --a,) exists and is nonzero. (In paper I, we proved

that in the isospectral torus, a; - - - @,/ cap(e)” is almost periodic in n.)
An interesting open question concerns the analog of (1.16):

Open Question 1. Is 3% |a, — @n|? + |by — bu|?> < oo when the
analogs of (i)—(iii) hold?

In Section 7, we’ll prove an analog of Szeg6é asymptotics, namely,
away from the interval [, Bp11], the ratio p,(2)/pn(2) has a nonzero
limit where p,, are the OPRL for {a,, b, }22,.

Let us next summarize some of the techniques we’ll use below, in
part to standardize some notation. Coefficient stripping plays an im-
portant role in the analysis: if J has Jacobi parameters {ay, by }72,
then the n-times stripped Jacobi matrix, J, is the one with param-
eters {an 1k, bnir }72,, that is, with

ar(J™) = apsn()  be(J™) = boii(J) (1.18)
If the m-function of J is defined on C; = {z | Im z > 0} by
d
(e ) = {6, (7 2oy = [ 24D (1.19)

then we have the coefficient stripping relation that goes back to Jacobi
and Stieltjes,

m(z, JJ) = =z + b — a>m(z, JV) (1.20)

We’ll make heavy use of the covering space formalism introduced in
spectral theory by Sodin—Yuditskii [28] and presented with our notation
in paper I. x(z) is the unique meromorphic map of D to C U {oo} \ ¢
which is locally one-one with

x(z2) = ”%” +0(1) (1.21)

near z = 0 and z,, > 0.
There is a (Fuchsian) group, I', of Mobius transformations of D onto
itself so that

x(z) =x(w) <« FJyeTl sothat y(z) =w (1.22)
A natural fundamental set, F, is defined as follows:
Fo— {2] |2 < |y(2)], all y £1, 7 € T} (1.23)

OF ™MD is then 2¢ orthocircles, £ in each half-plane. F is ™ union the
¢ orthocircles in C. x is then one-one and onto from F to CU{oo} \ e.

L, the set of limit points of T', is defined as {y(0) |y € T} NID. x
can be meromorphically extended from D to all of C U {cc} \ L, or
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alternatively, there is a map x*: C U {oo} \ £ to S, the two-sheeted
Riemann surface of [Hfj(z — a;)(z — ;)]/2. All this is described in
more detail in paper I of this series.

That paper also discusses Blaschke products, B(z,w), of the
Blaschke factors at {y(w)},er. B(z) = B(z,0) is related to the po-
tential theoretic Green’s function, G.(z), for ¢ by

|B(2)| = e~ &) (1.24)

which, in particular, implies that near z = 0,

Bz = 2 o) (1.25)
Finally, we use heavily the pullback of m to D via
M(z) = —m(x(2)) (1.26)

We end this introduction with a sketch of the contents of this paper.
Our approach to Szegd’s theorem is a synthesis of the covering map
method and the approach of Killip-Simon [11], Simon-Zlatos [27], and
Simon [21] used for e = [—2,2]. As such, step-by-step sum rules are
critical. These are found in Section 2. One disappointment is that we
have thus far not succeeded in finding an analog of what has come to be
called the Killip-Simon theorem (from [11]). This result gives necessary
and sufficient conditions for the case e = [—2,2] that > 7 (a, — 1)? +
b2 < o0,

Open Question 2. Is there a Killip-Simon theorem for the general
finite gap Jacobi matrix?

We note that Damanik-Killip—Simon [4] have found an analog for
the case where each band has harmonic measure exactly (¢+ 1)~

Section 3 provides a technical interlude on eigenvalue limit theorems
needed in the later sections. Section 4 proves a Szego-type theorem
for general finite gap e. Section 5 defines Jost functions and Jost solu-
tions. Section 6 proves the existence of the claimed {ay, b,}5°, in the
isospectral torus and asymptotics of Jost solutions. Section 7 proves
asymptotic formulae for the orthogonal polynomials away from the con-
vex hull of ¢ (i.e., the interval [ay, Bp11]), and Section 8 L? asymptotics
on e.

The idea that we use in Sections 6 and 7 of first proving Jost asymp-
totics and using that to get Szegé asymptotics is borrowed from an

analog for e = [—2, 2] of Damanik-Simon [5]. But Section 7 has a sim-
plification of their equivalence argument that is an improvement even
for e = [—2,2]. Most of the results in Sections 6-8 are explicit or im-

plicit in Peherstorfer—Yuditskii [16, 17]. We claim two novelties here.
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First, the underlying mechanism of our proof of asymptotics is different
from their variational approach. Instead, we use a recent theorem of
Remling [18] about approach to the isospectral torus, together with an
analysis of automorphic characters of Jost functions. Second, by using
ideas in a different paper of Peherstorfer—Yuditskii [15], we can clarify
the L2-convergence result of Section 8.

We would like to thank F. Peherstorfer for the private communica-
tion [14]. J.S.C. would like to thank M. Flach and A. Lange for the
hospitality of Caltech where this work was completed.

2. STEP-BY-STEP SUM RULES

As noted in the introduction, a key to the approach to Szego-type
theorems for ¢ = [—2,2] that we’ll follow is step-by-step sum rules.
Our goal in this section is to prove those for a general finite gap e.
In Theorem 7.5 of paper I, we proved such results for measures in the
isospectral torus, and our discussion here will closely follow the proof
there. The major change is that there, with finitely many eigenvalues
in R\ e, we could use finite Blaschke products. Here, because we do
not wish to suppose a priori a 1/2-power condition on the eigenvalues,
we’ll need the alternating Blaschke products of Theorem 4.9 of paper
I. Here is the result:

Theorem 2.1 (Nonlocal step-by-step sum rule). Let J be a Jacobi
matric with oes(J) = ¢. Let JO) be the once-stripped Jacobi matriz
and let {p;}32, be the points in F that are mapped by the covering
map, X, to the eigenvalues of J and {z;}32, the corresponding points
for the eigenvalues of JV. Let B, be the alternating Blaschke product
with poles at {y(p;) }52,.,er and zeros at {y(2;)}52,.cr- Let B(z) be the
Blaschke product with zeros at {y(0)}yer. Let M(z) be the m-function,
(1.26), for J, and MM (2) the one for JV. Then

(a) limt; M (re?) = M(e") and lim,;; MW (re®) = MW (e?) exist

for df/2m-a.e. 0.
(b) Up to sets of df/2m measure zero,

{0 Im M(e®) # 0} = {6 | Im M) () # 0} (2.1)
(c)
Im M (e® do
log<W) e (L (a]D, g) (2.2)

p<oo
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(d) We have

.M () = B(2)Boo(2) exp ( / Zz t 1og<1i1mj\%()i)6>) g) (2.3)

Remarks. 1. We've labeled the p’s and 2z’s to be infinite in number,
although there may be only finitely many. Moreover, we need to group
them into not one sequence but potentially 2¢+2 if each of the points in
{a, B, ﬁi{ is a limit point of eigenvalues in R\ ¢. Once this is done, one
forms an alternating Blaschke product for each sequence (the p’s and
2’s in each sequence alternate along a boundary arc of F or on (0, 1) or
(—1,0)), and then takes the product of these 2¢+2 alternating Blaschke

products.

2. Im M and Im M® have the same sign at each point of 9D, positive
or negative, depending on whether x maps to an upper or lower lip of
€.

3. We've written (c) and (d) assuming that the set in (2.1) is all of
OD (up to sets of Lebesgue measure zero). A more proper version is
that lim,q1|M(re®)|? has a limit as r 1 1 which, when multiplied by
a2, is the ratio Im M/ Im M) at points in the set in (2.1). It is that
boundary value that enters in (2.2) and (2.3).

Proof. We follow the arguments used for Theorem 7.5 of paper 1. For
z € D, not a pole or zero of M, let

o alﬂl(z)
"% = BB

At the poles and zeros of M, h(z) has removable singularities and no
zero values, so h is nonvanishing and analytic in all of .

All of M, B, and B, are positive on (0,¢) for & small, so one can
choose a branch of log(h(z)) which has Im(log(h(z))) = 0 on (0,¢).
Since ImM > 0on C. NF and Im M < 0 on C_NF, with this choice,

larg(M(z))] < mon F (2.5)

(2.4)

By eqn. (4.84) in Theorem 4.9 of paper I, there is a constant C' so that
larg(Boo(2)B(2))| < C on F (2.6)

As in the proof of Theorem 7.5 of paper I, this plus the fact that
h(z) is character automorphic implies that

sup / Tm(log(h(re™))) ?

0<r<1

do

— 2.
5 <0 (2.7)
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Thus, by the M. Riesz theorem,
log(h) € (] H"(D) (2.8)
p<oo
This implies that log(h), and so M, has boundary values and
. de
log|M(e”)] € () L” (aD, ) (2.9)

2w
p<oo

Taking boundary values in (see (1.20))

M(2)™t = x(2) — b — MWD (2) (2.10)
shows that (2.1) holds, and on the set where Im M # 0,
, Im M (&)
0\(12
|CI,1M(€ )| - Im M® (6i9) (211)
This and (2.9) imply (2.2), and (2.3) is just the Poisson representation
for log(h(2)). O

The main use we’ll make of (2.3) is to divide by B(z) and take z — 0
using (1.21) and (1.25). The result is:

Theorem 2.2 (Step-by-step Cj sum rule).

21 10
a Im M(e*) \ db
—— = B,(0 1 — | — 2.12
cap(e) (0) exp ( /0 Og(lm MO () ) 4x (2.12)
3. FuN AND GAMES WITH EIGENVALUES

Sum rules include eigenvalue sums—it appears somewhat hidden in
(2.12) as B (0). Since, in exploiting sum rules, we’ll be looking at the
behavior of sums over families, often with infinitely many elements,
we’ll need control on such sums. This was true already in the single
interval case as studied by [11, 27], but there the main tool needed was
a simple variational principle. Eigenvalues above or below the essential
spectrum are given by a linear variational principle. This is not true for
eigenvalues in gaps, and so we’ll need some extra techniques, which we
put in the current section. We note that there are still limitations on
what can be done in gaps. For example, for perturbations of elements
of the finite gap isospectral torus, there is a 1/2 critical Lieb—Thirring
bound at the external edges [7] but not yet one known for internal gap
edges [10].

We begin with two results about the relation of eigenvalues of J and
J™ | the n-times stripped Jacobi matrix of (1.18).



10 J. S. CHRISTIANSEN, B. SIMON, AND M. ZINCHENKO

Theorem 3.1. Let J be a Jacobi matriz with ces(J) = e. Let ¢ €
(B, aj+1), one of the gaps of R\ e. Suppose f is defined, positive, and
monotone on (B;,c) with lim, s, f(x) = 0. Let ¢ > x1(J) > x2(J) >
-+ > [3; be the eigenvalues of J in (B;,c). Then the eigenvalues of J
and JOU strictly interlace, that is, either

l’l(J) >£L’1(J(l)) >£L’2(J) >[L’2(J(1)) > ... (31)
or

LUl(J(l)) > xl(J) > $2(J(1)) > x2(J) > ... (32)
In particular, S5 [f(xx(J)) = f(2x(JD))] is always conditionally con-
vergent.

Remarks. 1. For simplicity of notation, we stated this and the fol-
lowing theorem for (3}, c), but a similar result holds for (¢, oj+1) and
also for (—oo, ) and (B4 1, 00).

2. By iteration, we also get convergence of Y o [f(xx(J)) —
f(zr(J™))] for each n.

Proof. By the fact that z4(J) are the poles of m(z) in (f;,¢) and
z(JWV) the zeros, and since Lm(z) = | (i‘i(:)é > 0 for z € (B;,¢),
we see the interlacing, which implies (3.1) (if m(c) < 0) or (3.2) (if

m(c) > 0). The conditional convergence of the sum is standard for

alternating sums. U
Theorem 3.2. Under the hypotheses of Theorem 3.1, if
S = sup Zf(:ck(J)) — fap(J™))| < 00 (3.3)
"l =1
then -
> fa(J)) < o0 (3.4)
k=1

Proof. We will need the fact proven below (in Theorem 3.4) that for
each j € {1,...,¢} and € > 0, there is an N so for n > N, J™ has
either 0 or 1 eigenvalue in (5; + ¢, o411 — €).

That means, by dropping at most one of z;(J™), we can suppose
f(xr(J) = flzp(J™)) > 0, so we see for n > N,

oo @)= fBi+e) < flo+S (35
{k| Bj+e<zi(J)<c}
So, for any €y and 1 < &g,

oo ) = fBj+e)] < flo)+S  (3.6)

{k|Bj+eo<zp(J)<c}
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Taking £; | 0 and then gy | 0 yields (3.4). O
The following lemma is well known, used for example in Denisov [6]:

Lemma 3.3. Let A be a bounded operator with

7 = inf(0ess(A)) (3.7)
Let P, be a family of orthogonal projections with
s-lim P, = 0 (3.8)
Then for any €, we can find N so that forn > N,
o(P,AP, | ran(P,)) C [y — &, 00) (3.9)

Proof. Since (3.7) holds, for any ¢, we can write
A=A.+ B. (3.10)

where A, > v — ¢/2 and B. is finite rank, and so compact.

By (3.8), P,B.P, — 0 in |||, so we can find N so that, for n > N,
| P.B:P,|| <¢e/2. Then for each n > N,

P,AP, > P, (7 - % - %)Pn > (y—¢)P, (3.11)

proving (3.9). O
Theorem 3.4. Let J be a bounded Jacobi matriz with (o, B)Noess(J) =
0. Let J™ be the n-times stripped Jacobi matriz. Then for any €, we
can find N so that, for n > N, J™ has at most one eigenvalue in
(a+¢e,0—¢).

Proof. Let P, be the projection onto span{d;}52,,,,, so
J® = P, JP, | ran(P,) (3.12)

Let v = 1(a+ ) and A = (J —7)?, A"™ = P, AP, | ran(P,). By the
spectral mapping theorem,

inf(oess(A)) > [2 (8 — )] (3.13)
so, by the lemma, for any ¢’ there is NV so for n > N,
nfo(A™) > [F(F-a)? — < =[F(B-a) < (314)
where €’ is chosen so that (3.14) holds.
Since
AW (O — 3 = B(J = )1 = P)J =P, (315)

is rank one, (J™ — )% has at most one eigenvalue (which is simple)
below [5(8 — @) — €]?, which proves the claimed result by the spectral
mapping theorem. U
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Next, we turn to estimating eigenvalue sums like
Z dist (z, e)/2 (3.16)
z€a(J)\e
with a goal of showing, for example, that if £(J) is finite, then so is
sup,, £(JM).

Definition. Let A be a bounded selfadjoint operator with (a,b) N
Oess(A) = (0. We set

Sy(A) = > dist(z,R\ (a,b))" (3.17)
z€a(A)N(a,b)

where the sum includes x as many times as the multiplicity of that
eigenvalue.

Theorem 3.5. Let A be a bounded selfadjoint operator with (a,b) N
Oess(A) = 0 and ¥, )(A) < 0o. Then
(i) If B is another bounded selfadjoint operator with rank(B — A) =
r < 0o, then

2

(ii) If P is an orthogonal projection so that rank(PA(1—P)) =r < oo
and B = PAP | ran(P), then (3.18) holds.

b—a\'?
Z(@b)(B) < Z(&b)(A) + 7’( ) (3.18)

Proof. For simplicity of notation, we can suppose A has both a and b
as limit points of eigenvalues (from above and below, respectively). It
is easy to modify the arguments if there are only finitely many eigen-
values.

(i) By induction, it suffices to prove this for r = 1. Label the eigen-
values of A in (a,b), counting multiplicity, by

a<---<z9(A) <z (4 < %(a—i—b) <xp(A) <x(A) <---<b
(3.19)
For A’s with a cyclic vector ¢, and B = A+ A(¢p, - )y, it is well known
that eigenvalues of A and B strictly interlace. By writing A as a direct
sum of its restriction to the cyclic subspace for ¢ and the restriction
to the orthogonal complement, we can label all the eigenvalues of B in
such a way that
24(A) < T2 (B) < 411 (A) (3.20)
With that labeling,

Zdlst 21(B), R\ (a,)/? < Zdlst zr(A),R\ (a,b))¥?  (3.21)
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> dist(z_x(B), R\ (a,b))"/* <> " dist(z_x(A), R\ (a,0))"* (3.22)

k=1
so that
S (an) (B) < dist(o(B), R\ (a,b))"* + S(up)(A) (3.23)
which implies (3.18) for r = 1.
(ii) By scaling and adding a constant to A, we can suppose b = —a =
1. For C' > 0 with 0.(C) C [1,||C]]], let
2= Y (1-va)' (3.24)
z€o(C)N[0,1)
so that

S1(A) = (4% (3.25)
By mimicking the proof of (i), we see
rank(D —C) =7, D >0 = %(D) < S(C) +r (3.26)
Notice, next, that by the min-max principle, zx(PCP | ran(P)) >
xk(C) so that
Y(PCP [ran(P)) < X(C) (3.27)
Notice also that
PA*P — (PAP)? = PA(1 — P)AP (3.28)

is at most rank r. Thus,

S(11)(PAP | ran(P)) = S((PAP [ ran(P))?)  (by (3.25))
< r+Y(PA%P [ ran(P)) (by (3.26))
<r+%(A?% (by (3.27))
=7+ 1.1 (A) (by (3.25))

U

We also want to know that one can make the eigenvalue sum small,
uniformly in B, by summing only over eigenvalues sufficiently near a

or b. Thus, we prove (for simplicity, we state the result for a; a similar
result holds for b):

Theorem 3.6. Let (a,b) N 0ess(A) = 0, Xap)(A) < 00, and suppose
B is related to A as in either (i) or (ii) of Theorem 3.5. Then for any
6 < i(b—a),

> @B —a)?<rd?+ Y (a(4) —a)'? (3.29)

zk(B)€(a,a+6) zk(A)E(a,a+20)
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Proof. We have
LHS of (3.29) < ¥ (40126 (B)
< S(aaras)(A) + 1o/ (by Theorem 3.5)
= RHS of (3.29) O

As a corollary, we have (since J™ = P,JP, | ran(P,) with rank((1—
P,)JP,) =1):

Theorem 3.7. Let J be a Jacobi matriz with oes(J) = e.  Given
(3.16), let £(J) be finite and let J™ be the n-times stripped Jacobi
matriz. Then

()
n 1/2
E(IM) < E() + 0 max, (3las — 5)" (3.30)
(ii) For any j € {1,...,0+ 1} and € > 0, there is a 6 > 0 so that for
all n,
. @) =8 < e (3:31)
2 (J()€E(B;,8+9)

> (aj — ap(JMNY2 < 1e (3.32)

zp(J(M)e(aj—8,05)

Proof. (i) By the min-max principle for eigenvalues above and below
the essential spectrum, the sums for eigenvalues below a; or above (1
get smaller. In each gap, we use Theorem 3.5 (ii). This yields (3.30)
asr = 1.

(ii) We prove (3.31); the proof of (3.32) is similar. Take dy < (11—
;) so that

Yo (@) =B < e (3.33)
2 (J)€(B5,8;+200)
Then pick § < & so that §'/% < 1e. (3.29) implies (3.31). O

Theorem 3.8. Let J, j~ be two Jacobi matrices with oes(J) =

Oess(J) = ¢ and E(J), E(J) < co. Form,q > 0, let J,,, be the Ja-
cobi matriz with

() = an(J) oon=1L...,m (3.34)
’ Unmtq(J) n=m+1, ...
b (J) n=1,...,m

- 3.35
bn_m+q(<]) n:m‘l—l, ( )

On(Jm.q) = {
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Then for a constant, K, independent of m and q,
E(Jmyg) CEN+EJ)+ K (3.36)

and for any j € {1,...,0+ 1} and e > 0, there is a § > 0 so that for
all m, q,

> (@k(Tmg) — B) < 3¢ (3.37)
Tk (Jm,q)€(B5,8;+9)
A similar result holds near o;.

Proof. Let Q,, be the projection onto span{d;}72, and P, = 1 — Qp,.
Then J, 4 — QmJQm — P, J@P, is rank two. Thus, for j = 1,...,¢
and v = max;—y,_ (3|1 — 3;])'72,

Z(ijajﬂ)(Jm,q) <2v+ E(ijajﬂ)(QmJQm) + E(ﬁjv%ﬂ)(ij(q)Pm)
< dy+ Z(ﬁjvaj+1)(J) + E(ﬁjv%ﬂ)(‘](q))
<57+ 2(5j7“j+1)(']> + E(ﬁjv%ﬂ)(‘])

For eigenvalues below «; (or above [,.1), we use the fact that
|an(Jmg)] < |IJ]| to see that ||Jmgll < 2|[J]| + |IJ]| (a crude over-
estimate). Hence we can do a similar bound on some X, o,)(Jm,q) with
k independent of m and gq.

The passage from the proof of (3.36) to the proof of (3.37) is similar
to the argument in the proof of Theorem 3.7. O

It is a well-known phenomenon that, under strong limits, spectrum
can get lost (e.g., if J,, is a Jacobi matrix which is the free Jy, except
that for m € (n? — n,n? +n), b, = —2, then J, — Jy but J, has
more and more eigenvalues in (—4, —2)). We are going to be interested
in situations where this doesn’t happen, which is the last subject we
consider in this section.

Theorem 3.9. Let J be a Jacobi matriz with Oess(J) = e. Suppose
that J) — J in the sense that for each m > 1,

Uyt — G by — b (3.38)
Then J has at most one eigenvalue in (B, aj+1), and for each § small
and ny, large, J™) has the same number of eigenvalues in (3;+0, aji1—

J) as J. In fact, if J has an eigenvalue \ there, the eigenvalue of J™)
in that interval converges to \.

Proof. If X is an eigenvalue of J in (6;, ;1) with Jt =\ (and ||| =
1), then e,, = ||(J™) =X\)i|| — 0. Thus, (A—e,,, Aen, )N (JT)) £ 0.
Since the interval for small enough ¢, is disjoint from oess(J (")) we
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conclude that there is at least one eigenvalue \,, in the interval, and
clearly, \,, — A.
This fact plus Theorem 3.4 implies that J has at most one eigenvalue
in (8, ajs1). )
Suppose next that J™)u, =\, u,, with ||u, | =1and \,, — \ €
(Bj, @j+1). Given v € (*(N) and ny, define

<
WWMZ{O =T (3.39)
Umen,, T > Ny

Then
JWW—UWMWﬂ :{0 m# (3.40)
" Ap, U1 M =Ny
We conclude that
1T = A )ul ]| = ()1 (3.41)

If (wp, )1 — 0, this implies ) e Oess(J) since ug,?‘) —5 0. But that is
impossible, so (u,, )1 - 0. By compactness of the unit ball in the weak
topology, we conclude wu,, has a weak limit point @ with (#); # 0, so
@20 But (J—=Na=0,s0\ea(J).

We have thus proven the final sentence in the theorem, given The-
orem 3.4, which says J) for k large has at most one eigenvalue in

(B; + 6,541 —6). O

The final theorem of the section deals with a specialized situation
that we’ll need later.

Theorem 3.10. Let J be a Jacobi matriz with aess(j) = ¢. Suppose
that, as ny — o0, (3.38) holds for some two-sided J and all m € Z.
Let Jy. be defined by

a%@:{% ™= (3.42)

Apy—py, > Ny,

b m < ny
b (Ji) &Wm . (3.43)
Then for any 6 > 0, with {3; + 9,41 —d} & o(J), all the eigenvalues
of Ji in (B + 0,511 — 6) for k large are near eigenvalues of J in
that interval, and these eigenvalues converge to those for J. Moreover,
there is exactly one eigenvalue of Ji near a single eigenvalue of J in
that interval.
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Proof. We follow the first part of the proof of the last theorem until the
analysis of Jyur = A\pyuy, with Ay — Ao € (B, + 6,5 — 9). If we prove
that Ay € o(J) and uy, converges in norm to the corresponding eigen-
vector, we are done. For we immediately get existence of eigenvalues
near A\, and uniqueness follows from the orthogonality of eigenvectors
and the norm convergence.

Define uy, € (*(Z) by

- (uk>m+n m > —ng
m= . 3.44
() {0 ne (3.44)

and suppose U, has a nonzero weak limit .. Then (j — Aoo)lUoo = 0,
S0 Moo € 0(J). As 0(J) C 0ess(J) = ¢ by approximate eigenvector
arguments (see, e.g., [12]), we arrive at a contradiction. Thus,
converges weakly to zero. This implies that its projection Py onto
(%(N) converges to zero in norm since otherwise ||(J — Aoo) Piig| — 0
which is again impossible because Ao ¢ o'(J).

Therefore, we conclude that ||(J — A )ur|| — 0. Since A is a simple
discrete point of o(.J), this can only happen if A, is an eigenvalue of .J
and [|(1 — P")ug|| — 0, where P’ is the projection onto the eigenvector
of A; that is, u; converges to that eigenvector in norm. U

4. SZEGO’S THEOREM

Our goal in this section is the following. Let ¢ be a finite gap set, J
a bounded Jacobi matrix with oes(J) = e, and {ay,, b, 52, its Jacobi
parameters. Let {x;} be the eigenvalues of J outside ¢, and write

du(z) = w(x) dx + dpg(x) (4.1)
where dy is the spectral measure for J.
Next, define
A, = @ A = limsup A, A=liminf A, (4.2)
cap(e)”

Consider the three conditions:
(i) Szegd condition

/ log(w(x))dist(z, R \ &)~2 dz > —o0 (4.3)

[4

(ii) Blaschke condition

E(J) =" dist(zy,)"/? < 00 (4.4)
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(iii) Widom condition B
0<A<A< (4.5)

Theorem 4.1. Any two of (i)-(iii) imply the third.

Remarks. 1. We'll eventually prove more; for example, if (ii) holds,
then (i) < A > 0; and if either holds, then (iii) holds.

2. This is a precise analog of a result for e = [—2,2] of Simon-
Zlatos [27] (cf. Theorem 1.1) who relied in part on Killip—Simon [11]
and Simon [21].

3. For e = [—2, 2], the relevance of (4.4) to Szeg6-type theorems is a
discovery of Killip-Simon [11] and Peherstorfer—Yuditskii [15].

4. When there are no eigenvalues, the implication (i) = (iii) is a
result of Widom [33]; see also Aptekarev [1]. Peherstorfer—Yuditskii
[16] allowed infinitely many bound states, and in [17], they proved (i)
= (iii) if (ii) holds. The other parts of Theorem 4.1 are new, although
as noted to us by Peherstorfer [14], there is an argument to go from
[16, 17] to (iii) = (i) if (ii) holds (see Remark 3 following Theorem 4.5
below).

Recall that, given any pair of Baire measures, du, dv, on a compact
Hausdorft space, we define their relative entropy by

—00 if dyp is not dv-a.c.
S = 4.6
(] v) {— [log(%)dp  if dp is dv-a.c. (4.6)

It is a fundamental fact (see, e.g., [23, Thm. 2.3.4]) that S(p | v) is
jointly concave and jointly weakly upper semicontinuous in dy and dv,
and that

pX)=v(X)=1= S(u|rv)<0 (4.7)
S is relevant because we define
Z(J) = =5 S(pe | 1) (4.8)

with dp; the spectral measure of J and dp, the potential theoretic
equilibrium measure for e. Then, by (4.7),

Z(J)>0 (4.9)
More importantly,
(43) & Z(J) < o0 (4.10)

We have (4.10) because (see eqn. (4.31) and Theorem 4.4 of paper I)
dp. is dx | e a.c. and

Cy dist(z, R\ ¢)"¥2 < % < Codist(z, R\ e)~1/2 (4.11)
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for 0 < Cf < Oy < 0.

Given the connection (1.24) between Blaschke products and G,
the potential theoretic Green’s function for e, and the symmetry of
Blaschke products (eqn. (4.19) of paper I), one can rewrite the step-
by-step Cy sum rule, Theorem 2.2, as

Theorem 4.2. For each n, Z(J) < 0o < Z(J™) < oo, and in that

case,
a/]_ . e an

cap(e)”

= K, exp[Z(J™) — Z(.J)] (4.12)

where
Ky = e Llounn(0) - Gla 7)) (a13)
k

Remark. By Theorem 3.1, and the monotonicity of G, near gap edges
(eqns. (4.45) and (4.46) of paper I), the sum in (4.13) is always condi-
tionally convergent if ordered properly.

Proof. By iterating, it suffices to prove the result for n = 1. As noted,
K is always finite and the remarks before the statement of the theorem
show that for n = 1, K7 = B, (0). Thus, the step-by-step Cy sum rule

says
a L[ Im M(e?) '\ db

=K — 1 — | — 4.14

cap(e) ! exp(2 /0 Og(lm MM (e?) ) 27 (4.14)

Since M and so Im M is automorphic, Corollary 4.6 of paper I implies

where we use

w(z: J) = % I m(z + 0, ) (4.16)
Thus,
/log(w(x; JON dpe(z) > —00 < /log(w(x; J))dpe(z) > —o0
e e (4.17)
showing Z(JW) < oo < Z(J) < oo. Moreover, if both are finite,
RHS of (4.15) = 2Z(JW) —2Z(J) (4.18)
(4.14)(4.18) imply (4.12). O

Proposition 4.3. We have that
K, < A,e?? (4.19)
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In particular, for some constant C,
A(J) > e ZD lim inflexp(—CLE(J™))] (4.20)
and B
lim sup K,, < A(J)e?) (4.21)

Proof. (4.19) is immediate from (4.12) if we note that Z(J™) > 0
so that exp(—Z(J™)) < 1. (4.20) follows from noting that K, >
exp(— >, Ge(z1(J™M))) since Ge(zx(J)) > 0 and then, that for some
(' (depending only on ¢),

Ge(x) < C dist(z, ¢)*/? (4.22)
by Theorem 4.4 of paper I. Finally, (4.21) is immediate by taking
limsup in (4.19). O

Proposition 4.4. Let J, be the Jacobi matriz with spectral measure
dp, and let {agf), by o0 1 be its Jacobi parameters. Let J,, be the Jacobi
matrix with parameters

am(Jy) = {Z@_n ::L o " (4.23)
bm(Jn):{b?Z) m=1,...,n (4.24)
b, _, m>n
Then
A, (J) = exp (Z Ge(xk(Jn))) exp(—Z(J,)) (4.25)
In particular, for some C4 (;ependmg only on ¢),
A, (J) <exp(CiE(J,) — Z(Jn)) (4.26)
Proof. J, is defined so that
(J)™ = J, (4.27)
and
A, (Jn) = An(J) (4.28)
Thus, since Z(.J,) = 0 and J, has no eigenvalues outside e, (4.12) for
Jy is (4.25). (4.26) is then immediate from (4.22). O
Theorem 4.5. IfE(J) < oo, then
AJ)>0 & Z(J) < o0 (4.29)

and if these are true, the Widom condition holds:
0<A(J) <A(J) <0 (4.30)
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Proof. By (4.20) and Theorem 3.7,
EJ), Z(J)<oo= A(J)>0= A(J) >0 (4.31)

By (4.26) and Theorem 3.8, going through a subsequence with
A, (J) — A(J), we see that

E(J) < o0, A(J) > 0= limsuplexp(—Z(J,,))] >0 (4.32)
Thus, for some subsequence,
liminf Z(J,;) < oo (4.33)
Since J, — J, the spectral measures converge weakly. Since S is
upper semicontinuous, Z = —%S is lower semicontinuous, and thus,
Z(J) < liminf Z(J,,) (4.34)
so (4.33) implies Z(J) < oco. That is, we have proven
E(J) < o0, A(J)>0= Z(J) < 00 (4.35)

If we have Z(J) < oo and &£(J) < oo, we get A(J) > 0 by (4.31),
and since Z(J,) > 0, (4.26) implies

A(J) < limsuplexp(C1E(Jy,))] < o0 (4.36)
by Theorem 3.8. U

Remarks. 1. The above proof shows that even without Z(J) < oo,
we have £(J) < oo = A(J) < .

2. The proof borrows heavily from ideas of Killip—Simon [11] and
Simon-Zlatos [27].

3. As noted, £(J),Z(J) < oo = (4.30) is a prior result (using
variational methods) of Peherstorfer—Yuditskii [16, 17]. Peherstorfer
[14] has pointed out that their results can be used to prove £(J) <
o0, A(J) > 0= Z(J) < oo by the following argument: While it is not
explicitly stated, [16, 17] prove that for any K, there is a constant C
so that for all measures with Z(J) < oo and £(J) < K,

lim sup o n < Ce 2D (4.37)
n—oo Cap(e)n
Given dp with Z(J) = oo and £(J) < K, let dfi. be the measure
du + edx | e. Then with du. the normalized measure and a,(¢) the
corresponding a’s, (4.37) implies (since Z(J;) < 00)
&) anle) _ s
cap(e)”

By the variational principle for a; - - - a,, = || P,||, we have

- an < Jay(e) - an()](1 + ele])2 (4.39)

lim sup (4.38)
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Since Z(J.) — log(1+e¢le|) T Z(J), (4.38)—(4.39) imply that A(J) =0
if Z(J) = oo. This argument for the classical Szegé case is in Garnett
8]

Theorem 4.6. A(J),Z(J) < 0o = E(J) < o0
Proof. This is immediate from (4.21) and Theorem 3.2. O
Remark. This argument follows ideas of Simon—Zlatos [27].

Theorems 4.5 and 4.6 imply Theorem 4.1.

5. JOST FUNCTIONS AND JOST SOLUTIONS

In Section 8 of paper I, we defined the Szegé class for e, which we’ll
denote Sz(e), to be the set of probability measures, du, of the form
(4.1) that obey (4.3) and (4.4). As usual, we associate du with its
Jacobi matrix and Jacobi parameters {a,, b,}2, which we will write
as {an (), bn(p)}22, if we need to be explicit about the measures. Of
course, the a’s obey the Widom condition (4.5) for all measures in the
Szego class.

In this section, we want to recall the definitions of Jost function and
Jost solution from Sections 8 and 9 of paper I, extend some results on
Jost solutions to the full Szeg6 class, and state the main theorem that
we’ll prove in the next section about their asymptotics.

Jost functions require a reference measure, and we’ll use the one
from paper 1. Let fj € C’;r , the full orthocircle, be the point farthest
from 0 on C’f and let w; € S, the Riemann surface for e, be given by
w; = x*((;). Bachw; liesin G; = 77 Y([8;, aj41]), s0 @ = (wy, ..., w) €
G = Gy x -+ - x Gy, which can be associated with the isospectral torus.
Our reference measure is the measure in 7, associated to w. We denote
it by

dv(z) = v.(z) dz (5.1)
We point out that while our choice of the reference measure is con-
venient, one can take any other measure in the Szegd class to be the
reference measure.

Given dp € Sz(e), let {1} be the eigenvalues of J in R\ e and define
2z € F by

xX(z) = g (5.2)
The Jost function is then defined on D by

u(z; 1) zlgB(z,zk)eXp<$ /0 K ZZfz log<z}g((zz§;)d9) (5.3)
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Since (4.16) implies
ve(x(e?))  Im M, (%)
w(x(e)) ~ Tm M,(e)
we could use that ratio instead. By the Blaschke condition and Propo-
sition 4.8 of paper I, the product in (5.3) (which we’ll call the Blaschke
part) converges. By eqn. (4.54) of paper I and the Szeg6 condition for
dp and dv,, the log in (5.3) is in L'(9D, df/27). We call the exponen-
tial in (5.3) the Szeg6 part. As proven in Theorem 8.2 of paper I, u is
a character automorphic function on D.
For any Jacobi matrix, J, with es(J) = ¢, we let M be the m-
function (1.26) of the n-times stripped Jacobi matrix, J™, and define
the Weyl solution by

Wa(2) = M(2) (@MW (2)) - (a1 M0 (2)) (5.5)

M®) has poles at the inverse images of eigenvalues of J*) and zeros at
the inverse images of eigenvalues of J*+1) so there is a cancellation,
and W, can be defined as meromorphic on D with poles exactly at the
points ¢ with x(¢) an eigenvalue of J.

The name, Weyl solution, comes from the fact that because m is a
ratio of solutions L? at n = +oo, W, obeys

Wa(2) = (0, (J — x(2))"'01) (5.6)

(5.4)

so that for k > 2,
[(J = x(2))W.(2)]k = 0 (5.7)
where W.(z) is the vector (W;(z), Wa(2),...). That is,
an Wi (2) 4 bpse it W1 (2) + anp1 Whaa(2) = x(2)Wiga (2) (5.8)

form=1,2,....
The Jost solution is defined by

un (25 ) = u(z; W)Wha(2) (5.9)

Since u(z; p) is n-independent, (5.8) holds for u,, also. Since u has zeros
at the points where M, and so W,,, has poles, u,, is analytic on D.

Theorem 5.1.
1 MO (z) = B(z) ) 5.10
(2) = Bl) o, (5.10)
where M©) = M, duy = du, and dp,, M™ are associated to J™, the
n-times stripped Jacobi matrix.

Proof. This is a rewrite of (2.3) for J"=1, O
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Theorem 5.2. Let du € Sz(e). Then
un(2; 1) = ay ' B(2)"u(z; pn) (5.11)

where dyi, is the spectral measure for J™, the n-times stripped Jacobi
matrix.

Proof. By (5.10) and (5.5),

4, W (2) = B(z)" (5.12)

which by (5.9) implies (5.11). O
The key asymptotic result of the next section is the following:

Theorem 5.3. Suppose du € Sz(e) and that for some subsequence
n; — oo and all m € Z,

anj-l-m(Ju) - agn bnj-i-m(‘]u) - bgn (5'13)

for some point {af, b8 }>° ___in the isospectral torus. If du® is the spec-

tral measure for the Jacobi matriz with parameters {af, b%}> |, then
(2 pin;) — ulz; pf) (5.14)

ny “nfn=1
uniformly on compact subsets of .

We note, as will be explained in the next section, that there is no
loss in supposing that the limit J* is in the isospectral torus. We'll also
show that Theorem 5.3 allows the proof of (1.17) for a point J in the
isospectral torus.

6. JOST ASYMPTOTICS

In this section, we’ll prove Theorem 5.3, use this result to prove that
for du € Sz(e), the Jacobi parameters a,,, b, are asymptotic to a fixed
element of 7;, and prove an asymptotic formula for the Jost solution.

The key to our proof of the existence of an {a,, b, }>>, obeying (1.17)
is the Denisov—Rakhmanov—Remling theorem for e ([18]) which implies
that any right limit of J lies in the isospectral torus. Tracking the
characters of the Jost functions will determine exactly which right lim-
its occur. This leads to a proof quite different from the variational
approach of [33, 1, 16].

We write

u(z; p) = Bz pe(z; 1) (6.1)
where (3 is the Blaschke part and ¢ the Szegd part. We’ll prove (5.14)
by proving separately the convergence of the two parts.
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Theorem 6.1. Under the hypotheses of Theorem 5.3, uniformly on
compact subsets of D,

B(z; pim,y) — Blz; 1) (6.2)

Proof. By Theorem 3.7 of this paper and Proposition 4.8 of paper I
(and its proof), given a compact set K C D and ¢ > 0, we can find
0 > 0 so that the product of the contributions to § from z’s with
dist(x,e) < § are within € of 1 for all z € K. Thus, it suffices to prove
convergence of individual z’s for u,; to those for p*, and this follows
from Theorem 3.9. U

To control the Szegd part, we first need the following lemma of
Simon-Zlatos [27]:

Theorem 6.2 ([27]). Let X be a compact Hausdorff measure space,
dp, dp,, dis probability measures with du, — di., weakly, and

dptn, = frn dp + dpins (6.3)
Suppose that
Slp | pn) = S(p | poo) (6.4)
with all relative entropies finite. Then
log(f,) dp —2 log(fc) dp (6.5)
Proof. If h is continuous and strictly positive, by upper semicontinuity,
limsup S(hp | ) < S(hp | fioo) (6.6)
or
limsup/log(fnh_l)hdpg /log(fooh_l)hdp (6.7)
so that
limsup [ log(f,)hdp < [ log(c)hdp (6.8)
For arbitrary continuous real-valued g, let h = 2||g||o £ g to get
im [ 1og(f)gdp = [ 1og(f)gdp (6.9)
L]

Proposition 6.3. To get
e(2; pin,) — (2 1) (6.10)

uniformly for z in compact subsets of D, it suffices to prove that

Tim S(pe | pin,) = S(pe | 15°) (6.11)
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Proof. By definition of ¢, it suffices that as measures on 9D,

1 v A0 do
log (;\ImMﬂj(e )\>§ o

Given g € C(0D), define

2 Jog (%Hm Ms(e?)))

glet?) = > er g (€)' ()]
2 verlV'(e?)]

(6.12)

and h on e by
h(x(e?)) = 3[9(e”) + g(e™™)] (6.13)
Note that h is continuous on e since § is continuous on 0F N JD by
eqn. (3.4) of paper L.
By Corollary 4.6 of paper I,

/0%9(6“’) loge IImMH(e“’)|)§ I/h(a:) log(w, () dpe(x) (6.14)

so the necessary weak convergence on 0D is implied by weak conver-
gence of log(f,,;) dp. to log(fs)dp.. This in turn follows from (6.11)
and Theorem 6.2. U

Theorem 6.4. Under the hypotheses of Theorem 5.3, uniformly on
compact subsets of D,

e(2; pin,) — (2 1) (6.15)

Proof. By Proposition 6.3, it suffices to prove (6.11). Since y,,, — p#,
upper semicontinuity of S implies

limsup S(ps | pin,) < S(pe | 1) (6.16)
So it suffices to prove that
S = liminf S(pe | p1n,) > S(pe | 1) (6.17)

Pick a subsequence (that we’ll still denote by n;) so that S(p. |
,unj) — S and so that 7; — 7 for some 7 > 0, where

ayp--- anj

= 6.18

7 cap(e)™i ( )

Note that by Theorem 4.1 and dp € Sz(e), the original 7;’s are bounded,
so we can pick such a convergent subsequence.

For k < ¢, let Jy, be the Jacobi matrix obtained by starting with

J) and then putting J* at sites beyond ny, that is,

m—ngtn, >Ny — Ng
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bry+m 1<m<n;,—ny

b (i) = { (6.20)

f
Ur—ngin, 1> Mg — Ny,

Thus, (Ji¢)™ ™) = J* so the iterated step-by-step Cy sum rule
says that

Te ﬁ(O;,uﬁ) 1 1 §

—=—"""7_exp|s S(p. — = S(p. 6.21

e B0 ) P[5 8(pe | 1) = 35(pe | 1)] (6.21)
We claim that

Jim 505 ) = B(0; piy ) (6.22)

Accepting this for now, we take ¢ — oo in (6.21), using the upper
semicontinuity of S(p,. | 1) in p to get

exp 3 S(pe | i) — 5 S(pe | )] > %: % (6.23)
Now take k — oo using the assumption that S(p, | pn,) — S. Since
Too/Tk — 1 and, by (6.2),
B(0; pin,,) 1
B(0; p#)
we get (6.17).
Thus, we need only prove (6.22), which follows the proof of Theo-

rem 6.1, but using Theorems 3.8 and 3.10. U
Proof of Theorem 5.3. By (6.1), this follows from Theorems 6.1 and
6.4. L]

We can now prove (1.17).

Theorem 6.5. Let du € Sz(e). Take dji to be the unique element in 7,
so that u(z; u) and u(z; ft) have the same automorphic character. Then

lim |a, — @n| + by — b| =0 (6.24)

n

Remark. The existence and uniqueness of dji € 7, follows from The-
orem 7.3 of paper L.

Proof. If not, by compactness, there is a right limit J* so that

Umny — @y b, — OF, (6.25)
and so that .
Gman, — A0 by, — 05 (6.26)
with

J¥ £ g (6.27)
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By the Denisov—Rakhmanov-Remling theorem [18], J* and J(*) lie
in the isospectral torus. Let xp(7) be the automorphic character of
B(z). Then with x () the character of the Jost function for J, (5.10)
and the fact that M ™Y is automorphic implies that

Xsm =XsXg"  Xjm = XjXp" (6.28)
Since the definition of J is Xj = XJ, we see that
Xy = X jom (6.29)

By Theorem 5.3 and the fact that uniform convergence of character
automorphic functions implies convergence of their characters, we get

X7t = Xj(eo) (6.30)
But J* and J®) lie in the isospectral torus, so by Theorem 7.3 of
paper I,
JE= g (6.31)
This contradiction to (6.27) implies that (6.24) holds. O
As a corollary, we get convergence of Jost solutions.

Theorem 6.6. Uniformly on compact subsets of D,

Un (25 1) — un(2; )

.32
B2 —0 (6.32)
Moreover,
un(Hp) (6.33)
un(; i)

uniformly on compact subsets of Ft.

Remark. At each point in {7(0) | v € I'}, u, and B™ have zeros of
order n, so u, B~" has removable singularities at those points.

Proof. Since J™ and J™ (by Theorem 6.5) have the same right limits,
by Theorem 5.3,
u(z; pn) = u(z; fin)| = 0 (6.34)
uniformly on D. Since a,/a, — 1, (5.11) implies (6.32).
As u,(z; i) is bounded away from zero (uniformly in n) on compact
subsets of M (6.34) implies (6.33). O

Corollary 6.7. Let du € Sz(e) and let dip € 7T, be the measure for
which (6.24) holds. Then, as n — oo,

ap---a,  u(0;f)

— — —

ap---ap,  u(0;p)
In particular, a; - - - a,/ cap(e)™ is asymptotically almost periodic.

(6.35)
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Proof. The final sentence follows from (6.35) and Corollary 7.4 of pa-
per 1. To obtain (6.35), note that (5.10) at z = 0 and (2.12) implies

u(0; i) a1---ay

w(0; 1) cap(e)” (6:36)

Thus,
ai--ran _ u(0; ) u(0; pn)
ar-can (05 ) u(0; fin)
Since u(0; ) is bounded away from 0 as dv runs through the isospec-
tral torus, (6.34) implies that

u(0; p1n)
u(0; fin)
proving (6.35). O

(6.37)

— 1

7. SZEGO ASYMPTOTICS

In Section 6, we proved that if w,, is the Jost solution of a J, with
du € Sz(e) and 1w, is the Jost solution for the element of the isospectral
torus to which J, is asymptotic (in the sense of (1.17)), then, asn — oo,
un(2) /i, (2) — 1 uniformly on compact subsets of F™**. Our goal in this
section is to prove that if p, and p, are the corresponding orthonormal
polynomials, then also on F™ p,(2)/pn(z) has a limit (which will
not be identically 1 and which we’ll write explicitly in terms of Jost
functions).

The passage from Jost asymptotics to Szeg6 asymptotics in the case
e = [—2,2] was studied by Damanik—-Simon [5] using constancy of the
Wronskian. Our first approach for general e mimicked that of [5] but
was awkward because certain objects which were constant in the case
¢ = [—2,2] were instead almost periodic. To overcome this, we found
a new approach which, even for ¢ = [—2,2], is somewhat simpler than
the approach in [5].

The idea is to exploit the formula for the diagonal Green’s function
for x € Cy,

Gn(2) = (6n, (J — 2)715,,) (7.1)

namely (see, e.g., [26]),
G () (7.2)

where U, (z) is defined by
Un(z) =un()  x(Q)=2z (eF™ (7.3)
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and Wr(z) is defined by

WI"(IL') = am(Um+l($)pm—1(x) - Um(x)pm($)) (7'4)
for m > 1. The right-hand side is independent of m. The funny
indices in (7.4) compared to Wronskians come from the fact that U,
and V,,, = p,—1 obey the same difference equation, and RHS of (7.4)
is nothing but @, (U1 Vi — U Vins1)-

In (7.4), we can also take m = 0 if we set ag = 1, p_1(z) = 0, and
Uo(z) = u(¢; p) (7.5)
With this choice of p_1, Uy, and ag, U,, obeys agUy+b U1 +a,Us = 22Uy,
and similarly for V,,,. Since p_; =0 and py = 1, (7.4) for m = 0 says
Wr(z) = —u(G; 1) (7.6)
Here is the key to going from Jost to Szegd asymptotics:

Theorem 7.1. Suppose {a,, by}, obey (1.17) for some {a,, by}, in
T.. Then, uniformly for z in compact subsets of C\ ([aq, Bes1] Ua(J)),

lim [Gon(2) — Gan(2)] =0 (7.7)

where Gy, is given by (7.1) with J replaced by J.

Proof. By the resolvent formula,

Gnn(2) — énn(z) = ZGnm(z)(j — )k ékn(z) (7.8)
m,k

On compact subsets of C,,
|Gion(2)| + |Gin(2)] < Ce Pl (7.9)

for suitable C, D > 0. Since (J — J)mr — 0 as m, k — oo, we get (7.7)
from (7.8) and (7.9). Using the maximum principle, one extends the
result to compact subsets of C\ ([av1, Bey1] U a(J)). O

Theorem 7.2. Under the hypotheses of Theorem 7.1, uniformly on the
same compact subsets of C, we have that
lim &) _y (7.10)

Proof. For each fixed n, G,,(z) is nonvanishing on the compact subsets
under discussion since neither ,, nor p,_1 ha\Le zeros there. Since shift-
ing n is equivalent to moving on the torus, G, is uniformly bounded
away from zero as n varies (cf. (7.13) below). Therefore, (7.7) implies
(7.10). O
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As a final preliminary on Szegd asymptotics, we look at the isospec-
tral torus. If dv € 7, then reflection of the Jacobi parameters about
n =20,

W =b_,, " =a_,, nez (7.11)

gives an almost periodic Jacobi matrix in the isospectral torus, so a
point we will call dv(™) € T,.

For n € Z, we denote by dv, € 7, the spectral measure of the two-
sided Jacobi matrix J, when restricted to 2({n 4+ 1,n +2,...}). In
particular, dvy = dv.

Following paper I, for z € CU{oco} \ ¢, we define z(z) € F to be the
unique point with x(z(z)) = z, and for x € ¢, we set z(z) = z(z — i0).

Theorem 7.3. Given dv € 7., there exist nonvanishing, continuous
functions a(x;v) and B(x;v) for x € C\ [ay, Bes1] so that the or-
thonormal polynomials are given by

u(a(z), V")

o) B(a(x))"

In particular, p,_1(x;v)B(z(x))" is asymptotically almost periodic.
Moreover, on any compact subset, K, of C\ [aq, Ber1], there is a con-
stant C' > 1 so that

C7'B(z(2))" < [pai(@;v)| < CB(z(x))" (7.13)
forall x € K and dv € 7T,.
Proof. Define

wh(z;v) = uy(z(x); v) u, (z;v) = ub (z;00) (7.14)

u(z(x), vn)

+ B(x; V)W

Pn_1(z;v) = az; V) (7.12)

Then uF are two solutions of
ApUni1 + by + Ap_1V,—1 = T0, (7.15)

and they are linearly independent since one is L? at +00 and the other
at —oo, and x is not an eigenvalue of .J,.
Since p,_1(x;v) also solves (7.15), we have

Pr1(z;v) = alx; v)u, (x;v) + B(z; v)u (x;v) (7.16)

and Wronskian formulae for a and 3 show that they are real analytic
in v € 7, and analytic in z € C\ [ay, Bes1].

(7.12) then follows from Theorem 9.2 of paper I.

Since |B| < 1 on D, the second term multiplied by B" is expo-
nentially small, and the first is almost periodic, so p,_1B" is almost
periodic up to an exponentially small error.
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The upper bound in (7.13) is immediate from (7.12), |B| < 1, and
the almost periodicity of u(z;v,).

Since x is not an eigenvalue of J,, o is nonvanishing, which proves
that for any K and n > N, we have a lower bound. Since p,, has no zero
in K, a lower bound on n < N is immediate. That proves (7.13). O

Theorem 7.4 (Szegb asymptotics). Let du € Sz(e) and let dfi be the
measure of the Jacobi matriz in T, for which (1.17) holds. Then, uni-
formly on compact subsets of C\ a1, Bet1],

pulwip) | u(z(x);p) (7.17)
polw;fr)  u(z(2); 1)
In particular, p,(z; p)B(z(x))™ is asymptotically almost periodic.

Remarks. 1. It is not hard to see that the last statement extends to
C\e.

2. In the periodic case, one also has Szegd asymptotics in the gaps
of e except at finitely many points.

3. Since the monic orthogonal polynomials, P,(z), are related to the
orthonormal ones via P,(x) = (a1 - - - a,) po(z), Szegé asymptotics for
the monic polynomials immediately follows from (6.35) and (7.17),

P (; ) (z(x); 1) /u(0; p)
P (; 1) (z(x); 1) /u(0; 1)
Proof. 1t follows from (7.2) and (7.6) that
Pur(@ipt) _ Gun() un(2(2); ) u(z(z); p) (7.18)
Po1(T51)  Gp(z) un(2(2); 1) u(z(); 1)
The result is immediate from (7.10) and (6.33) since we can include
points below «; and above (3,1 by the maximum principle and the
fact that p,(z; i) is non-vanishing on R\ [aq, Bri1]. O

Uu
—
Uu

8. L? SZzEGH ASYMPTOTICS ON THE SPECTRUM

By a standard approximation argument going back to Szegé [30], the

function -
J
0

e — 2 27
is in H?*(D), so it has nontangential boundary values for a.e. z € 9D.
Since convergent Blaschke products (with a Blaschke condition) are
well known to have boundary values (see [19, pp. 249, 310]), u(z; u)
has boundary values for a.e. z € 0D and all du € Sz(e), and so does

un(z; 1) by (5.11).
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Thus, for Lebesgue a.e. x € e,
Uy (5 1) = up(z(2 — i0); ) (8.1)

exists. Moreover, since Imm(z + i0) # 0 for a.e. © € e, we can define
a linearly independent solution u,, by

Uy, (x5 ) = wt (5 ) (8.2)
This leads to an expansion:

Wr(p.—1, ul Ju o (2 ) — Wr(p—y, ul ) (25 )

Pu(®) = Wr(ut, u) (8.3)
_ug (5 ) (2 ) — ug (@3 ) un (25 )
B Wr(ul, u) (84)

Given the asymptotics of u to @}, this explains the expected L? as-
ymptotic result we’ll prove:

Theorem 8.1. Let du € Sz(e) have the form (1.9) and let u}(x) be
the Jost solution for the asymptotic point in T, (i.e., the point given by
(1.17)). Then

J

e ulez): 1) 21/(0) n1(?)) w(z) de — 0 (8.5)

and
[1pa@) di(@) — 0 (8.6
where v, is the weight for the reference measure used in (5.3).

Remarks. 1. mv.(z) enters because of the following calculation:

Wr(iF, a7) = ao(iy g — iy i) (8.7)
—(@o)?|ag |*2i Tm i (z — 40) (8.8)

= 2i Z]((g m () (8.9)

= 2mi v.(x) (8.10)

In the above, (8.8) comes from (1.26) and (5.10), and (8.9) comes
from (4.16), (5.3) (see Lemma 8.2 below), and (5.11), which says that

aa_ = dalu( ,[L)
2. In case ¢ = [-2,2], (8.5) becomes

£ I e
/_2 Pu(@) - s (0(2))

w(z)dr — 0
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where () is given by z(x) = €. This is a result of [15]; see also [5]
and [26, Sect. 3.7].

We define
u(z(x); p) iy, (@)
kr(x) = nt 8.11
k. (x) = kf(x) (8.12)
in which case, (8.5)—(8.6) become
Ipn — ki =k |12+ lpallZ — 0 (8.13)

where ||-||., is the L?(e, w dz) norm (we use (, ), for the inner product)
and ||-||s is the L*(R, dus) norm. Clearly, (8.13) follows from:

Ipalliy + llpalls =1 (8.14)
k1% = 3 (8.15)

lim (k, , k) =0 (8.16)

lim Re(k;, , pn)w = 3 (8.17)

n—oo

(8.14) is the normalization condition on p,,, so we only need to prove
(8.15)—(8.17). We'll need some preliminaries:

Lemma 8.2. For a.e. z € dD, the boundary value of u(z; ) obeys

2 _ Ve(X(2))
u(z p)|* =

|u(z; 1)l w(x(2))
Proof. In (5.3), |[[, B(#,2x)| has 1 as boundary value, by standard

results on Blaschke products. By convergence of the Poisson kernel, for

a.e. z in JD, the real part of the exponential converges to log(ll’;((;‘((zz)))))
L]

(8.18)

Lemma 8.3. For any dv € 1, with weight w,,, we have

/ d = 21%ay(v)? (8.19)

w, ()

Proof. If Goo(z; v) is the Green’s function of the whole-line Jacobi ma-
trix J, and u} (z; 1) = u,(z(x + i0); v) the boundary value of the Jost
solution, then

+

~ : ugd (5 v) ud (z;v)
Goo(x +10;v) = 8.20
( ) ao(v)[uy (z;v) ug (7;v) — uf (23 0) ug (2;v)] (520
1
_ (8.21)

ao(v)?2i Im m(z + i0; v)
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! (8.22)

" 2rag (v)?w, ()

SO
1

2m2ag(v)?w, (z)

1 ~

But the whole-line Jacobi matrix J, has purely a.c. spectrum U(j,,) =
¢ and the density of the probability spectral measure for J, and 9y is
L Im Goo(x + i0; v), so

1 /Im Goo(x 4 i0;v) dz = 1 (8.24)
™ [4
(8.23) and (8.24) imply (8.19). O

Proposition 8.4. (8.15) holds.
Proof. By (5.11) and (8.11),

)12 . 2
oy L)) Pl ) .
(@) e el (8.25)
so, by Lemma 8.2,
1
kN (z)]? = 8.26
o8 = 2 P () (520
and so,
1 dz 1
kit (z)Pw(z) doe = / = 8.27
[ @Pe@ e = s [ =S5 s2n)
by Lemma 8.3. Since |k, | = |k;|, we get the same result for ||k, ||2. O
Lemma 8.5. Let f € L'(e,dp.). Then
lim [ B(z(x))"f(z)dpe(x) =0 (8.28)

n—oo
[4

Moreover, (8.28) holds uniformly on norm compact subsets of
L'(e, dpe).

Proof. Without loss of generality, assume that f is real-valued. Then
by Corollary 4.6 of paper I, we obtain

By @ o) = [ BE e 5 (829)

(4
By the Cauchy theorem, {B"},cz forms an orthonormal system in
L*(0D, £). Hence it follows from the Bessel inequality that RHS of
(8.29) converges to zero for any L?-function. The general case of L!-
functions and the result on uniform convergence on norm compacts
follow by approximation. 0
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Remark. The above result can be also established via a stationary
phase argument.

Proposition 8.6. (8.16) holds.

Proof. By the same calculation that was used in the proof of Proposi-
tion 8.4,

o k) / £ (2) B2 (2()) da (8.30)
where
_ 1 w(z(2); fin1)? |u(z(x); p)|?
W) = e wle) () ) (8.31)
For dv € 7, let
PO SO0 7% 110 70 R

Amag(v)?  we(x)  u(z(2);p)?

By Lemma 8.2, the f’s are all in L' (with L' norm 1/2 by Lemma
8.3) and f is L' continuous in v. So, since 7, is compact, we see from
Lemma 8.5 that the integral in (8.30) goes to zero. O

This leaves (8.17). The argument is somewhat complicated in case
there are bound states, especially if there are infinitely many. So let us
consider it first when dp has no point masses in R \ e.

Proposition 8.7. Suppose du has support e so that u(z;p) is nonva-
nishing on . Then (8.17) holds.

Proof. We claim that

Re| R (o)t ]
-1 WD T1() o () (2) dz

2 Joprop  2mive(x(z))

(8.33)

where the integral is evaluated counterclockwise. As Rek;, = 1k +1k,
and Rep,(x) = p,(z), the k' term directly gives the counterclockwise
integral over C. NOF NID (since x'(z) is positive there). Since u and
4., are real on R, and x’' and i flip signs under e — e~ the k;
term gives the integral over OF NoD N C_.

Notice next that, by (8.18),

u(z 1) - (8.34)



FINITE GAP JACOBI MATRICES, II 37

SO

LHS of (8.33) = —— / 1 (DPnXE) oy (8.35)
Tt JoFnoD u(z; )

By (6.28), (5.11), and the choice of dfi, the integrand in (8.35), call it
F', is automorphic under I'. Since F'is real on R, we have F'(zZ) = F(z).
Moreover, there are v € T so that for z € C;, we have m = 2, SO wWe
conclude that F is real on C; and C, . Thus, orienting the contours
counterclockwise about 0, we get

/ F(z)dz=0
cfucy

since C;” and C; run in opposite directions. It follows that

LHS of (8.33) = — / s (2pnlX(2) Ly g, (8.36)
Ami Jor u(z; p)

Inside F, the integrand is regular except at z = 0. Since p, is a
polynomial of degree n in x(z), and x(z) has a simple pole at z = 0,
2"pn(x(2)) is regular at 2 = 0. By (5.11), G4 1(2)/B(2)"™! is regular
at z = 0. Thus, @,+1(2)pn(x(2)) has a first-order zero at z = 0. u(z)
is regular there and x'(z) has a double pole. So the integrand in (8.36)
has a simple pole at z = 0 and we conclude that

 [renCilm)| ] i)
LHS of (8.33) = = —— 27X (2) =
833 =35 [ zul(z; ) 2=0 un+1(0;u)[ (#lecal
(8.37)
The first factor in (8.37) is 27'Gypi1n41(x(2))],_,, which is

e (gl rofdg)) e

The third factor is

. 2 Lo o
il_)rréz (—? + O(l)) = —Too (8.39)
SO
LHS of (833) == ——~ — — 8.40
by Theorem 6.6. O

Proposition 8.8. If du has support e plus finitely many mass points
in R\ e, then (8.17) holds.
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Proof. We follow the proof of the last proposition until we get to (8.35).
However, u now has a pole at each z; in F with

X(Zk) =T € O'(J) (841)

Thus, the integrand can have poles (but only finitely many) in 7™ and

also on C’f. Interpret (8.36) as taking principal parts at the poles on

C’f. Each such pole contributes with half of 27¢ times the residue, so

we get 2mi times the residue if we only count the poles in F (i.e., in
C} but not in C} ).

The residue at z; is
B(zk)n+1u(zk; /jl/n—l—l)pn(xk)xl(zk)
2an 410/ (215 1)
As 3, Ipa(@e)[? = 1/u({za}), [B(21)] < 1 and sup,, [u(2x; fint1)| < 00,
the quantity in (8.42) goes to zero. Since there are finitely many of

these poles, their contribution vanishes in the limit and LHS of (8.33)
converges to 1/2. O

(8.42)

Finally, we turn to the general case. The following completes the
proof of Theorem 8.1:

Proposition 8.9. For any du € Sz(e), (8.17) holds.

Proof. Following Peherstorfer—Yuditskii [15], we’ll approximate u by
one with a finite number of zeros, but to preserve the fact that we need
certain functions to be automorphic, we also modify ,,.

Label all the point masses of du in a single sequence {xj}2, with
corresponding points z; € F such that x(z) = zx. Let

u™(z ) = [ Bz, 20)e(z; 1) (8.43)

and denote by dji'™ the measure in the isospectral torus whose Jost
function has the same character as (™. Define

—ulm™(z(@); p) up (25 40)

kT () = 8.44
Clearly, it suffices to prove that
lim |[&™F — k|, — 0 (8.45)

uniformly in n, and that
lim  lim [Re(k* p,) — 3| =0 (8.46)

m—0o0 N—oo 2
Since [[;~, B(z,2x) — [lae; B(z, zx) uniformly on compacts, the
characters converge. Moreover, this convergence of B’s is pointwise
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on dD. The first implies convergence of u(z(z); [Lm)l) to w(z(x); fins1)
away from the band edges (uniformly in n and z as m — oo) with
uniform square root bounds. This plus (8.26) yields (8.45).

The proof of (8.46) follows the proof of Proposition 8.8. The fact
that we’ve arranged for the functions to be automorphic allows the
cancellation of the C;r and C integrals, and since there are only finitely

many poles away from z = 0, we get convergence in (8.42) and hence
in (8.46). O
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