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Abstract. We show that for many families of OPUC, one has
‖ϕ′

n
‖2/n → 1, a condition we call normal behavior. We prove that

this implies |αn| → 0 and that it holds if
∑

∞

n=0
|αn| < ∞. We also

prove it is true for many sparse sequences. On the other hand, it
is often destroyed by the insertion of a mass point.

1. Introduction

While there is a considerable literature on asymptotics of or-
thogonal polynomials (see [10, 11, 25, 26, 30, 34]) including recent
works, issues of behavior of derivatives are much less studied (but see
[6, 7, 12, 13, 15, 18, 21, 22, 24, 36]). In many of these papers, higher
derivatives automatically obey analogs of the first derivative result.
That is not clear in our context. Here, we will focus on one question
about orthogonal polynomials on the unit circle (OPUC). Let Φn, ϕn

be the monic and normalized orthogonal polynomials for a nontriv-
ial probability measure dµ on ∂D = {z ∈ C | |z| = 1} and {αn}∞n=0

its Verblunsky coefficients—here and below, we follow the notation of
[25, 26]. As usual, if Pn is a polynomial of degree n, P ∗

n is the reflected
polynomial

P ∗
n(z) = zn Pn(1/z̄) (1.1)

The key notion we study in this paper is:
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Definition. Let µ be a nontrivial probability measure on ∂D. We say µ
has normal L2-derivative behavior (is normal , for short) if and only if

∥∥∥∥
ϕ′

n

n

∥∥∥∥ ≡
(
ˆ |ϕ′

n(eiθ)|2
n2

dµ(θ)

)1/2

→ 1 (1.2)

as n→ ∞. ‖ · ‖ will always be used for L2(∂D, dµ) norm.

We note at the start that

Proposition 1.1. One always has
∥∥∥∥
ϕ′

n

n

∥∥∥∥
2

= 1 +

∥∥∥∥
(ϕ∗

n)′

n

∥∥∥∥
2

(1.3)

In particular, normality is equivalent to

lim
n→∞

∥∥∥∥
(ϕ∗

n)
′

n

∥∥∥∥
2

= 0 (1.4)

and it is always true that ∥∥∥∥
ϕ′

n

n

∥∥∥∥ ≥ 1 (1.5)

Remarks. 1. This relation on L2 norms should be compared with the
opposite bound on L∞(∂D), which is Bernstein’s inequality (discussed
further in Section 2), ∥∥∥∥

P ′
n

n

∥∥∥∥
∞

≤ ‖Pn‖∞ (1.6)

for any polynomial of degree n.

2. By (1.10) below, we also have
∥∥∥∥

(ϕ∗
n)′

n

∥∥∥∥ =

∥∥∥∥z
ϕ′

n

n
− ϕn

∥∥∥∥ (1.7)

Proof. Let Pn be a general degree n polynomial

Pn(z) =
n∑

j=0

cjz
j (1.8)

We claim that

nPn(z) = zP ′
n(z) + [(P ∗

n)′]∗(z) (1.9)

where the outer ∗ on the last term is the one suitable for degree n− 1
polynomials.

Accepting (1.9) for the moment, we apply it to ϕn to get

zϕ′
n = nϕn − [(ϕ∗

n)
′]∗ (1.10)



NORMAL DERIVATIVE BEHAVIOR 3

Since the last term is of degree n− 1, it is orthogonal to ϕn, so

‖zϕ′
n‖2 = ‖nϕn‖2 + ‖[(ϕ∗

n)′]∗‖2 (1.11)

Since multiplication by z and ∗ on degree n−1 polynomials preserve
norms, and since ‖ϕn‖ = 1, (1.11) says

‖ϕ′
n‖2 = n2 + ‖(ϕ∗

n)′‖2 (1.12)

which is (1.3).
To prove (1.9), we note that

zP ′
n(z) =

n∑

j=0

jcjz
j (1.13)

while

P ∗
n =

n∑

j=0

c̄jz
n−j (1.14)

so

(P ∗
n)′ =

n∑

j=0

(n− j)c̄jz
(n−1)−j (1.15)

which applying the ∗ for degree n− 1 polynomials becomes

((P ∗
n)′)∗ =

n∑

j=0

(n− j)cjz
j (1.16)

(1.13) plus (1.16) imply (1.9) (which also follows by suitable manipu-

lation of ϕ∗
n(z) = zn ϕn(1/z̄)). �

This result shows the naturalness of the normality condition.
One motivation for our study comes from the theory of Sobolev poly-

nomials [2, 3]. Recall that, given a measure dµ, one fixes λ > 0 and
considers the Sobolev inner products

〈f, g〉S,n =

ˆ

f(eiθ) g(eiθ) dµ(θ) +
λ

n2

ˆ

f ′(eiθ) g′(eiθ) dµ(θ) (1.17)

with ′ = d/dz on polynomials. One defines

σn = min{‖P‖S,n | P (z) = zn + · · · }
and Sn is the unique minimizer. Clearly, by the minimum properties
of Φn and Sn,

‖Φn‖2 + λ‖Φn−1‖2 ≤ σ2
n ≤ ‖Φn‖2

S,n (1.18)

Proposition 1.2. Suppose that

(a) µ has normal derivative behavior.

(b) µ is in the Szegő class.
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Then

(i)

lim
n→∞

σ2
n

‖Φn‖2
= 1 + λ (1.19)

(ii)

lim
n→∞

‖Sn − Φn‖2
S,n = 0 (1.20)

(iii) On compact subsets of C \ D,

Sn

Φn

→ 1 (1.21)

uniformly.

Proof. (i) Since µ is in the Szegő class, ‖Φn−1‖/‖Φn‖ → 1. Moreover,
normal derivative behavior implies

‖Φ′
n‖

n‖Φn‖
=

‖ϕ′
n‖

n‖ϕn‖
→ 1 (1.22)

so (1.18) says

1 + λ ≤ lim inf
σ2

n

‖Φn‖2
≤ lim sup

σ2
n

‖Φn‖2
≤ 1 + λ

proving (i).

(ii) Since Sn minimizes ‖ · ‖S,n, in 〈 , 〉S,n inner product, Sn ⊥ Φn −
Sn, so

‖Φn‖2
S,n = ‖Sn‖2

S,n + ‖Sn − Φn‖2
S,n (1.23)

By (1.22),
‖Φn‖2

S,n

‖Φn‖2
→ 1 + λ (1.24)

so, by (1.19),
‖Φn‖2

S,n − ‖Sn‖2
S,n

‖Φn‖2
→ 0 (1.25)

Since the Szegő condition implies ‖Φn‖2 has a nonzero limit, we get
(1.20) from (1.23).

(iii) (1.20) implies ‖Sn −Φn‖2 → 0. Thus, ‖S∗
n −D−1‖2 → 0 (where

D is the Szegő function), so DS∗
n → 1 in H2( dθ

2π
), and so uniformly on

compact subsets of D, S∗
n → D−1. Since Φ∗

n → D−1, we get S∗
n/Φ

∗
n → 1,

which implies (1.21) uniformly on compact subsets of C \ D. �

Remark. Our proof of (1.19) relied only on normal derivatives and
|αn| → 0, as does (1.25).
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While this was an initial motivation, we will study normality for its
own sake and not mention this motivation again. Here is a summary
of the remainder of this paper. In Section 2, we recall some relevant
background and state some general results. In Sections 3–6, we re-
late normality to asymptotics of Verblunsky coefficients and of the a.c.
weight. Section 3 provides a necessary condition by proving that nor-
mality implies αn → 0. Sufficient conditions appear in Sections 4–6.
Section 4 shows

∞∑

n=0

|αn| <∞ (1.26)

implies normality. Section 5 proves if dµ = w dθ
2π

(i.e., dµs = 0), w obeys
a Szegő condition, and for a nonzero constant,

w(θ) ≤ r (1.27)

then one has normality. This result, of course, shows that (1.26) im-
plies normality, but in Section 4, we will prove much more than L2

convergence of (ϕ∗
n)′/n to zero.

Sections 6–8 provide illuminating examples. In particular, Section 6
discusses some examples with sparse Verblunsky coefficients and pro-
vides examples of normal derivative behavior where the corresponding
measure is purely singular continuous, and so, non-Szegő. Sections 7
and 8 provide many examples where inserting a mass point destroys
normality and one where it does not. Section 8 analyzes a “canonical”
weight with algebraic singularities on the circle. This analysis is ex-
tended further in Sections 9–10, even when the weight is unbounded.
Section 11 explores ‖(ϕ∗

n)′/n‖2 when dµ has an isolated mass point—we
will show it diverges exponentially!

A. M.-F. would like to thank M. Flach, T. Tombrello, B. T. Soifer,
and the Department of Mathematics for the hospitality of the California
Institute of Technology where much of this work was done. We would
like to thank Vilmos Totik and Leonid Golinskii for their interest and
useful comments.

2. Generalities

In this section, we begin with a brief discussion regarding some well-
known facts about derivatives of orthogonal polynomials that illumi-
nate the issues central to this paper and then discuss two equivalent
conditions for normality.
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As already noted, Bernstein [8] has an L∞(∂D) inequality in the
opposite direction of our inequality L2 in (1.5) (but our L2 inequality
is only for ϕn; Bernstein’s is for all polynomials).

Theorem 2.1 (Bernstein’s inequality). For any polynomials, Pn, of

degree n, we have for all eiθ ∈ ∂D

|P ′
n(e

iθ)| ≤ n sup
z∈∂D

|Pn(z)| (2.1)

Remarks. 1. Pn(z) = zn provides an example with equality.

2. Szegő has a proof of a few lines, found, for example, in [25, 34].

We can say more if we know something about the zeros of Pn. The
following has been called Lucas’s theorem, the Gauss–Lucas theorem,
and Grace’s theorem:

Theorem 2.2. The zeros of P ′
n lie in the convex hull of the zeros of

Pn and—unless the zeros of Pn lie in a line—all zeros of P ′
n not at

degenerate zeros of Pn lie in the interior of that convex hull.

Theorem 2.3 (Turán’s inequality [35]; see also [6]). Let Pn have degree

n with all zeros in D. Then for all eiθ ∈ ∂D,

|P ′
n(e

iθ)| ≥ n

2
|Pn(e

iθ)| (2.2)

Proofs. The proofs are closely related and rely on the fact that if Pn

has zeros at {zj}n
j=1, then for z /∈ {zj}n

j=1,

P ′
n(z)

Pn(z)
=

n∑

j=1

1

z − zj
(2.3)

Suppose first that all zeros of Pn lie in {w | Rew ≤ 0} and Re z0 ≥ 0
with z0 /∈ {zj}n

j=1. Then, by (2.3),

Re

[
P ′

n(z0)

Pn(z0)

]
=

∑

j

(Re z0 − Re zj)

|z0 − zj |2
(2.4)

This is strictly positive if either Re z0 > 0 or at least one Re zj < 0.
This shows the zeros of P ′ not among the {zj}n

j=1 lie in {Rew ≤ 0} and
in {Rew < 0} if some zj has Re zj < 0. This plus Euclidean motions
imply Theorem 2.2.

As for Theorem 2.3, we note that if |w| < 1, then

Re

(
1

1 − w

)
=

1 − Rew

1 + |w|2 − 2 Rew
≥ 1 − Rew

2 − 2 Rew
=

1

2
(2.5)
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Thus, by (2.3), if all zj ∈ D,

Re
eiθP ′

n(e
iθ)

Pn(eiθ)
=

n∑

j=1

Re

[
1

1 − eiθzj

]
≥ n

2
(2.6)

by (2.5), proving (2.2). �

(2.3) is also the key to:

Theorem 2.4. Let dµ be a nontrivial probability measure on ∂D and

let {ζ (n)
j }n

j=1 be the zeros of ϕn(z; dµ). Then

∥∥∥∥
ϕ′

n

n

∥∥∥∥
2

=
1

n2

n∑

j,k=1

1

1 − ζ
(n)
j ζ

(n)
k

(2.7)

=

¨

1

1 − zw̄
dνn(z) dνn(w) (2.8)

= 1 +
∞∑

j=1

∣∣∣∣
ˆ

zj dνn(z)

∣∣∣∣
2

(2.9)

where dνn is the zero counting measure, that is,

dνn =
1

n

n∑

j=1

δ
ζ
(n)
j

(2.10)

Proof. By the Bernstein–Szegő approximation (see [25, Thm. 1.7.8]),
∥∥∥∥
ϕ′

n

n

∥∥∥∥
2

=
1

n2

ˆ

∣∣∣∣
ϕ′

n

ϕn

∣∣∣∣
2
dθ

2π
(2.11)

=
1

n2

n∑

j,k=1

ˆ

z=eiθ

1

z̄ − ζ̄
(n)
j

1

z − ζ
(n)
k

dθ

2π
(2.12)

by (2.3).
For a, b ∈ D,
ˆ

1

e−iθ − a

1

eiθ − b

dθ

2π
=

1

2πi

‰

1
1
z
− a

1

z − b

dz

z
=

1

1 − ab
(2.13)

since (1 − az)−1(z − b)−1 has a pole only at z = b.
Plugging (2.13) into (2.12) proves (2.7). (2.8) is a rewriting of (2.7),

and since dνn is supported on a compact subset of D, we can expand
(1 − zw̄)−1 =

∑∞
j=0 z

jw̄j, proving (2.9). �

Remark. (2.13) was used by Szegő [33]; see [25, eq. (2.1.30)].
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Notice that (2.9) provides another proof that ‖ϕ′

n

n
‖ ≥ 1 and shows

that if dµ has normal derivative behavior, then dνn converges to a mea-
sure with zero positive moments (which also follows from Theorem 3.1
below), but fast enough to have all the moments in ℓ1, so that the
series in the right-hand side of (2.9) converges for each n. Since the
right-hand side of (2.7) is greater than or equal to 1

n2

∑n
k=1

1

1−|ζ
(n)
k

|2
, we

see that if µ has normal behavior, zeros of ϕn cannot approach the unit
circle too fast, at least, not faster than n−2.

As a final formula for ‖ϕ′

n

n
‖, we define

fn(z) =
1

n

Kn−1(z)

|ϕn(z)|2 (2.14)

where, as usual, K is the CD kernel (see [25, Sect. 3.2]) or Simon [28]),

Kn−1(z) =

n−1∑

j=0

|ϕj(z)|2 (2.15)

By the Bernstein–Szegő approximation for j ≤ n,
ˆ

∣∣∣∣
ϕj

ϕn

∣∣∣∣
2
dθ

2π
= 1 (2.16)

so
ˆ

fn(eiθ)
dθ

2π
= 1 (2.17)

Our fn is very close to the function, In, of Golinskii–Khrushchev [14]
defined by

In(z) =
Kn(z)

|ϕn(z)|2 = 1 + nfn(z) (2.18)

If for w ∈ D,

Pw(z) =
1 − |w|2
|z − w|2 (2.19)

is the Poisson kernel, then Golinskii–Khrushchev [14] prove that

nfn(z) =

n∑

j=1

P
ζ
(n)
j

(z) (2.20)

(We note that nfn(z) is the weight of K̃n−1(z) dµ̃n where µ̃n is the
Bernstein–Szegő approximation, so (2.20) is related to ideas of Simon
[29].)

Theorem 2.5. We have that∥∥∥∥
ϕ′

n

n

∥∥∥∥
2

=
1

2
+

1

2

ˆ

f 2
n(eiθ)

dθ

2π
(2.21)
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In particular, normality is equivalent to

lim
n→∞

ˆ

f 2
n(eiθ)

dθ

2π
= 1 (2.22)

Proof. By (2.20),
ˆ

|nfn(eiθ)|2 dθ
2π

=

n∑

j,k=1

ˆ

P
ζ
(n)
j

(eiθ)P
ζ
(n)
k

(eiθ)
dθ

2π
(2.23)

Since

Pa(e
iθ) =

(1 − |a|2)eiθ

(eiθ − a)(1 − āeiθ)
(2.24)

we have that
ˆ

Pa(e
iθ)Pb(e

iθ)
dθ

2π
=

1

2πi

‰

(1 − |a|2)(1 − |b|2)z
(z − a)(1 − āz)(z − b)(1 − b̄z)

dz

(2.25)

= −1 +
1

1 − āb
+

1

1 − ab̄
(2.26)

by residue calculus.
Thus, by (2.24),

n2

ˆ

|fn(eiθ)|2 dθ
2π

= −n2 + 2

n∑

j,k=1

1

1 − ζ
(n)
j ζ

(n)
k

(2.27)

= −n2 + 2‖ϕ′
n‖2 (2.28)

by (2.7). (2.28) is equivalent to (2.21). �

Golinskii–Khrushchev [14] prove (their Proposition 6.6) if dµ has an
everywhere nonzero weight

‖fn − 1‖L1(dθ/2π) → 0 (2.29)

We see normality is equivalent to ‖fn‖L2(dθ/2π) → 1.
We also note that if

bn(z) =
ϕn(z)

ϕ∗
n(z)

(2.30)

is the Blaschke product of zeros and ηn(θ) is defined by

bn(eiθ) = eiηn(θ) (2.31)

then, as shown in [14],

nfn(eiθ) =
d

dθ
ηn(θ) (2.32)

In connection with these formulae, we note that there has been con-
siderable literature on asymptotics of Kn(eiθ) (see the review in [28])
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and that |ϕn(e
iθ)|2/Kn(eiθ) has also been studied (see [9] and references

therein).
Finally, we note that (2.17) shows

´

f 2
n(eiθ) dθ

2π
≥ 1, so (2.22) provides

yet another proof of (1.5).

3. Normality Implies Nevai Class

In this section, we prove that

Theorem 3.1. If µ is a probability measure on ∂D with normal deriv-

ative behavior, then µ is in Nevai class, that is,

αn → 0 (3.1)

as n→ ∞.

Proof. By Szegő recursion (4.5) with ρn = (1 − |αn|2)1/2,

ρn(ϕ∗
n+1)

′ = (ϕ∗
n)′ − αnϕn − αnzϕ

′
n (3.2)

so, using |αn| < 1, |ρn| ≤ 1,

|αn|
‖ϕ′

n‖
n

≤ |αn|
n

+
‖(ϕ∗

n)
′‖

n
+

‖(ϕ∗
n+1)

′‖
n

(3.3)

By Proposition 1.1, the right-hand side of (3.3) → 0 if we have normal
derivative behavior. Since we also have ‖ϕ′

n‖/n → 1, (3.3) implies
(3.1). �

This shows in particular that any measure with normal derivative be-
havior must be supported on the whole circle. The converse is certainly
not true; see Section 7 below. However, one does have the following,
which is of interest because of the examples in Section 11.

Theorem 3.2. If µ is a regular measure on ∂D, then

lim
n→∞

‖ϕ′
n‖1/n

∞ = lim
n→∞

‖ϕ′
n‖

1/n
2 = 1 (3.4)

Remark. Regularity means lim(ρ1 . . . ρn)1/n = 1 and supp(dµ) = ∂D.
There are many equivalent forms (see [27, 32]).

Proof. Regularity implies (see [17, 27, 32]) that

‖ϕn‖1/n
∞ → 1 (3.5)

Thus, by Bernstein’s inequality (Theorem 2.1) and n1/n → 1, we have

lim sup‖ϕ′
n‖1/n

∞ ≤ 1 (3.6)

Since dµ is a probability measure,

‖ϕ′
n‖2 ≤ ‖ϕ′

n‖∞ (3.7)
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By (1.5),

lim inf‖ϕ′
n‖2 ≥ 1 (3.8)

(3.6)–(3.8) imply (3.4). �

Remark. We will see, however, that under the assumptions of Theo-
rem 3.2, ‖ϕ′

n‖ can grow faster than any positive power of n.

4. Baxter Weights

Recall that Baxter’s theorem (see [25, Ch. 6]) says that (1.26) holds
if and only if dµs = 0, inf w > 0, and the Fourier coefficients of w lie
in ℓ1. Here we will deal directly only with (1.26). Recall ‖ · ‖∞ is the
L∞(∂D, dθ

2π
) norm.

Theorem 4.1. If (1.26) holds, then as n→ ∞,
∥∥∥∥

(ϕ∗
n)′

n

∥∥∥∥
∞

→ 0 (4.1)

In particular, µ has normal derivative behavior.

We will actually prove a stronger result:

Theorem 4.2. Suppose that µ is a probability measure on ∂D and that

(a)

sup
n

‖ϕn‖∞ <∞ (4.2)

(b)

lim
n→∞

1

n

n−1∑

j=0

(j + 1)|αj| = 0 (4.3)

(c) The Szegő condition holds, that is,

∞∑

j=0

|αj|2 <∞ (4.4)

Then (4.1) holds and µ is normal.

Remark. One might guess that (4.3) implies (4.4), but it does not. If

αn =

{
(j + 1)−1/2 n = 2j2

, j = 1, 2, . . .

0 n 6= 2j2
, any j = 1, 2, . . .

then (4.3) holds but (4.4) does not. The corresponding measure has
normal behavior; see Theorem 6.1.
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Proof of Theorem 4.1 given Theorem 4.2. By Szegő recursion,

Φ∗
n+1(z) = Φ∗

n(z) − zαnΦn(z) (4.5)

so using ‖Φn‖∞ = ‖Φ∗
n‖∞, we see

‖Φn+1‖∞ ≤ (1 + |αn|)‖Φn‖∞ ≤ e|αn|‖Φn‖∞ (4.6)

Thus,

sup
n

‖Φn‖∞ ≤ e
P

∞

j=0|αj | <∞ (4.7)

By (1.26), inf‖Φn‖2 > 0, so (4.2) holds. Fix J > 0. Then

1

n

n−1∑

j=0

(j + 1)|αj| ≤
1

n

J∑

j=0

(j + 1)|αj| + 2
∞∑

J+1

|αj|

So

lim sup
1

n

n−1∑

j=0

(j + 1)|αj| ≤ 2

∞∑

J+1

|αj| (4.8)

goes to zero as J → ∞, proving (4.3).
As is well known, (1.26) implies (4.4) since

J∑

j=0

|αj|2 ≤
( J∑

j=0

|αj|
)2

(4.9)

Thus, Theorem 4.2 implies Theorem 4.1. �

Proof of Theorem 4.1. By Bernstein’s inequality (see Theorem 2.1),
(4.2) implies that

sup
n

∥∥∥∥
Φ′

n

n

∥∥∥∥
∞

≤ sup
n

‖Φn‖∞ ≡ A <∞ (4.10)

since ‖Φn‖∞ = ‖Φn‖2‖ϕn‖∞ ≤ ‖ϕn‖∞. Thus, by (4.5),

‖(Φ∗
j+1)

′ − (Φ∗
j )

′‖∞ ≤ |αj | [‖Φ′
j‖∞ + ‖Φj‖∞] ≤ |αj|(j + 1)A (4.11)

so

1

n
‖(Φ∗

n)′‖∞ ≤ A
1

n

n∑

j=0

(j + 1)|αj| (4.12)

goes to zero by (4.3).
Since ‖(ϕ∗

n)′‖∞ = ‖(Φ∗
n)′‖∞/‖Φn‖ and inf‖Φn‖ > 0 by (4.4), (4.12)

implies (4.1). �
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5. Bounded Szegő Weights

We say a measure µ is weakly equivalent to Lebesgue measure if the
Szegő condition,

´

log(w(θ)) dθ
2π
> −∞, holds and there exist 0 < r <∞

so that

dµ ≤ r
dθ

2π
(5.1)

equivalently, dµs = 0 and w obeys (1.27); equivalently, with ‖ · ‖ =
L2(dµ) norm and ‖ · ‖(0) = L2( dθ

2π
) norm,

‖f‖2 ≤ r‖f‖2
(0) (5.2)

In this section, we prove the following result, which is not only simple
but whose proof illuminates why normality is sometimes true and also
how it might fail.

Theorem 5.1. If dµ obeys the Szegő condition and (5.1), it has normal

derivative behavior.

Proof. Since dµ obeys the Szegő condition, (1.4) is equivalent to

lim
n→∞

∥∥∥∥
(Φ∗

n)′

n

∥∥∥∥
2

= 0 (5.3)

On the other hand, since dµs = 0, by Theorem 2.4.6 of [25], we have
that in ‖ · ‖(0),

Φ∗
n → D−1 (5.4)

Thus, if

Φ∗
n(eiθ) =

n∑

j=0

c
(n)
j eijθ (5.5)

then, for suitable dj with
∞∑

j=0

|dj|2 <∞ (5.6)

as n→ ∞, we have that

c
(n)
j → dj (5.7)

Then ∥∥∥∥
(Φ∗

n)′

n

∥∥∥∥
2

≤ r

∥∥∥∥
(Φ∗

n)′

n

∥∥∥∥
2

(0)

= r
n∑

j=0

(
j

n

)2

|c(n)
j |2 (5.8)

Let P>J be the projection in L2(∂D, dθ
2π

) onto the span of {eijθ}∞j=J+1.
Then

‖P>JΦ∗
n‖(0) ≤ ‖P>JD

−1‖(0) + ‖P>J(Φ∗
n −D−1)‖(0)

≤ ‖P>JD
−1‖(0) + ‖Φ∗

n −D−1‖(0) (5.9)
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so

lim
J→∞

lim sup
n→∞

‖P>JΦ∗
n‖(0) = 0 (5.10)

Fix J and note that for n > J ,

LHS of (5.8) ≤ r

(
J

n

)2 J∑

j=0

|c(n)
j |2 + r

n∑

j=J+1

|c(n)
j |2

so, for any J ,

lim sup
n→∞

∥∥∥∥
(Φ∗

n)′

n

∥∥∥∥
2

≤ r lim
n→∞

‖P>JΦ∗
n‖2

Taking J → ∞ and using (5.1) implies (5.3). �

Remark. As a consequence of Theorem 5.1, we can conclude that
bounded Jacobi-type weights also exhibit the normal behavior of
derivatives. These are weights of the form

w(z) = g(z)
k∏

j=1

|z − aj |αj , |aj | = 1, αj > 0, j = 1, . . . , k

where g is a bounded, and bounded away from 0, integrable function
on ∂D. For further results on such weights, see Theorem 10.1.

6. Sparse Verblunsky Coefficients

On the basis of what we’ve seen so far, one might guess that normal
derivative behavior implies a Szegő condition or at least lots of a.c.
spectrum. Here we’ll see that there are examples with normal derivative
and with non-Szegő behavior and purely singular continuous spectrum.

Definition. Let 0 < N1 < N2 < . . . and {βj}∞j=0 ∈ D∞. The associated
sparse sequence is the Verblunsky coefficients

αj =

{
βk if j = Nk − 1 for k = 1, 2, . . .

0 otherwise
(6.1)

Our main result in this section is:

Theorem 6.1. Suppose

lim sup
k→∞

Nk

Nk+1
< 1 , lim

j→∞
βj = 0 (6.2)

Then the corresponding measure for the associated Verblunsky coeffi-

cients has normal L2-derivative behavior.
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Example 6.2. Let Nj = j!. If βj ∈ ℓ2, dµ has purely a.c. spectrum,
and if βj → 0 but βj /∈ ℓ2, then dµ has purely s.c. spectrum (see [26,
Sect. 12.5]). In particular, if βj = (j + 1)−1/2, then dµ is non-Szegő,
purely singular continuous, and normal. �

Lemma 6.3. Let {xj}∞j=1 be a sequence of nonnegative real numbers.

Suppose, for γj ≥ 0 and θj ≥ 0, we have

xj+1 ≤ γj + θjxj (6.3)

(a) If

sup θj = θ < 1 , sup γj = γ < +∞ (6.4)

then

lim sup xj ≤ (1 − θ)−1γ (6.5)

(b) If

lim sup θj < 1 , lim γj = 0 (6.6)

then

lim xj = 0 (6.7)

Proof. (a) Define yj by

y1 = x1 , yj+1 = γ + θyj (6.8)

By induction, xj ≤ yj, so

lim sup xj ≤ lim sup yj (6.9)

By (6.8), if zj = yj − (1 − θ)−1γ, then

zj+1 = θzj (6.10)

so zj → 0 and yj → (1 − θ)−1γ. Thus, (6.9) implies (6.5).

(b) Fix N0 so supj≥N0
θj = θ < 1. By using (a) for {j | j ≥ N ≥ N0},

we see that for N ≥ N0, lim sup xj ≤ (1−θ)−1 supj≥N γj. So lim γj = 0
implies (6.7). �

Proof of Theorem 6.1. Let

ηj(z) = ϕ∗
Nj

(z) (6.11)

and let σj = (1 − |βj|2)1/2. By Szegő recursion, for k < Nj+1 −Nj,

ϕ∗
Nj+k = ηj (6.12)

so by Szegő recursion,

σj+1ηj+1(z) = ηj(z) − βj+1z
(Nj+1−Nj)η∗j (z) (6.13)

and

σj+1‖η′j+1‖ ≤ ‖η′j‖ + |βj+1|(Nj+1 −Nj) + |βj+1|‖(η∗j )′‖ (6.14)
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Since 1 + ‖(ϕ∗
n)

′/n‖2 ≤ (1 + ‖(ϕ∗
n)

′/n‖)2, (1.3) implies that

‖(η∗j )′‖ ≤ Nj + ‖η′j‖ (6.15)

so (6.14) becomes

σj+1‖η′j+1‖ ≤ ‖η′j‖ + |βj+1|Nj+1 + |βj+1|‖η′j‖ (6.16)

Letting

xj =
‖η′j‖
NJ

, θj =
1 + |βj+1|
σj+1

Nj

Nj+1
, γj =

|βj+1|
σj+1

(6.17)

(6.16) becomes

xj+1 ≤ γj + θjxj (6.18)

By the lemma, xj → 0. By (6.12),

sup
Nj≤n<Nj+1

‖(ϕ∗
n)

′‖
n

= xj (6.19)

so xj → 0 implies (1.4), which is normality. �

Remark. One can also approach Theorem 6.1 through the function fn

of (2.14), Theorem 2.5, and

1

n

n∑

k=1

n∏

j=k

1 − |αj−1|
1 + |αj−1|

≤ fn(z) ≤ 1

n

n∑

k=1

n∏

j=k

1 + |αj−1|
1 − |αj−1|

, z ∈ T

which follows from the bounds

1 − |αn|
1 + |αn|

≤
∣∣∣∣
ϕn(z)

ϕn+1(z)

∣∣∣∣
2

≤ 1 + |αn|
1 − |αn|

, z ∈ T

7. Addition of Mass Points

Our goal here is to prove that if µ has a reasonable a.c. weight at a
point in ∂D and we add a mass point at that point, then the resulting
measure is nonnormal. By rotation covariance, we can suppose the
point is 1 ∈ ∂D. The discussion below was motivated by considera-
tion of (1 − γ) dθ

2π
+ γδ1, where everything is explicit (see [25, Exam-

ple 1.6.3]), and a direct calculation (from [25, eqn. (1.6.6)]) shows that
‖(ϕ∗

n)
′‖/n→ 1

2
γ1/2(1 − γ)−1/2, which is not zero, so (1.4) fails.

Given a probability measure µ on ∂D, we define for t > 0,

νt = (1 + t)−1(µ+ tδ1) (7.1)
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Let Φn(z; t), ϕn(z; t), αn(t) be the monic and normalized OPs and
Verblunsky coefficient for νt (for t ≥ 0) and its CD kernel

Kn(z, w; t) =
n∑

j=0

ϕj(z; t)ϕj(w; t) (7.2)

It is a result of Geronimus [11] (see [28] for a proof and a list of redis-
coverers!) that

Φn(z; t) = Φn(z; 0) − tΦn(1; t)Kn−1(z, 1; 0) (7.3)

Φn(1; t) =
Φn(1; 0)

1 + tKn−1(1, 1; 0)
(7.4)

Lemma 7.1. If {xn}∞n=1 are strictly positive and xn/xn+1 → 1, then

xn/
∑n−1

j=1 xj → 0.

Proof.

lim sup

(
xn∑n−1
j=1 xj

)
≤ lim sup

(
xn∑K

k=1 xn−k

)

= lim sup

(
1

∑K
k=1

xn−k

xn

)
=

1

K

Since K is arbitrary, the limit is 0. �

Proposition 7.2. Let ‖·‖t be the L2(dνt) norm in the framework of

mass point perturbations. Then

‖Φn( · ; t)‖2
t

‖Φn( · ; t = 0)‖2
t=0

=
1

1 + t

[
1 + tKn(1, 1; t = 0)

1 + tKn−1(1, 1; t = 0)

]
(7.5)

If αn(t = 0) → 0, then

lim
n→∞

LHS of (7.5) =
1

1 + t
(7.6)

Proof. Since Kn−1(z, 1; 0) is a polynomial of degree n − 1 in z, it is
µ-orthogonal to Φn(z; 0). Since

´

|Kn−1(z, 1; 0)|2 dµ = Kn−1(1, 1; 0) by
the reproducing property, we conclude, by (7.3), that

‖Φn( · ; t)‖2
t=0 = ‖Φn( · ; 0)‖2

t=0 + t2|Φn(1; t)|2Kn−1(1, 1; 0)

Thus, by (7.1),

‖Φn( · ; t)‖2
t = ‖Φn( · ; 0)‖2

t=0 + t|Φn(1; t)|2[1 + tKn−1(1, 1; 0)]

= ‖Φn( · ; 0)‖2
t=0

[
1 +

t|ϕn(1; t = 0)|2
1 + tKn−1(1, 1; 0)

]
(7.7)

by (7.4) and ϕn = Φn/‖Φn‖. This proves (7.5).
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By Szegő recursion,
∣∣∣∣
ϕ∗

n+1(e
iθ)

ϕ∗
n(e

iθ)
− 1

∣∣∣∣ ≤ |αn|

so, if αn → 0, |ϕn(e
iθ)|/|ϕn+1(e

iθ)| → 1, and so Lemma 7.1 implies
(1 + tKn)/(1 + tKn−1) → 1, showing (7.6). �

The following will provide many examples of νt’s which are not nor-
mal.

Theorem 7.3. Suppose µ obeys:

(a) µ is Nevai, that is,

lim
n→∞

αn(0) = 0 (7.8)

(b) For some C1, C2 > 0 and all n,

C1 ≤ |ϕn(1; 0)| ≤ C2 (7.9)

(c)

lim
n→∞

1

n
|(ϕ∗

n)′(1; 0)| = 0 (7.10)

Then

√
1 + t

C3
1

2C2
2

≤ lim inf
n→∞

1

n
|(ϕ∗

n)
′(1; t)|

≤ lim sup
n→∞

1

n
|(ϕ∗

n)′(1; t)| ≤
√

1 + t
C3

2

2C2
1

(7.11)

and, in particular, for all t > 0, νt does not have normal behavior of

derivatives.

Moreover, if

(d)

lim
n→∞

‖(ϕ∗
n)′( · ; 0)‖t=0

n
→ 0 (7.12)

then

lim
n→∞

‖(ϕ∗
n)′( · ; t)‖t=0

n
→ 0 (7.13)

If, in addition to (a)–(d),
(e)

lim
n→∞

|ϕn(1; 0)| = C 6= 0 (7.14)

then

lim
n→∞

1

n
‖(ϕ∗

n)
′(1; t)‖t =

C

2

√
t (7.15)
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Proof. Write

qn =
‖Φn( · ; t)‖t

‖Φn( · ; t = 0)‖t=0
(7.16)

Then (7.3) and (7.4) imply

qn(ϕ∗
n)

′(z; t) = ζ1,n(z; t) + ζ2,n(z; t) + ζ3,n(z; t) (7.17)

where

ζ1,n(z; t) = (ϕ∗
n)′(z; 0) (7.18)

ζ2,n(z; t) = − tϕn(1; 0)

1 + tKn−1(1, 1; 0)

n−1∑

j=0

zn−j ϕj(1; 0)(ϕ∗
j)

′(z; 0) (7.19)

ζ3,n(z; t) = − tϕn(1; 0)

1 + tKn−1(1, 1; 0)

n−1∑

j=0

(n− j)zn−j−1 ϕj(1; 0)ϕ∗
j(z; 0)

(7.20)

where we used (with ( )∗, the ∗ appropriate for degree n polynomials)

(ϕj(z; 0))∗n = zn−jϕ∗
j(z; 0) (7.21)

and the Leibniz rule to get ζ2,n and ζ3,n.
By (7.10),

1

n
|ζ1,n(1; t)| → 0 (7.22)

as n→ ∞. By (7.9),

tC1

1 + nC2
2 t

≤ t|ϕn(1; 0)|
1 + tKn−1(1, 1; 0)

≤ tC2

1 + nC2
1 t

(7.23)

Thus,

1

n
|ζ2,n(1; t)| ≤ tC2

n(1 + nC2
1 t)

n−1∑

j=0

C2j

∣∣∣∣
(ϕ∗

j)
′(1; 0)

j

∣∣∣∣ → 0 (7.24)

by (7.10).
At z = 1, the sum, Sn, in (7.20) is bounded by

C2
1

n−1∑

j=0

(n− j) ≤ Sn ≤ C2
2

n−1∑

j=0

(n− j) = C2
2

n(n+ 1)

2
(7.25)

(7.6), (7.17), (7.22), and (7.24) imply

lim sup
n→∞

1

n
|(ϕ∗

n)
′(1; t)| ≤

√
1 + t lim sup

n→∞

1

n
|ζ3,n(1; t)| (7.26)

and similarly for lim infs (with ≤ replaced by ≥), (7.20), (7.25), and
(7.23) then imply (7.11).
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Since

lim inf
1

n
‖(ϕ∗

n)
′( · ; t)‖t ≥

√
t

1 + t
lim inf

1

n
|(ϕ∗

n)
′(1; t)| (7.27)

(7.11) implies nonnormality.
Now suppose (7.12) holds. Then

1

n
‖ζ1,n( · ; t)‖t=0 → 0 (7.28)

By (7.9), (7.19), and (7.23),

1

n
‖ζ2,n( · ; t)‖t=0 ≤

C2
2

n2C2
1

n−1∑

j=1

j

(‖(ϕ∗
j)

′( · ; 0)‖t=0

j

)
→ 0 (7.29)

by (7.12).

In the same way, since z−jϕ∗
j (z; 0) = ϕj(z; 0) on ∂D are orthogonal,

1

n
‖ζ3,n( · , t)‖t=0 ≤

C2
2

n2C2
1

(n−1∑

j=0

|n− j|2
)1/2

→ 0 (7.30)

proving (7.13).
Finally, if (e) also holds, we note first that, by (7.13), one has equality

in (7.27) with lim inf replaced by inf. And the existence of the limit if
(7.14) yields

lim
n→∞

1

n
|(ϕ∗

n)′(1; t)| =
√

1 + t
C

2
(7.31)

by the arguments that led to (7.11). �

Example 7.4. If µ obeys Baxter’s condition, (a)–(d) of Theorem 7.3
hold, since (a) is trivial, (b) is Baxter’s theorem, (c) and (d) follow
from (4.2). Thus, whenever Baxter’s condition holds for µ, all νt are
nonnormal. In many cases, (e) holds also. �

There are also local conditions on the weight that imply (b) and (c),
following ideas of Freud [10], Badkov [5], B. Golinskii [13], and Nevai
[22]:

Theorem 7.5. Let µ obey the Szegő condition so that for some ε > 0,
µs({eiθ | |θ| < ε}) = 0, and with weight, w, obeys

(i) For some δ > 0, δ < w(eiθ) < δ−1 if |θ| < ε.
(ii)

sup
|ϕ|<ε

ˆ

|θ|<ε

∣∣∣∣
w(θ) − w(ϕ)

θ − ϕ

∣∣∣∣
2

dθ <∞ (7.32)

Then (a)–(c) of Theorem 7.3 holds and every νt associated to µ via

(7.1) is nonnormal.
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Remark. (7.32) is Freud’s condition [10]. (b) has been proven under a
weaker and close-to-optimal condition by Badkov [5], namely,

ˆ 1

0

[
sup

θ,ϕ∈(−ε,ε)
|θ−ϕ|<δ

|w(θ) − w(ϕ)|
]/

δ dδ <∞ (7.33)

see also Simon [31]. It is possible that by combining Badkov [5] with
Nevai [22], one can also prove (c) under this condition.

Proof. (a) follows from the fact that µ obeys the Szegő condition. (b)
is from Freud. (c) follows from Nevai [22] who proves, under these
conditions, that

|n−1ϕ′
n(1) − ϕn(1)| = o(1) (7.34)

From this, it is easy to see that

|(ϕ∗
n)′(1)| = |nϕn(1) − ϕ′

n(1)| (7.35)

�

8. Circular Jacobi Measures and Their Perturbations

The circular Jacobi measure and polynomials are the measure defined
for a real with a > −1

2
by

dµa(θ) = wa(θ)
dθ

2π
, wa(θ) =

Γ2(a+ 1)

Γ(2a+ 1)
|1 − eiθ|2a (8.1)

and the normalized polynomials

ϕn(z; dµa) =
(a)n√

n!(2a+ 1)n
2F1(−n, a + 1;−n + 1 − a; z) (8.2)

ϕ∗
n(z; dµa) =

(a+ 1)n√
n!(2a+ 1)n

2F1(−n, a;−n − a; z) (8.3)

where, as usual, (s)n = s(s + 1) . . . (s + n − 1) is the Pochhammer
symbol and 2F1 the hypergeometric function. These are due to Witte–
Forrester [37] and appear as Example 8.2.5 of Ismail [16]. As in the
last section,

dνa,t =
dµa + tδ1

1 + t
(8.4)

Here we will discuss three facts:

(1)
1

n
(ϕ∗

n)′(1; dνa,t) ∼ n2a (8.5)

(2)

∥∥∥∥
(ϕ∗

n)
′(·; dµa)

n

∥∥∥∥
2

L2(dµa)

=
a2

(2a+ 1)n
(8.6)
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(3) lim
n

∥∥∥∥
(ϕ∗

n)
′(·; dνa,t)

n

∥∥∥∥
L2(dµa)

= 0 (8.7)

These have the following consequences:
(a) ‖(ϕ∗

n)
′‖/n can grow as any power na for measures in the Nevai

class.
(b) dµa is normal for any a (for a ≥ 0, this follows from Theorem 3.1

but is new for −1
2
< a < 0).

(c) For −1
2
< a < 0, dνa,t is normal, showing that inserting a mass

point at a singular point for the weight may not destroy normality.
Facts (1)–(3) are consequences of explicit calculations that follow.

Proposition 8.1. For k ∈ Z,

γk(a) ≡
ˆ 2π

0

eikθwa(θ)
dθ

2π
= (−1)k Γ2(a + 1)

Γ(k + a + 1)Γ(−k + a+ 1)
(8.8)

Proof. We begin by noting that γ−k(a) = γk(a) since wa(θ) is even
under θ → −θ. (8.8) clearly holds for k = 0 since wa(θ) is a unit
weight.

Since
wa+1(θ)

wa(θ)
=

a+ 1

2(2a+ 1)

(
2 − z − 1

z

)
(8.9)

where z = eiθ, we get

γk(a + 1) =
a + 1

2(2a+ 1)
(2γk(a) − γk+1(z) − γk−1(a)) (8.10)

For k = 0, this implies, using γ1 = γ−1,

1 = γ0(a+ 1) =
a+ 1

2(2a+ 1)
(2 − 2γ1(a)) (8.11)

proving (8.8) for k = 1. From (8.10), by

γk+1(a) = 2γk(a) − γk−1(a) −
2(2a+ 1)

a+ 1
γk(a + 1) (8.12)

and induction, we get (8.8) in general. �

Thus, for any real polynomial, P (z) =
∑n

j=0 djz
j , we get

‖P (z)‖2
L2(dµa) ≡

ˆ

|P (z)|2wa(z)
dθ

2π

= Γ(a+ 1)2
n∑

j,m=0

djdm
(−1)k+1

Γ(k −m+ a+ 1)Γ(m− k + a + 1)

(8.13)
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The polynomials that we are most interested in are 2F1(−n, a+1;−n−
a; z) since

(ϕ∗
n)′(z; dµa) =

(a + 1)n√
n!(2a + 1)n

an

a+ n
2F1(−n + 1, a+ 1;−n− a+ 1; z)

(8.14)
So we note that

Qn(z) ≡ 2F1(−n, a+ 1;−n− a; z) ≡
n∑

k=0

ckz
k (8.15)

where, by the definition of 2F1 [4],

ck =
(−n)k(a+ 1)k

(−n− a)kk!
(8.16)

Proposition 8.2. For n ≥ 0 and k = 0, 1, . . . , n,

(a)

n∑

m=0

(−1)m cm
Γ(k −m+ a+ 1)Γ(m− k + a+ 1)

= (−1)k n!

Γ(a + 1)Γ(n+ a+ 1)
(8.17)

(b)

n∑

m=0

(−1)m mcm
Γ(k −m+ a+ 1)Γ(m− k + a+ 1)

= (−1)k (k + (2k − n)a)n!

Γ(a + 1)Γ(n+ a+ 1)
(8.18)

As a consequence, for Qn in (8.15),

‖Qn‖2
L2(dµa) =

n!

(a + 1)n

Qn(1) (8.19)

Proof. Formulas (8.17) and (8.18) can be directly verified by a com-
puter algebra system, such as Mathematica. They can also be proved
using Zeilberger’s algorithm [38, 39], implemented as a Mathematica
package [23], which establishes recurrence relations for the left-hand
side of each identity. For instance, [23] finds the following relations for

F (n,m, k) =
(−1)mcm

Γ(a+ k −m+ 1)Γ(a− k +m+ 1)

that can be verified by dividing both sides by F (n,m, k) and checking
the resulting rational equation: if ∆m is the forward difference operator
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in m, then

− (n + 1)(2a+ n + 2)(−k + n + 1)F (n,m, k)

+ (a+ n+ 1)(−2ak + 3an+ 4a− 2kn− 4k + 2n2 + 7n+ 6)F (n+ 1, m, k)

− (a + n+ 1)(a+ n+ 2)(a− k + n + 2)F (n+ 2, m, k)

= ∆m

(
F (n,m, k)R1(n,m, k)

)

(8.20)

and

− (k + 1)(a− k + n)F (n,m, k)

+ (−an + 2k2 − 2kn+ 4k − 3n+ 2)F (n,m, k + 1)

+ (a+ k + 2)(k − n+ 1)F (n,m, k + 2)

= ∆m

(
F (n,m, k)R2(n,m, k)

)
(8.21)

with

R1(n,m, k) =
am(n + 1)(a− k +m)(a−m+ n+ 1)

(−m+ n+ 1)(−m+ n+ 2)

R2(n,m, k) =
(2a+ 1)m(a− k +m)(a−m+ n+ 1)

(−a− k +m− 2)(−a− k +m− 1)

Summing (8.20) over m from 0 to n + 2, and (8.21) over m from 0 to
n we conclude that

yn,k :=
n∑

m=0

F (n,m, k)

satisfies the following recurrence relations:

(n+ 1)(2a+ n + 2)(−k + n+ 1) yn,k

− (a+ n + 1)(−2ak + 3an+ 4a− 2kn− 4k + 2n2 + 7n+ 6) yn+1,k

+ (a + n+ 1)(a+ n+ 2)(a− k + n + 2) yn+2,k = 0 (8.22)

and

(1 + k)(a− k + n) yn,k − (2 + 4k + 2k2 − 3n− an− 2kn) yn,k+1

− (2 + a+ k)(1 + k − n) yn,k+2 = 0 (8.23)

with initial conditions

y0,0 =
1

Γ2(a+ 1)
, y1,0 = −y1,1 =

1

Γ(a+ 1)Γ(a+ 2)
(8.24)

It is straightforward to check that the right-hand side in (8.17),

sn,k = (−1)k n!

Γ(a + 1)Γ(a+ n+ 1)

also verifies (8.22)–(8.24). This yields (8.17).
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Finally, by (8.13) and (8.17),

‖Qn‖2
L2(dµa)

Γ2(a+ 1)
=

n∑

k=0

(−1)kck

n∑

m=0

(−1)m cm
Γ(k −m+ a+ 1)Γ(m− k + a + 1)

=
n!

Γ(a+ 1)Γ(n+ a + 1)

n∑

k=0

ck

which proves (8.19). �

From (8.14), (8.15), and the well-known formula for the hypergeo-
metric function with the unit argument (see [1, eqn. (15.1.20)]), we
obtain

Theorem 8.3.
∥∥∥∥

(ϕ∗
n)

′(z; dµa)

n

∥∥∥∥
2

L2(dµa)

=
a2

(2a+ 1)n
(8.25)

In particular, all dµa, a > −1
2
, are normal.

Next, we turn to the νa,t. By (8.2) and (8.14), we see that

1

n
(ϕ∗

n)′(1; dµa) =
a

2a+ 1
ϕn(1; dµa) (8.26)

and that, in the sense of the ratio approaching a fixed nonzero, a-
dependent constant,

ϕn(1; dµa) ∼ na (8.27)

so that
Kn−1(1, 1; dµa) ∼ n2a+1 (8.28)

By (7.3) and (8.26), we obtain

1

n
Φ∗

n(1; dνa,t) = Φn(1; dµa)

[
a

2a+ 1
− n + 1

2n

tKn−1(1, 1; dµa)

1 + tKn−1(1, 1; dµa)

]

(8.29)
So, by (8.28),

1

n
(Φ∗

n)′(1; dνa,t) ∼ na (8.30)

In particular, ‖(ϕ∗
n)

′( · ; dνa,t)/n‖νa,t
≥ O(na), proving at least arbitrary

power growth for suitable a.
Finally, we turn to estimating ‖(ϕ∗

n)
′( · ; dνa,t)‖L2(dµa). By (7.3) and

(7.4) with q2
n → 1/(1 + t), we have

qnϕn(z; dνa,t) = ϕn(z; dµa) −
tϕn(1; dµa)

1 + tKn−1(1, 1; dµa)
Kn−1(1, z; dµa)

(8.31)
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By the CD formula,

Kn−1(1, z; dµa) = ϕn(1; dµa)

[
ϕ∗

n(z; dµa) − ϕn(z; dµa)

1 − z

]
(8.32)

=
(a+ 1)n

n!(1 − z)
(2F1(−n, a;−n− a; z)

− a

a+ n
2F1(−n, a + 1;−n− a+ 1; z)) (8.33)

=
a+ 1

n!

n

a + n

[
Pn(z) − 1

n
zP ′

n(z)

]
(8.34)

where

Pn(z) = 2F1(−n, a + 1;−n− a+ 1; z) (8.35)

In the above, (8.33) comes from (8.32), (8.2), and (8.3); and (8.28)
from relations on 2F1.

Using this and letting

δn =
2a+ 1

a

tKn−1(1, 1; dµa)

1 + tKn−1(1, 1; dµa)
(8.36)

(so δn → (2a + 1)/a), we obtain

qnϕn(z; dνa,t) = ϕn(z; dµa) + δn

(
z
ϕ′

n(z; dµa)

n
− ϕn(z; dµa)

)
(8.37)

This plus (1.10) yields

qn
(ϕ∗

n)′(z; dνa,t)

n
=

(ϕ∗
n)′(z; dµa)

n

(
1− δn

n

)
− δn

z(ϕ∗
n)′′(z; dµa)

n2
(8.38)

By the proven normality of dµa (Theorem 8.3), the first term in the
right-hand side of (8.38) has an L2(dµa) norm going to zero, so we
focus on the second. By the explicit formula for ϕ∗

n(z;µa),

(ϕ∗
n)′′(z; dµa) = a

√
a + 1

2(2a+ 1)

√
n(n− 1)ϕn−2(z; dµa+1) (8.39)

Thus, we need

Proposition 8.4.

‖ϕn(z; dµa+1)‖2
L2(dµa) = 1 +

2n

2a+ 3
(8.40)
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Proof. By (8.2),

ϕn(z; dµa+1) =
(a+ 1)n√
n! (2a+ 3)n

Pn(z)

Pn(z) = 2F1(−n, a+ 2;−n− a; z) =
n∑

k=0

ĉkz
k

(8.41)

where

ĉk =
(−n)k(a+ 2)k

(−n− a)kk!
=

(
1 +

k

a+ 1

)
ck (8.42)

with ck given in (8.16). Thus, from (8.13) it follows that

‖Pn‖2
L2(dµa) = Γ2(a + 1)(S1 + S2 + S3) (8.43)

where

S1 =

n∑

k=0

n∑

m=0

(−1)k+mckcm
Γ(k −m+ a + 1)Γ(m− k + a+ 1)

(8.44)

S2 =
2

a+ 1

n∑

k=0

n∑

m=0

(−1)k+m k ck cm
Γ(k −m+ a + 1)Γ(m− k + a+ 1)

(8.45)

S3 =
1

(a+ 1)2

n∑

k=0

n∑

m=0

(−1)k+m k ck mcm
Γ(k −m+ a+ 1)Γ(m− k + a+ 1)

(8.46)

The first sum has been computed in Proposition 8.2 and Theorem 8.3:

S1 =
1

Γ2(a + 1)
‖Qn‖2

L2(dµa) =
(2a+ 2)n

Γ2(n + a+ 1)
n!

where Qn is defined in (8.15). On the other hand, by (8.18),

S2 =
2

a+ 1

n∑

k=0

(−1)k k ck

n∑

m=0

(−1)m cm
Γ(k −m+ a + 1)Γ(m− k + a+ 1)

=
2(n!)

Γ(a+ 2)Γ(n+ a + 1)

n∑

k=0

k ck =
2(n!)

Γ(a+ 2)Γ(n+ a+ 1)
Q′

n(1)

Using the formula for the derivatives of the hypergeometric function,

Q′
n(z) =

(a + 1)n

a+ n
2F1(−n + 1, a+ 2;−n− a+ 1; z) (8.47)

Q′′
n(z) =

(a + 1)(a+ 2)n(n− 1)

(a+ n)(a + n− 1)
2F1(−n + 2, a+ 3;−n− a + 2; z)

(8.48)
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and [1, eqn. (15.1.20)], we conclude that

S2 =
2(n!)

Γ(a+ 1)Γ(n+ a+ 1)

n

n+ a

(2a+ 3)n−1

(a + 1)n−1

Analogously,

S3 =
1

(a+ 1)2

n∑

k=0

(−1)k k ck

n∑

m=0

(−1)m mcm
Γ(k −m+ a + 1)Γ(m− k + a + 1)

=
n!

(a+ 1)2Γ(a+ 1)Γ(n+ a + 1)

n∑

k=0

k ck(k + (2k − n)a)

=
n!

(a+ 1)2Γ(a+ 1)Γ(n+ a + 1)

(
(2a+ 1)

n∑

k=0

k2 ck − na
n∑

k=0

k ck

)

=
n!

(a+ 1)2Γ(a+ 1)Γ(n+ a + 1)
((2a+ 1)(zQ′

n(z))′(1) − naQ′
n(1))

=
n!

(a+ 1)2Γ(a+ 1)Γ(n+ a + 1)
((2a+ 1)Q′′

n(1) + (2a+ 1 − na)Q′
n(1))

Using (8.47)–(8.48), we obtain

S3 =
n(2n+ 2a+ 1)Γ(n+ 2a+ 2)(n!)

Γ(2a+ 4)Γ2(n+ a+ 1)

Hence,

S1 + S2 + S3 =
(2n+ 2a+ 3)Γ(n+ 2a + 3)(n!)

Γ(2a+ 4)Γ2(n+ a+ 1)

(8.40) now follows from (8.41) and (8.43). �

By (8.39) and (8.40), we obtain

∥∥∥∥
ϕ∗

n( · ; dµa)
′′

n2

∥∥∥∥
2

L2(dµa)

= a2 a + 1

2(2a+ 1)

n(n− 1)

n4

(
1 +

2n− 4

2a + 3

)

= O

(
1

n

)
(8.49)

so

Theorem 8.5. For a > −1
2
, ‖ϕ∗

n( · ; dνa,t)
′/n‖L2(dµa) → 0. In particu-

lar, for −1
2
< a < 0, dνa,t is normal (and for a ≥ 0, it is not normal).
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9. Multiplicative Perturbations of the Weight

In the preceding section, we saw that the circular Jacobi weight, even
in the unbounded case, where −1

2
< a < 0, is normal. In this section

and the next, we extend this to other cases. A key tool will be (2.21).
Here we will prove a general result about perturbations of weights:

Theorem 9.1. Let dµ be a measure on ∂D satisfying the Nevai con-

dition (3.1), and g is a Lipschitz continuous, strictly positive function

on ∂D. Then normality of dµ implies normality of g dµ.

The proof depends on a preliminary result.

Proposition 9.2. Let dµ be a measure on ∂D satisfying the Nevai

condition (3.1), and g is a continuous and nonvanishing function on

∂D so that g dµ also obeys (3.1). Then

lim
n→∞

Kn−1(z, z; g dµ)

Kn−1(z, z; dµ)
=

1

g(z)
(9.1)

uniformly on ∂D.

Proof. Under the assumption of Nevai’s condition, uniformly on ∂D for
any fixed m ∈ N,

lim
n→∞

Kn+m−1(z, z; dµ)

Kn−1(z, z; dµ)
= 1

by Corollary 9.4.3 of [26].
If g(z) = |P (z)|2, then by the extremal properties of the CD kernel

where deg(P ) = m,

Kn−1(z, z; g dµ)

Kn+m−1(z, z; dµ)
g(z) ≤ 1

so that

lim sup
n→∞

Kn−1(z, z; g dµ)

Kn−1(z, z; dµ)
≤ 1

g(z)

Using the monotonicity of the kernel and the ‖·‖∞-density of {|P (z)|2}
in the nonnegative functions, we can extend this inequality to any
continuous and nonvanishing function g. Finally, reversing the role of
dµ and g dµ, we obtain (9.1). �

Proof of Theorem 9.1. By Theorem 2 of [20],

lim
n→∞

|ϕn(z; g dµ)|2
|ϕn(z; dµ)|2 = 1 (9.2)
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uniformly on ∂D. By Lemma 9.3 below, g dµ also obeys the Nevai
condition, so Proposition 9.2 is applicable. Thus, using (9.2),

lim
n→∞

fn(z; g dµ)

fn(z; dµ)
= 1 (9.3)

By (2.21), g dµ is normal if and only if dµ is. �

Lemma 9.3. If αn(µ) → 0 and (9.2) holds, then αn(g dµ) → 0.

Proof. By the Szegő recursion formula, for any measure, ν,

ϕ∗
n+1(z; dν)

ϕ∗
n(z; dν)

− 1 = −αn(dν)
ϕn(z; dν)

ϕ∗
n(z; dν)

(9.4)

Since ϕn/ϕ
∗
n is a nontrivial Blaschke product, there are points z0 ∈ ∂D

so that the right side is positive and equal to |αn|. Thus,

|αn(dν)| = sup
z∈∂D

|ϕ∗
n+1(z; dν)|
|ϕ∗

n(z; dν)|
− 1 (9.5)

(9.2) plus (9.5) completes the proof. �

10. Algebraic Singularities

In this section, we prove

Theorem 10.1. Let w0 be the weight

w0(z) =

m∏

k=1

|z − ζk|2ak (10.1)

where ζ1, . . . , ζm ∈ ∂D are distinct and each ak > −1
2
. Let g be a

nonvanishing Lipschitz continuous function on ∂D. Then gw0(e
iθ) dθ

2π
is a normal measure on ∂D.

Proposition 10.2. Let Fn(x) = min{n2, |1 − cosx|−1}, x ∈ (−π, π).
Then for k = 1, . . . , m and for a sufficiently small δ > 0, there ex-

ists C ∈ (0, 1), not depending on n or k, such that for ϕn(z) =
ϕn(z;w0(z)|dz|),

C ≤ |ϕn(ζke
ix)|2

Fak
n (x)

≤ C−1, −δ < x < δ (10.2)

Proof. Obviously, it is sufficient to establish an analogous bound for

the monic orthogonal polynomials Φn. Fix k ∈ {1, . . . , m}, Bk
def
= {z ∈

C | |z − ζk| ≤ δ}. For z = ζke
ix, −δ < x < δ, define tn(z) = nx/2 ∈ R.

From Theorem 1.4 of [19], it follows that

|Φn(z)|2 =
π

2

|H(ak; tn(z))|2
|z − ζk|2ak

(
1 +O

(
1

n

))
(10.3)
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where the O(1/n) term is uniform in (−δ, δ). H, analytic in a punctured
neighborhood of the origin, is defined by

H(a; t)
def
=

{
e−2πia t1/2(iJa+1/2(t) + Ja−1/2(t)) if t is in the second quadrant

t1/2(iJa+1/2(t) + Ja−1/2(t)) otherwise

(10.4)
and Jν is the Bessel function of the first kind. In particular,

|Φn(ζke
ix)|2 =

π

21+ak

|tn|(J2
ak+1/2(|tn|) + J2

ak−1/2(|tn|))
(1 − cosx)ak

(
1 +O

(
1

n

))
, −δ < x < δ

Since the zeros of J2
a+1/2 and J2

a−1/2, a > −1
2
, interlace, we have

J2
a+1/2(t) + J2

a−1/2(t) > 0, for t > 0 (10.5)

On the other hand, from the asymptotic formula [1, eqn. (9.2.1)], we
obtain that

lim
t→+∞

t(J2
a+1/2(t) + J2

a−1/2(t)) =
2

π

and we conclude that for δ1 > 0, there exists C1 = C1(a, δ1) ∈ (0, 1)
such that

C1 ≤ t(J2
a+1/2(t) + J2

a−1/2(t)) ≤ C−1
1 , for t ∈ (δ1,+∞)

In particular, for

Fn(x) =
tn(J2

ak+1/2(tn) + J2
ak−1/2(tn))

(1 − cos x)ak
, tn =

nx

2

we have

C1

(1 − cosx)ak
≤ Fn(x) ≤ C−1

1

(1 − cosx)ak
, x >

2δ1
n

(10.6)

On the other hand, for x ∈ [0, 2δ1/n],

Fn(x) = n2ak
x2ak21−4ak

(1 − cosx)ak

((
tn
2

)2

G2
ak+1/2(tn) +G2

ak−1/2(tn)

)

where Ga(z) = (2/z)a Ja(z) → 0 when z → 0. Taking into account
(10.5), we conclude that there exists C2 = C2(β, δ1) ∈ (0, 1) such that

C2n
2β ≤ Fn(x) ≤ C−1

2 n2β , x ∈
[
0,

2δ1
n

]
(10.7)

Combining (10.6) and (10.7), we obtain (10.2). �
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Corollary 10.3. For the weight given in (10.1), the sequence fn is

uniformly bounded on ∂D. In particular,

lim
n

1

2π

ˆ 2π

0

f 2
n(eiθ) dθ = 1

so that the generalized circular Jacobi measure, w0
dθ
2π

, is normal.

Remark. Observe that normality of this measure for ak ≥ 0 follows
from Theorem 5.1. So this result is new for the negative values of ak,
when the weight is unbounded.

Proof. That the measure is Nevai class follows from Rakhmanov’s the-
orem. The first assertion follows from (10.2) and the fact that for
a > −1

2
,

1

n

∑n−1
k=0 Fa

k (x)

Fa
n(x)

is uniformly bounded on R. The second assertion is a consequence of
(2.29) and Theorem 2.5. �

Thus, Theorem 10.1 follows from Theorem 9.1.

11. Isolated Mass points

In this section, we will consider a situation where µ has a gap in
its essential spectrum containing an isolated mass point at z0 ∈ ∂D.
Of course, since αn → 0 implies supp(dµ) = ∂D (see [25, Thm. 4.3.5]),
Theorem 3.1 implies µ is not normal. What we want to show is that, in
fact, ‖ϕ′

n‖ always grows exponentially in this setting. The intuition is:
Since ϕn(z0) decreases exponentially while ϕn(z) grows exponentially
for z near z0, ϕ

′
n(z0) must be very large. The only surprise is that the

result is very general and the proof simple. Here are the results:

Theorem 11.1. Let µ have a gap in its essential spectrum and z0 a

mass point in this gap. Then for some A,C > 0,

|ϕ′
n(z0)| ≥ AeCn (11.1)

In particular,

‖ϕ′
n‖ ≥ Aµ({z0})1/2eCn (11.2)

Theorem 11.2. Let µ have a gap in its essential spectrum, e, and

z0 /∈ e a mass point. Suppose µ is regular. Then

lim
n→∞

|ϕ′
n(z0)|1/n = exp(Ge(z0)) (11.3)

where Ge is the logarithmic potential of e. In particular,

lim inf ‖ϕ′
n‖1/n ≥ exp(Ge(z0)) (11.4)
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Remarks. 1. Regularity was defined by Stahl–Totik [32] (see [27]) and
means

lim
n→∞

(ρ0 . . . ρn−1)
1/n = C(e) (11.5)

where C(e) is the logarithmic capacity. It holds, for example, if the
equilibrium measure for e is dθ

2π
absolutely continuous and dµ = w dθ

2π
+

dµs with {θ | w(θ) > 0} = e up to sets of measure zero (see [32, 27]).

2. These results on ‖ϕn‖1/n should be compared with Theorem 3.2.

We will prove both of these theorems from the following elegant
formula:

Theorem 11.3. Let µ have a gap in its essential spectrum with z0 an

isolated point of µ. Let ψn be the second kind polynomials. Then there

is an ℓ2 sequence, η̃n, so that

ϕ′
n(z0) = (2z0µ({z0}))−1ψn(z0) + η̃n (11.6)

Proof. Let dν be the measure for which ψn are the first kind polyno-
mials and ϕn the second kind polynomials (i.e., αn(dν) = −αn(dµ)).
Then (see [25, Prop. 3.2.8]) for z ∈ D,

ϕn(z) =

ˆ

(ψn(eiθ) − ψn(z))

[
eiθ + z

eiθ − z

]
dν(θ) (11.7)

By analyticity, since z0 /∈ supp(dν), this holds for z in a neighbor-
hood of z0. Using Fdν(z) = Fdµ(z)−1, we conclude

ηn(z) ≡ ϕn(z) + F (z)−1ψn(z) =

ˆ

ψn(eiθ)

[
eiθ + z

eiθ − z

]
dν(θ) (11.8)

Thus, ηn(z) ∈ ℓ2 and is analytic near z0, so η̃n ≡ η′n(z0) ∈ ℓ2 by a
Cauchy estimate.

Near z0,

F (z) =
2z0µ({z0})
z0 − z

+O(1) (11.9)

so

F−1(z0) = 0
d

dz
F−1(z)

∣∣∣∣
z=z0

= −(2z0µ({z0}))−1 (11.10)

which leads to (11.6). �

Proof of Theorem 11.1. By [26, Thm. 10.14.2],

‖ϕn(z0)‖ ≤ A0e
−Cn (11.11)

for some A0, C. By [25, (3.2.33)],

‖ψn(z)‖ ≥ A−1
0 eCn (11.12)
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Thus, (11.6) implies (11.1). �

Proof of Theorem 11.2. Let dν be the measure for which ψn are the first
kind OPUC. Then dν is regular and z0 /∈ supp(dν). It follows, since
then z0 is also not in the convex hull of supp(dν), that (see [32, 27])

lim
n→∞

‖ψn(z0)‖1/n = eGe(z0) (11.13)

(11.6) completes the proof. �
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[20] A. Maté, P. Nevai, and V. Totik, Extensions of Szegoő’s theory of orthogonal

polynomials, III, Constr. Approx. 3 (1987), 73–96.
[21] K. T.-R. McLaughlin and P. D. Miller, The ∂ steepest descent method and the

asymptotic behavior of polynomials orthogonal on the unit circle with fixed and

exponentially varying nonanalytic weights, Int. Math. Res. Pap. 2006, Art. ID
48673, 1–77.

[22] P. Nevai, An asymptotic formula for the derivatives of orthogonal polynomials,
SIAM J. Math. Anal. 10 (1979), 472–477.

[23] P. Paule and M. Schorn, A Mathematica version of Zeilberger’s algorithm for

proving binomial coefficient identities, J. Symbolic Comput. 20 (5–6), 673–
698, 1995.

[24] S. Z. Rafal’son, On an asymptotic formula for orthogonal polynomials, Soviet
Math. Dokl. 7 (1966), 1561–1564.

[25] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical The-

ory, AMS Colloquium Publications 54.1, American Mathematical Society,
Providence, R.I., 2005.

[26] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral The-

ory, AMS Colloquium Publications 54.2, American Mathematical Society,
Providence, RI, 2005.

[27] B. Simon, Equilibrium measures and capacities in spectral theory, Inverse
Problems and Imaging 1 (2007), 713–772.

[28] B. Simon, The Christoffel–Darboux kernel, in “Perspectives in PDE, Har-
monic Analysis and Applications” Proc. Sympos. Pure Math. 79 (2008), 295–
335.

[29] B. Simon, Weak convergence of CD kernels and applications, Duke Math. J.
146 (2009), 305–330.
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