
CANTOR POLYNOMIALS AND SOME RELATED

CLASSES OF OPRL

HELGE KRÜGER∗,1 AND BARRY SIMON∗,2

Abstract. We explore the spectral theory of the orthogonal poly-
nomials associated to the classical Cantor measure and similar
singular continuous measures. We prove regularity in the sense
of Stahl Totik with polynomial bounds on the transfer matrix.
We present numerical evidence that the Jacobi parameters for this
problem are asymptotically almost periodic and discuss the possi-
ble meaning of isospectral torus and Szegő class in this context.

1. Introduction

The past fifteen years have seen remarkable progress in the spectral
theory of orthogonal polynomials but mainly where the underlying or-
thogonality measure is purely absolutely continuous or at least has a
substantial a.c. part. Our goal is this paper is to begin the exploration
of the simplest purely singular continuous cases—indeed, we will focus
on the case where the underlying measure is the classical Cantor 1/3-
measure. While we have some theorems in this case, we’ll mainly have
conjectures, discussion, and some numerical experiments.
Our model is the Szegő class of [21, 10]. There is associated to

any finite gap set, e, an isospectral torus of almost periodic Jacobi
matrices, J , with σess(J) = e. The frequency module of the almost
periodic functions is generated by the harmonic measures of parts of e
between two points in the complement of e.
Whatever the notion of Szegő class is when e is the Cantor set, one

expects that the Cantor measure is so regular that it should lie in this
Szegő class. Thus, a test of the notion is whether the Jacobi parameters
are asymptotically almost periodic. We have computed the first 100,000
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an’s and provide convincing numerical evidence that they are. We
have not explored whether the corresponding Cantor polynomials i.e.,
the OPRL (≡ orthogonal polynomials on the real line) for the Cantor
measure, have an analog of Szegő asymptotics.
The Cantor measure is one element of a family of parameterized by

δ ∈ (0, 1
2
]. Let

ϕ±(x) = ±(1 + δx) (1.1)

ϕ± maps [−2, 2 ] into two disjoint intervals (if δ < 1
2
) and after k

interactions to 2k intervals. There is a unique probability measure, µδ,
that obeys

∫
f(x)dµ =

1

2

∫
f
(
ϕ+(x)

)
dµ+

1

2

∫
f
(
ϕ−(x)

)
dµ (1.2)

It is, up to scaling and translations, the Cantor measure when δ = 1
3

([−1, 1] is translated and scaled to [−3
2
, 3
2
]). We’ve also done some

calculations for other values of δ < 1
2
which are qualitatively similar

(δ = 1
2
is the normalized Lebesgue measure on [−2, 2 ]).

In Section 2, we discuss regularity in the sense of Stahl-Totik [28] and
the stronger results that transfer matrices are polynomially bounded.
We use this to get lower bounds on zero spacing for the Cantor polyno-
mials. Section 3 is the central one where we analyze the first 100,000
Jacobi parameters for Cantor polynomials supporting the idea that
these parameters are asymptotically almost periodic. Sections 4 and
5 discuss what the isospectral torus might mean here while Section 6
treats perturbations of this torus. Section 7 discusses differing meaning
of the dimensions of the spectrum.
Throughout, we use ideas from the modern theory of OPRL and refer

the reader to Simon [27] for background. For comparison to the finite
gap case, see Christiansen et al. [10] or Simon [27]. We note that there
was work twenty-five years ago [2, 3, 4, 7] on different aspects of self-
similar measures. We also mention recent papers of Christiansen [8, 9]
that include some Cantor set OPRL, but positive Lebesgue measure
Cantor sets rather than zero measures.
It is a pleasure to thank J. Breur and V. Totik for useful discussions.

Herbert Stahl was a key figure in the ideas relevant to Section 2 of
this paper. It is a pleasure to be able to dedicate this paper to his
memory and to the memory of Andrei Aleksandrovich Gonchar, two
giants of analytic problems connected to orthogonal polynomials and
approximation theory.
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2. Regularity and Zero Spacing

Recall that a spectral measure on R is called regular if and only if
the Jacobi parameters obey lim(a1 . . . an)

1/n = C(e), where e = σess(µ)
and C(·) is logarithmic capacity. Regular measures for general sets
were defined and studied in the book of Stahl–Totik [28]; see also the
review article of Simon [26]. Regularity implies the density of zeros
is the equilibrium measure of e and results on the lack of exponential
decay of continuum eigenfunctions. In this section, we’ll first remark
that a result of Stahl–Totik [28] implies regularity of a variety of sin-
gular continuous measures, including the Cantor measure. We’ll then
present a refinement of Totik [31] which proves polynomial bounds on
the growth of pn(x), x ∈ e for the Cantor case, and then show that it
implies a polynomial bound on the transfer matrix and so, an inverse
polynomial bound on eigenvalue spacing.
The following specializes Theorem 4.2.3 of Stahl–Totik [28]; it cov-

ers many cases of OPRL, including Cantor measure. For the reader’s
convenience, we sketch the proof, which follows Stahl–Totik with some
simplifications given our stronger hypotheses.

Theorem 2.1. Let e ⊂ R be a closed set which is regular for the

Dirichlet problem. Let µ be a probability measure with

lim
ε↓0

(2ε)−1 inf
x∈e

µ(x− ε, x+ ε) = ∞ (2.1)

on e. Then µ is regular.

Remarks. 1. (2.1) implies that e has Lebesgue measure zero, so µ is
singular.

2. (2.1) is much stronger than necessary, but holds for many inter-
esting cases like Cantor measure.

Proof. Let Pn(x) be the monic OPs for µ. By Schiefermayr’s theorem
[27, Cor. 5.7.7], with ‖f‖e = supx∈e|f(x)|, we have

‖Pn‖e ≥ 2C(e)n (2.2)

By hypothesis, the potential theoretic Green’s function, ge, is con-
tinuous and vanishes on e. So for any ε, there is a δ so that

dist(z, e) < δ ⇒ ge(z) ≤ log(1 + ε) (2.3)

By the Bernstein–Walsh lemma (see, e.g., [27, Thm. 5.5.14]) and
(2.3),

sup
dist(z,e)<δ

|Pn(z)| ≤ ‖Pn‖e(1 + ε)n (2.4)
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Then, by a Cauchy estimate,

dist(z, e) <
δ

2
⇒ |P ′

n(z)| ≤
2

δ
‖P‖e(1 + ε)n (2.5)

Let ρn = δ
4
(1 + ε)−n and let xn ∈ e be such that |Pn(xn)| = ‖Pn‖e.

Then |xn − y| ≤ ρn ⇒ |Pn(y)| ≥
1
2
‖Pn‖e ≥ C(e)n. It follows that

∫
|Pn(x)|

2 dµ(x) ≥

∫

|y−xn|≤ρn

|Pn(x)|
2 dµ(x)

≥ C(e)2nµ(x− ρn, x+ ρn)

≥ C(e)2n(1 + ε)−n δ

2
A(ρn)

where A(ρ) = infx∈e[µ(x− ρ, x+ ρ)/2ρ].
Since ‖Pn‖L2(µ) = a1 . . . an, we have

(a1 . . . an)
1/n ≥ C(e)(1 + ε)−1/2

(
δ

2

)1/2n

A(ρn)
1/2n

from which it follows that

lim inf(a1 . . . an)
1/n ≥ C(e)(1 + ε)−1/2

Since ε is arbitrary and lim sup(a1 . . . an)
1/n ≤ C(e) always holds, we

see that µ is regular. �

We owe to Totik (private communication, quoted with permission) a
refinement of this result: under a stronger hypothesis, a stronger result,
namely, a polynomial in n bound on pn(x), x ∈ e, rather than just a
subexponential bound.

Theorem 2.2 ([31]). Suppose for some α ∈ (0, 1], A > 0, and all

z, w ∈ C, we have

|ge(z)− ge(w)| ≤ A|z − w|α (2.6)

and for β < 1, we have for all x ∈ e that

µ([x− ε, x+ ε]) ≥ Bεβ (2.7)

Then for a constant, C, and the orthonormal polynomials, pn, we have

‖pn‖e = sup
x∈e

|pn(x)| ≤ Cnβ/2α (2.8)

Remark. This implies lim sup|pn(x)|
1/n ≤ 1 for all x ∈ e and so, regu-

larity.
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Proof. By the Bernstein–Walsh lemma ([27, Thm. 5.5.14]), for any
polynomial, qn, of degree n, and any z,

|qn(z)| ≤ ‖qn‖e exp(nge(z)) (2.9)

so if dist(z, e) ≤ n−1/α, by (2.6),

|qn(z)| ≤ ‖qn‖e exp(A) (2.10)

Thus, by a Cauchy estimate (i.e., |q′n(z)| ≤ r−1 sup|w−z|=r|qn(w)|), we
get a Markov-type bound

dist(z, e) ≤ 1
2
n−1/α ⇒ |q′n(z)| ≤ 2eAn1/α‖qn‖e (2.11)

Pick xn ∈ e so
|pn(xn)| = ‖pn‖e (2.12)

By (2.12), if |x− xn| ≥ εn ≡ (4eAn1/α)−1, then

|pn(x)| ≥
1
2
‖pn‖e (2.13)

which implies

‖pn‖
2
2 = 1 ≥ (1

2
‖pn‖e)

2µ(xn − εn, xn + εn) ≥
1
4
‖pn‖

2
eBεβn (2.14)

or
‖pn‖e ≤ 2B−1/2ε−β/2

n = 2 · 2β/2B−1/2eβA/2nβ/2a (2.15)

proving (2.8). �

This goes beyond regularity in that we’ll see it implies a power lower
bound on zero spacing. First, we need to apply a result of Jitomirskaya–
Last [12, 13]. We define the transfer matrix associated to Jacobi pa-
rameters, {an, bn}

∞
n=1, by

Tn(x) = Bn(x) . . . B1(x), n = 1, 2, . . . (2.16)

Bj(x) =
1

aj

(
x− bj −aj−1

1 0

)
(2.17)

where a0 = 1. Then

Tn(x) =

(
pn(x) qn(x)
pn−1(x) qn−1(x)

)
(2.18)

pn are the standard OPRL and qn suitably normalized second kind
polynomials (qn has degree n−1). Following Jitormirskaya–Last, define

ρn(x) =

n∑

j=1

|pn(x)|
2, ηn(x) =

n∑

j=1

|qn(x)|
2 (2.19)

The m-function of the spectral measure, dµ,

m(z) =

∫
dµ(x)

x− z
(2.20)
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For each x, εn is defined by

εn =
1

2ρn(x)ηn(x)
(2.21)

Then Jitomirskaya proved there is a universal constant, A, so that for
all x ∈ e = supp(µ),

A−1|m(x+ iεn)| ≤
ηn(x)

ρn(x)
≤ A|m(x+ iεn)| (2.22)

This implies the following:

Theorem 2.3. Suppose for some x ∈ e = supp(dµ), we have

|m(x+ iε)| ≤ Cεγ−1 (2.23)

where 0 < γ < 1. Then for a constant, D,

ηn(x) ≤ Dρn(x)
(2−γ)/γ (2.24)

In particular, if

|pn(x)| ≤ Enν (2.25)

Then

ηn(x) ≤ D(E2n2ν+1)(2−γ)/γ (2.26)

is polynomially bounded.

Proof. By (2.22) and (2.23),
ηn
ρn

≤ ACεγ−1
n = AC21−γρ1−γ

n η1−γ
n (2.27)

so
ηγn ≤ AC21−γρ2−γ

n (2.28)

implies (2.24).
Since (2.25) implies ρn ≤ C2n2ν−1, (2.24) implies (2.26). �

In [15], Last–Simon showed that if E and E ′ are two successive zeros
of pn and x ∈ (E,E ′), then ([15, Thms. 2.1 and 2.2]) (T0 = 1)

|E − E ′| ≥

( n∑

j=0

‖Tn(x)‖
2

)−1

(2.29)

Thus,

Theorem 2.4. If (2.23) holds for all x ∈ e (with C, γ independent of

x) and ‖pn‖e ≤ Dnν, then for a constant, S, and any two successive

zeros, E,E ′, of pn(x), we have

|E − E ′| ≥ Sn−λ, λ =
2(2ν + 1)(2− γ)

γ
(2.30)
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For the Cantor measure, one has that µ(x − ε, µ + ε) ≤ B̃εβ, β =
log 2/ log 3 which yields (2.23) with γ = (log 3 − log 2)/ log 2. It is
known that (2.7) holds with the same β and (2.6) for some α (see
[30, 24]). Thus,

Theorem 2.5. For the Cantor polynomials, there is λ > 0 so that

(2.30) holds.

3. Cantor Polynomials: Numerics

As we saw, up to scaling and translation, the Cantor measure is the
δ = 1

3
of the measures determined by (1.2). Mantica [18, 19] found

a recursive procedure for computing the Jacobi measure associated to
any family of iterated linear maps and computed about 100 parameters
in typical cases. Heilman et al. [11] computed about 10,000 an’s for
suitable δ. We computed 100,000 and for one calculation 200,000 for
δ = 1

3
and for several other values of δ. Since the qualitative results are

the same for other values of δ, we only report on δ = 1
3
. The Matlab

script to generate our numbers is part of the ArXiv posting for this
paper. Notice that since these measures are invariant under x → −x,
all bn = 0.
Mantica considers the orthonormal polynomials, pn(x), and expands

pn(δx+ 1) =
n∑

ℓ=0

γ
(n)
ℓ pℓ(x) (3.1)

If one defines

γ̃
(n+1)
ℓ = δaℓ+1γ

(n)
ℓ+1 + γ

(n)
ℓ + δaℓγ

(n)
ℓ−1 − anγ

(n) (3.2)

one obtains an+1 from
∫
p2n(δx+ 1) dµ(x) = 1 via

a2n+1(1− δ2n+2) =

n∑

ℓ=0

(γ̃
(n+1)
ℓ )2 (3.3)

and (from the recursion for pℓ(δx+ 1))

γ
(n+1)
ℓ = (an+1)

−1γ̃
(n+1)
ℓ ; ℓ = 0, . . . , n (3.4)

and, by looking at the leading xn+1 terms,

γ
(n+1)
n+1 = δn+1 (3.5)

One preliminary calculation we looked at is to use the fact that we
have regularity

(a1 . . . an)
1/n → C(e) (3.6)



8 H. KRÜGER AND B. SIMON

Gap IDS
(

1
27
, 2
27

)
0.170240

(
1
9
, 2
9

)
0.287260

(
7
27
, 8
27

)
0.387270

Table 3.1. Harmonic measures, aka IDS

to get the capacity of the Cantor set (this multiplies the C(e) in (3.6)
by 1

3
because of scaling) to find

Capacity of the classical Cantor set ∼= 0.22094998647421 (our value)
(3.7)

Since we expect O(1/n) errors, we should only trust the first six digits
or so. This compares with the value found by Ransford–Rostand [23]
in 2007 who got

Capacity of the classical Cantor set ∼= 0.220949102 (RR) (3.8)

With the an’s, one can also compute the harmonic measures of the
part of the Cantor measure to the left of a given gap, that is, the weight
of that set in the equilibrium measure. For by regularity, this is the
limit of the density of zeros, so we compute the zeros of p100,000(x) and
count the number below a gap. We don’t compute the polynomial and
its zeros but use the fact that these zeros are the eigenvalues of the
truncated Jacobi matrix (see [27, 29]) which, as a sparse matrix, has
Matlab routine for its eigenvalues. For the three largest gaps in the
bottom half of the Cantor set, we find the values in Table 3.1. We
use the abbreviation IDS (for “integrated density of states”) for the
harmonic measure of the set below the gap. These are consistent with
values computed by Ransford [22].
One of our main reasons for doing the numerics is to check the fol-

lowing conjecture:

Conjecture 3.1. The an’s for the Cantor polynomials are asymptot-
ically almost periodic with the almost periodic limit having frequency
module generated by the harmonic measures of subsets of the Cantor
set within gaps.

Notice that if a
(0)
n is the almost periodic limit, then if an − a

(0)
n → 0,

the IDS are the same, so by gap labeling [14, 6], the value of the IDS in
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gaps are among the frequencies. The conjecture says they are exactly
the generators of the frequency module.
To see if the numerics support the conjecture, we computed the dis-

crete Fourier transform, â, of the an’s for 1 ≤ n ≤ 100,000, normaliz-
ing frequencies to run from 0 to 1 and normalizing |â|2 by dividing by∑100,000

n=1 |ân|
2. Figure 3.1 shows this plot (with the large value at n = 0

not plotted).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fourierspectrum of the Jacobi coefficients

$k$

m
ax

(|
â
(k

)|
2
,1

0−
6

)

Figure 3.1. Power spectrum of |ân|
2

If the an’s had no structure, one would expect all the normalized
|ân|

2 to be about 10−6. As Figure 3.1 and Table 3.2 show, there are a
few anomalously large peaks (the y-axis is logarithmic) as one would
expect for an almost periodic function. Table 3.2 shows the top twelve
peaks.
Notice that other than the largest peaks at 0 and 1

2
(which is the IDS

in the gap (1
3
, 2
3
), the next six peaks are at the largest gaps listed in

Table 1 and the symmetric points (since k(1−x) = 1−k(x)). Figure 3.2
shows the IDS and the power spectrum superimposed, showing that the
peaks are precisely at the flat parts.

As a sign of the fact that most of the power spectrum is in a few
frequencies, only 62 of the 100,000 are larger than the mean of 10−5.
Figure 3.3 shows the fit of those 62 frequency contributions against the
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Normalized k Normalized |â(k)|2

0 0.538035030339233
0.500000000000000 0.070682567302743
0.287260000000000 0.006615921068324
0.712740000000000 0.006615921068324
0.387270000000000 0.000814035809854
0.612730000000000 0.000814035809854
0.170240000000000 0.000612664851182
0.829760000000000 0.000612664851182
0.170250000000000 0.000180011375447
0.829750000000000 0.000180011375447
0.226330000000000 0.000157561287264
0.773670000000000 0.000157561287264

Table 3.2. Top twelve peaks in the normalized power spectrum

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Integrated density of states vs. powerspectrum

Energy / 2

3
(max(log(|â(k)|)),−6)+6)−2

In
te

gr
at

ed
de

ns
it
y

of
st
at

es
/

k

Figure 3.2. Power spectrum vs IDS

values of an for 40,000 < n ≤ 40,050. We emphasize the parameters
are chosen on all 100,000 an’s, not just the 50 shown.

For the case of a finite number of arcs with a Szegő weight, Widom
[32] proved an almost periodic behavior for [a1 . . . an/C(e)n] (in the
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0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Approximation of 100000 as based on fourier coefficients > mean of fourier coefficients

n − 40000

B
ox

ed
: a

, L
in

e:
 a

pp
ro

x 
a

Figure 3.3. An almost periodic fit (26 frequencies)

nonreal case, there are no an’s but a1 . . . an is the inverse of the lead-
ing coefficient of pn), a result studied further in [1, 20, 21, 10]. We
conjecture:

Conjecture 3.2. For the Cantor polynomials, Wn ≡ a1 . . . an/C(e)n is
asymptotic to an almost periodic function. In particular, it is bounded
above and below (away from zero).

For our numerics, we obtain C(e) as (a1 . . . aN)
1/N (N being the

largest n), so at n = N , Wn is 1. Thus, even if, say, Wn → 0 for the
true C(e), in our approximation it won’t. Instead, as N increases, the
small n values will be large. Figure 3.4 shows the ratio forN = 100,000,
that is, 1 ≤ n ≤ 100,000 with C(e) defined so that W100,000 = 1.

It wasn’t clear to us if this plot looked like that since it was indicating
that Wn → 0 or was an artifact of small n, so we plotted the ratio for
100,000 ≤ n ≤ 200,000 as seen in Figure 3.5 which we regard as support
for Conjecture 3.2.

We should report on more results from our numeric explorations. For
both random and a.c. cases, one knows the zeros of pn scaled to scale
1/n have limiting distribution (see, e.g., [25] and references therein).
For Cantor polynomials, one expects a small fraction of neighboring
zero pairs to cross a gap of size much larger than O(1/n). The others
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0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

25

30

35
Testing the Widom condition)

n

∏
n j
=

1
a(

j)
/C

ap
(Σ

)n

Figure 3.4. Widom ratio for 1 ≤ n ≤ 100,000

1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0

0.5

1

1.5

2

2.5

3
Testing the Widom condition

n

∏
n j
=

1
0
5
a(

j)
/C

ap
(e

)n

Figure 3.5. Widom ratio for 100,000 ≤ n ≤ 200,000

one might expect should be viewed on a scale 1/nd, where d is a suit-
able Hausdorff dimension, perhaps the dimension of the equilibrium

measure. So we plotted for fixed n, log(E
(n)
j+1 − E

(n)
j )/ log(1/n) to see

if they cluster near a single value. They didn’t (see Figure 3.6), and
were spread in a wide range (although bounded from below consis-
tently with Theorem 2.5 and mainly bounded from above by Hausdorff
dimension of the Cantor set). The issue of the distribution of zeros
remains a mystery for now. The bar in Figure 3.6 is 1/dC, the inverse
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of the Hausdorff dimension of C. 1/dE, the inverse of the Hausdorff
dimension of the IDS, is even higher.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

log((E
j+1

 − E
j
)−1)/log(N)

frequency of exponent in gap size for N = 50000

Figure 3.6. Plot of zero gap exponent for p50,000

4. Isospectral Tori

One possible dream one might have about the spectral theory of
orthogonal polynomials on Cantor sets is that one might be able to
generalize the theory of finite gap sets. Here

e = [α0, β0] ∪ · · · ∪ [αg, βg] (4.1)

consists of finitely many intervals separated by g gaps {(βj−1, αj)}
g
j=1

A key fact in the theory of these operators is played by the isospectral
torus

T refl
e

= {J : ℓ2(Z) → ℓ2(Z), σ(J) = e is reflectionless}. (4.2)

We recall that J is reflectionless if the diagonal elements of its Green’s
function have vanishing real part on the spectrum

lim
ε→0+

re(〈δ0, (J −E − iε)−1δ0〉) = 0, for almost every E ∈ e. (4.3)

We now list the key properties of this isospectral torus.

(1) T refl
e

is homomorphic to a g dimensional torus Tg.
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(2) This homomorphism can be described as follows. Consider the
restrictions J± of J to ℓ2({±1,±2,±3, . . . }). Then one has
that either J+ or J− has an eigenvalue in each gap (βj−1, αj).
Under appropriate identification of the endpoints of these two
intervals, one obtains an explicit homomorphism.

(3) The elements J of T refl
e

are almost periodic.
(4) The spectrum of J ∈ T refl

e
is purely absolutely continuous.

(5) T refl
e

is closed under the shift map.

Given this object, one can start to wonder what could replace it for
the Cantor set. For this, one needs to replace the condition of being
reflectionless by something as any Jacobi operator with spectrum of
zero Lebesgue measure satisfies this. We recall that the forward upper
Lyapunov exponent for a Jacobi operator J is given by

L(E) = lim sup
N→∞

1

N
log ‖Tn(E)‖ (4.4)

where Tn(E) was defined in (2.16)1. Furthermore, we call a whole line
Jacobi operator J : ℓ2(Z) → ℓ2(Z) regular if

lim
|N−M |→∞

M∏

n=N

a(n) = Capacity(σ(J)). (4.5)

This in particular implies that the spectral measures of the restrictions
J± to the right and left half axis are regular.
A Jacobi operator J is almost-periodic if its orbit under the shift

map, see (4.12), is pre-compact in JC for an appropriate C > 1.

Proposition 4.1. Let e be a finite gap set and J a whole line Jacobi

operator with σ(J) = e. Then the following conditions are equivalent.

(1) J is reflectionless on e.

(2) J is almost-periodic and L(E) = 0 for E ∈ e.

(3) J is almost-periodic and regular.

In order to prove this proposition, we recall a few things about
almost-periodic Jacobi operators. Given an almost-periodic Jacobi op-
erator J , we denote by Ω ⊆ JC the closure of its translates {Jn}n∈Z.
We can define an additive structure on {Jn}n∈Z by Jn ⊕ Jm = Jn+m

with identity element J0 = J . By continuity, this additive structure
extends to Ω and thus makes Ω into a compact abelian group. We
denote by µ the unique invariant Haar measure and note that (Ω, S, µ)
is an uniquely ergodic dynamical system with S the shift defined in

1Note det(Tn(E)) is not necessarily = 1 with our definition of Tn(E)
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(4.12). For background, including Kotani and Remling’s theorems, see
Chapter 7 of Simon [27].

Proof of Proposition 4.1. A reflectionless Jacobi operator has purely
absolutely continuous spectrum in particular its Lyapunov exponent
vanishes. Thus (1) implies (2). In order to show that (2) implies (1),
we first show that almost every Jacobi operator in the hull Ω of J is
reflectionless. For this observe that as (Ω, T ) is uniquely ergodic, we
also have that the ergodic Lyapunov exponent vanishes on e. Hence,
the claim follows from Kotani’s theorem. That this statement implies
(1) follows from Remling’s theorem.
The equivalence between (2) and (3) follows from Theorem B.1. in

[16]. �

This proposition suggests the following definition of an isospectral
torus, which we wish to nickname the almost-periodic isospectral torus

T ap
e

= {J : ℓ2(Z) → ℓ2(Z) : J is almost-periodic and regular σ(J) = e}.
(4.6)

The previous proposition shows that for e a finite gap set, we have that

T ap
e

= T refl
e

. (4.7)

For e the Cantor set, we would have that Conjecture 3.1 would guar-
antee that T ap

e
is non-empty. Unfortunately, we do not know how to

achieve this.
We also wish to point out here that it is clear that if J ∈ T ap

e
then

its entire hull is already contained in T ap
e

. In particular, T ap
e

is shift
invariant.

In order to define an isospectral torus that is non-empty, we will need
to discuss ergodic Jacobi operators, in a setting that is convenient for
us. We first remark

Proposition 4.2. Let J be a whole line Jacobi operator. Then

|a(n)|, |b(n)| ≤ ‖J‖ = sup
x∈σ(J)

|x|. (4.8)

Proof. This follows from a(n) = 〈δn, Jδn−1〉 and b(n) = 〈δn, Jδn〉. �

This proposition implies that in order to define the isospectral torus,
we may restrict ourself to Jacobi operators, where the coefficients sat-
isfy

0 ≤ a(n) ≤ C, −C ≤ b(n) ≤ C (4.9)

for some C > 0. We now introduce

JC =
(
[0, C]× [−C,C]

)Z

(4.10)
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and identify (a, b) ∈ JC with the Jacobi operator J : ℓ2(Z) → ℓ2(Z)
with a, b as its recursion coefficients. We equip JC with the usual
topology of pointwise convergence, which is given by the metric

d((a, b), (ã, b̃)) =
∑

n∈Z

1

2|n|

(
|a(n)− ã(n)|+ |b(n)− b̃(n)|

)
, (4.11)

and turns JC into a compact topological space. Finally, we define the
shift transformation S : JC → JC by

S(a, b)(n) = (a(n+ 1), b(n+ 1)) (4.12)

This gives us a topological dynamical system (JC , S). An inspection
of the definition of T ap

e
shows that we can extend this definition to

subsets A ⊆ JC such that (A, S) is minimal, i.e. for every J ∈ A the
orbit {SnJ}n∈Z is dense in A.
We recall that µ a probability measure on JC is ergodic if µ assigns

weight 0 or 1 to an S invariant subset of JC.

Remark. One usually defines ergodic Jacobi operators by assuming
that one is given a dynamical system (Ω, T, µ) and two bounded maps
f, g : Ω → R. Then one defines for ω ∈ Ω the Jacobi operator Jω as
having recursion coefficients aω(n) = f(T nω), bω(n) = g(T nω). This
definition is equivalent to the one given above as on one hand one
can take the dynamical system (JC , S, µ) with maps f(a, b) = a(0),
g(a, b) = b(0). On the other hand, one can take as probability measure
the pushforward of µ under the map ω 7→ Jω.

Let µ be a probability measure on JC. We denote by supp(µ) the
support of µ, which is the smallest closed subset of JC such that µ
assigns 0 weight to its complement. We define

logA(µ) =

∫
log(a(J ; 0))dµ(J) (4.13)

which is equal to limN→∞
1
N

∑N−1
n=0 log(a(J ;n)) for µ almost-every J .

For logA(µ) > −∞, we define the Lyapunov exponent

Lµ(E) = lim
N→∞

1

N

∫
log ‖T (J ;E, n)‖dµ(J). (4.14)

We know that Lµ(E) is a subharmonic function of E.
We denote by M1

e,+ the set of all ergodic probability measure on JC

such that A(µ) > 0.

Theorem 4.3. Let µ ∈ M1
e,+. Then
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(1) There exists a compact, perfect set Σ ⊆ R such that for µ almost

every J , we have

σ(J) = Σ. (4.15)

Similar claims hold for the absolutely continuous, singular con-

tinuous, and pure point spectrum.

(2) Let E ∈ R, then for µ almost every J , we have

Lµ(E) = L(J ;E). (4.16)

(3) In particular, either µ almost every J is regular, or not.

(4) We have

Σac = {E : Lµ(E)}
ess

(4.17)

where the essential closure of a set A is given by

A
ess

= {E : ∀ε > 0 |A ∩ [E − ε, E + ε]| > 0}. (4.18)

Proof. (1), (2), and (4) are standard results in Kotani theory. For (3)
we first note that L(E) being upper semi-continuous implies that L(E)
is continuous at the points where L(E) = 0. Thus almost every J being
regular is equivalent to

L(E) = 0, for every E ∈ Σ.

This statement clearly either holds or not. �

Given this theorem it makes sense to define

T erg
e

=
⋃

µ∈M1
e,+, Σ=e

µ a.e. J is regular

supp(µ). (4.19)

One has that T erg
e

is a shift-invariant subset. Using standard facts
about almost-periodic functions, one can show that

T ap
e

⊆ T erg
e

. (4.20)

Furthermore, Proposition 4.1 implies that for e a finite gap set, we have
that T erg

e
= T refl

e
.

Unfortunately, we still have no way to ensure that this set is non-
empty. In order to do this, we need to define the following variant of
JC by

JC,− =
(
[
1

C
,C]× [−C,C]

)Z

. (4.21)

It is clear how to make it into a topological space and define the shift
map and the notion of ergodicity of it.
Given a compact set e ⊆ R, there is an unique measure ρe called the

equilibrium measure minimizing E(η) =
∫
log(|z − w|−1)dη(z)dη(w)

over all probability measures η supported on e. The set e is called
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potentially perfect if e = supp(ρe). By Corollary 5.5.13 in [27], we have
that these are exactly the measures for which L(E) = 0 for quasi-every
E is meaningful.
There exists now a half-line operatorH such that its spectral measure

is equal to ρe. If we knew for this operator that a(n) ≥ 1
C

for some
C > 1, we could use the following theorem to show that the set T erg

e
is

non-empty.

Theorem 4.4. Let H be a half-line Jacobi operator with σ(H) = e that

is regular and satisfies C−1 ≤ a(n) ≤ C, |b(n)| ≤ C. Then there exists

an ergodic measure µ on JC,− such that µ almost every J is regular

and satisfies σ(J) = e.

Proof. This is a consequence of Theorem 2.1. in [16]. Let µ be as in
(2.12). Then we have for µ almost-every J that it is reflectionless on
e. As its spectrum must be contained in e, the claim follows. �

In particular, this implies

Corollary 4.5. Let e be a potentially perfect set and assume that

infn≥1 a(ρe;n) > 0. Then

T erg
e

6= ∅. (4.22)

Unfortunately, showing that infn a(n) > 0 seems quite challenging if
one doesn’t assume the existence of absolutely continuous spectrum.
For completeness sake, we wish to point out here that regularity

implies that 1
N

∑N
n=1 log a(n) ≥ −C for some C > 0 and all N ≥ 1.

Thus one obtains the weak lower bound a(n) ≥ e−Cn or in other words
that the a(n) are at most exponentially decaying (on a subsequence).
The average behavior is of course much better.
Finally, one can use (2.8) to show that for the Cantor polynomials,

one has a polynomial lower bound on a(n).

A final problem with the definition of T erg
e

is that, we cannot guar-
antee that it is a closed set. Fortunately, we have that

Proposition 4.6. The closure of T erg
e

is the set

T shift
e

=
⋃

µ shift invariant

µ a.e. J,σ(J)=E, and regular

supp(µ). (4.23)

Proof. As every ergodic measure is shift invariant, we clearly have that

T erg
e

⊆ T shift
e
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and thus T erg
e ⊆ T shift

e
. The other conclusion follows from Choquet’s

theory, i.e. that given a shift-invariant measure µ, there exists a mea-
sure α on the ergodic measures such that µ =

∫
βdα(β). In particular

that

supp(µ) =
⋃

β∈supp(α)

supp(β).

By Theorem 2.1. in [16] and Lβ(E) ≥ 0, we have that for α almost
every β, we have that Lβ(E) = 0 for E ∈ e. Thus for α almost every
β, we have that supp(β) ⊆ T erg

e
. Now, the claim follows. �

At the end of this section, we wish to discuss some further problems.
We have already noted that for almost-every J the Lyapunov exponent
vanishes. In light of our results of the growth on the transfer matrices,
one might conjecture that for almost every J ∈ Te one has that the
transfer matrices grow subexponentially, i.e.

‖T (J ;E, n)‖ ≤ Cnα (4.24)

for some C, α > 0. However, this might be too strong of a conjecture
as such a result might well only hold almost everywhere with respect
to the spectral measure of J .

5. Gap labelling and Borg’s theorem

So far we have discussed how to define the isospectral torus. Now
we wish to discuss some properties of it. As e ⊆ R is a compact set,
we have that

e = [a, b] \
⋃

j∈J

Ij (5.1)

for disjoint open intervals Ij and [a, b] the convex hull of e. The set
J is always countable. In the cases we consider, we usually have that
J is infinite. Given the interval Ij = (aj, bj), we define a torus Tj as
the disjoint union of two copies (Ij,+) and (Ij,−) of the closure of
Ij, where we identify the endpoints (aj ,+) and (aj ,−) and similarly
(bj ,+) with (bj ,−).

Theorem 5.1. There exists a map

D : Te → {Tj}j∈J (5.2)

such that if D(J)j = (E,±) with E ∈ (aj , bj), then

E ∈ σ(J±). (5.3)
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Proof. We recall that for J , we have the diagonal Green’s function

g(z) = 〈δ0, (J − z)−1δ0〉 (5.4)

and we have defined the two m± functions given by

m±(z) = 〈δ±1, (J± − z)−1δ±1〉. (5.5)

A computation shows that

g(z) =
1

b0 − z − (a0)2m+(z)− (a−1)2m−(z)
. (5.6)

As g is a Herglotz function, we have g(z) =
∫ dγ(t)

t−z
. In particular,

g′(z) =
∫ dγ(t)

(t−z)2
and thus g is a stricly increasing function in the gaps

Ij. In particular, g can have at most one zero E ∈ Ij . The only way
g(E) = 0 can happen is that either m+(E), m−(E), or both are infinite.
As J = J+ + J+ + rank one, we have that m+(E), m−(E) cannot be
both equal to 0. Hence, we can define

D(J)j = (E,±) if E ∈ Ij , g(E) = 0, E ∈ σ(J±). (5.7)

Finally, if g(E) 6= 0 for all E ∈ Ij, we have by continuity of g that either
g(E) > 0 or g(E) < 0 for all E ∈ Ij . If g(E) > 0, we set D(J) = aj
and if g(E) < 0, we set D(J) = bj . �

It is clear that Dj : Te → Tj is continuous whenever Dj(J) = (E,±)
for E ∈ Ij . One can finally show that this map is continuous.
The map D plays an essential role in the inverse spectral theory for

finite gap matrices, as it gives the explicit identification of the isospec-
tral problem with a finite dimensional torus. It would be nice to be
able to verify this is the case here. Unfortunately, it is neither clear
that the map D is surjective or injective.

As the equilibrium measure ρe is supported on e. We may now define
a label function by

ℓ(Ij) = ρe((−∞, E)), E ∈ Ij. (5.8)

This definition makes sense since the right hand side is constant in
E ∈ Ij . A fundamental theorem, see for example Section 4.1 in [5],
now states

Theorem 5.2 (Gap labelling). Denote by A the C∗ algebra obtained

from µ. Then
{ℓ(Ij)}j ⊆ τ(K0(A)). (5.9)

We remark on several variations on what we wish to dub Borg’s
theorem.
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Theorem 5.3. Let µ ∈ M1
e,+ such that µ almost every J is regular

and assume that Σ = σ(J) is an interval. Then µ assigns weight to a

single element J = (a, b) with a and b constant sequences.

Proof. As we have demonstrated the isospectral torus agrees for finite
gap sets with the reflectionless one. Now, this follows from the standard
result. �

It would be nice to have some generalization of this to situation
where the spectrum contains gaps. We first recall the notion of the
frequency module M(f) of an almost-periodic function f . We define

M(f) = Z−module generated by{ω : lim
N→∞

1

2N + 1

N∑

n=−N

f(n)e2πinω 6= 0}.

(5.10)
We note that for almost periodic functions, this frequency module is
exactly the set of allowed labels. We conjecture

Conjecture 5.4. Let J be an almost-periodic Jacobi operator. Then
its frequency module equals the module generated by the labels.

A theorem of Borg asserts that this is true when the frequency mod-
ule is finite, i.e. that J is a periodic Jacobi operator.

6. Perturbations of the isospectral torus

In the previous section, we discussed how to define an isospectral
torus Te for fairly general sets e. In this section, we wish to discuss
some consequences of this definition. We have already used the follow-
ing result to compute the capacity of the Cantor set. We say that a
statement holds for almost every J ∈ Te if it holds outside a set A such
that every ergodic measure assigns zero weight to it.

Theorem 6.1. For almost every J ∈ Te, we have that

lim
N→∞

1

N

N−1∑

n=0

log(a(n)) = log(Capacity(e)). (6.1)

Proof. For each ergodic measure
∫
log(a(J ; 0))dµ(J) =

log(Capacity(e)). Hence, the claim follows from the ergodic the-
orem. �

We note that in order to compute the capacity of the Cantor set from
this statement, one would need to quantify the rate of convergence. For
this, we note
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Proposition 6.2. Let f : Ω → R be an integrable function, and

(Ω, T, µ) ergodic. Then

N−1∑

n=0

f(T nω)−N

∫
fdµ = O(1) (6.2)

for almost every ω if and only if there exists an integrable function

g : Ω → R such that

f(ω)−

∫
fdµ = g(Tω)− g(ω) (6.3)

that is f is a coboundary.

Proof. That the second statement implies the first is straightforward.
For the other direction, define g as a limit point of

∑N−1
n=0 f(T nω) −

N
∫
fdµ as N → ∞. �

We thus see that the strong sense of convergence claimed above relies
on our Conjecture that the the quantity aN is almost-periodic. We
should also note here that

Proposition 6.3. Let J ∈ Te and H = J+ + A, where A decays to

zero. Then if infn≥0 a(J ;n) > 0

1

N

N∑

n=1

log(a(J ;n))−
1

N

N∑

n=1

log(a(H ;n)) = o(1). (6.4)

Proof. Follows as a(J ;n)− a(H ;n) → 0. �

A second topic, we wish to discuss in this section is if one could
define the isospectral torus Te in terms of half-line operators. The first
thing to note is that the splitting

J = J+ ⊕ J− + rank one (6.5)

has minor effects on the spectral properties of J if J has absolutely
continuous spectrum. This follows from the invariance of the abso-
lutely continuous spectrum under trace class perturbations. The same
is true for the essential spectrum and regularity. In particular, we have
that our definition of Te could be written the same way for half-line
operators.
However, the following theorem shows that this must not be the case

for the spectral measures.

Theorem 6.4. Let µ be the Cantor measure and H the corresponding

Jacobi operator. Then for Hβ = H+β〈δ1, .〉δ1, we have that the spectral
measure is pure point with the pure points lying outside the Cantor set.
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Proof. For mβ(z) = 〈δ1, (Hβ − z)−1δ1〉, we have that

mβ(z) =
m0(β)

1− βm0(z)
.

As Im(m0(z)) → ∞ on the Cantor set, the claim follows. �

Other properties are however stable under this type of perturbations.
One example is the growth of transfer matrices.

Another interesting question is how to extend the Szegő class and
similar objects to the Cantor set and more general sets. For example it
is completely, unclear how to characterize the set of spectral measures

µJ+ for J ∈ Te, where we recall that 〈δ1, (J
+ − z)−1δ1〉 =

∫ dµ
J+ (t)

t−z
. As

we discuss in the next section it is not even clear what dimension the
measures µJ+ have.
Finally, we remark that it might be useful to relax this problem a

little bit and instead of trying to characterize all J such that J ∈ Te to
characterize the J such that

∞∑

m=1

d(SmJ, Te)
2 < ∞. (6.6)

For comparison, in the case of periodic Jacobi operators one has that
this condition leads to the conditions

(1) suppess(µJ+) = e.

(2)
∑

E∈supp(µ
J+ )\e dist(E, e)

3

2 < ∞.

(3)
∫
d(x,E \ e)

1

2 log(
dµ

J+

dx
)dx > −∞.

see Theorem 8.6.1 in [27], whereas the corresponding question for peri-
odic Jacobi operators leads to an implicit equation for the m function

m(z) =
∫ dµ

J+ (t)

t−z
given by

α(z)m(z)2 + β(z)m(z) + γ(z) = 0 (6.7)

where α, β, and γ are polynomials, see Theorem 5.2.1 in [27].

7. Dimension of the spectrum

Recall that one defines the dimension of a measure µ by

dim(µ) = inf
A Borel, µ(R\A)=0

dimHausdorff(A). (7.1)

One can show that for e a finite-gap set, one has that the Hausdorff
dimension of e agrees with the dimension of the equilibrium measure
ρe and the dimension of the spectral measure of the Jacobi operators
J ∈ Te.
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For e the usual one third Cantor set a theorem of Makarov [17] shows
that

dim(ρe) < dim(e). (7.2)

In particular, one might conjecture from this that also the other in-
equality fails, i.e. that for J ∈ Te, we have that the dimension of the
spectral measure is strictly smaller than dim(ρe).
This might seem contradictory to our claim that the Cantor poly-

nomials should be asymptotic to an object in Te as we have that the
dimension of the Cantor measure agrees with the dimension of the Can-
tor set. This is not a problem as a decaying perturbation might well
be increasing the dimension.

The definition given here does not allow us to compute the Hausdorff
dimension of a measure. In order to do this, we note that for measures
µ of exact dimension α, one has that

lim
r→∞

log(µ([x− r, x+ r]))

log(2r)
= α, for µ almost every x. (7.3)

By standard convergence theorems, this implies that

lim
r→∞

∫
log(µ([x− r, x+ r]))

log(2r)
dµ(x) = dimHausdorff(µ). (7.4)

In the case of e being the middle third Cantor set, we can write
e =

⋂∞
ℓ=1 eℓ with eℓ consisting of 2ℓ disjoint intervals of length 3−ℓ. Fur-

thermore, these bands are at least 3−ℓ apart. Letting eℓ =
⋃2ℓ

j=1[aj , bj],
we thus see that

∫
log(ρe([x− r, x+ r]))

log(2r)
dρe(x) =

2ℓ∑

j=1

log(αj)

log(2 · 3−ℓ)
αj (7.5)

where αj = ρe([aj, bj ]). In our computations, we approximate ρe(a, b)
by

ρ̃([a, b]) =
1

N
Tr

(
#{eigenvalues of H [1,N ] in [a, b]}

)
. (7.6)

In order to ensure that
∑

j αj = 1, we thus take αj =

ρ̃([
bj−1+aj

2
,
bj+aj+1

2
)).

We note the following result

Theorem 7.1. Let e be potentially perfect. Then we have for almost

every J that

dimHausdorff(µJ) ≤ dimHausdorff(ρe) ≤ dimHausdorff(e). (7.7)

Here 2
∫ dµJ (t)

t−z
= 〈δ0, (J − z)−1δ0〉+ 〈δ1, (J − z)−1δ1〉.
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Proof. The second inequality is trivial as supp(ρe) = e. For the first
inequality observe that for β an involved ergodic measure, we have that∫

µJ(A)dβ(J) = ρe(A)

for any Borel set A. Thus if ρe(R \A) = 0, we have for µ almost every
J that µJ(R \ A) = 0. Thus the claim follows. �

Thus, we see that Makarov’s theorem shows that in most cases the
second inequality is strict and we conjectured the first one to be strict.
We note the following case, where one show something resembling

the first inequality

Theorem 7.2. Assume that Lµ(E) > 0 for every E. Then for µ almost

every J , there exists a Borel set A such that

µJ(R \ A) = 0, ρe(A) = 0 (7.8)

that is the two measures are singular.

Proof. By Theorem 7.3 in [26], we have that µJ is supported on a set
of capacity zero. Now, we know that ρe assigns zero measure to such
sets. �

It should be possible to weaken this result to fast enough polyno-
mial growth of the transfer matrices. However, even weakening this to
L(E) > 0 for almost every E seems beyond reach.

Appendix A. Some numerical results

The main goal of this section is to provide tables of numerical data
for various computations. We refer to Section 3 for some details on
how these computations were done.

N
∏N

n=1 a(n)
100 0.677875
1000 0.664837
10000 0.663075
100000 0.662875

Table A.1. The capacity of the Cantor measure

We briefly discuss how to compute the Fourier coefficients. Consider
the sequence a(n) = a · e2πikn and define

âN(ℓ) =
1

N

N−1∑

n=0

a(n)e−2πinℓ
N .
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N ρe(
1
27
, 2
27
) ρe(

1
9
, 2
9
) ρe(

7
27
, 8
27
)

100 0.171717 0.282828 0.383838
1000 0.170170 0.287287 0.387387
10000 0.170217 0.287229 0.387239
100000 0.170242 0.287263 0.387264

Table A.2. IDS on gaps

Take k = ℓ+ε
N

for ℓ ∈ Z and ǫ ∈ [0, 1). Then a quick computation yields

|âN(ℓ)| ≈
|a sin(πǫ)|

πǫ
, |âN(ℓ+ 1)| ≈

|a sin(πǫ)|

π(1− ǫ)
.

From these one computes

ǫ =
1

1 + |âN (ℓ)|
|âN (ℓ+1)|

, |a| = |âN(ℓ)| ·
πǫ

| sin(πǫ)|
.

k |â1000(k)| |â10000(k)| |â100000(k)|
0.5 0.263657 0.265101 0.265856

0.28726 0.0827705 0.0828834 0.0829444
0.71274 0.0827705 0.0828834 0.0829444
0.17025 0.0307355 0.0305749 0.0306035
0.38729 0.0310281 0.0310683 0.0307494
0.61271 0.0310281 0.0310683 0.0307494
0.82975 0.0307355 0.0305749 0.0306035
Table A.3. A few Fourier coefficients
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Möbius iterated function systems, in “Proc. 8th Internat. Congress on Compu-
tational and Applied Mathematics,” ICCAM-98 (Leuven), J. Comput. Appl.
Math. 115 (2000), 419–431.

[20] F. Peherstorfer and P. Yuditskii, Asymptotics of orthonormal polynomials in

the presence of a denumerable set of mass points, Proc. Amer. Math. Soc.
129 (2001), 3213–3220.

[21] F. Peherstorfer and P. Yuditskii, Asymptotic behavior of polynomials or-

thonormal on a homogeneous set, J. Anal. Math. 89 (2003), 113–154.
[22] T. Ransford, private communication.
[23] T. Ransford and J. Rostand, Computation of capacity, Math. Comp. 76

(2007), 1499–1520 (electronic).
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