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Abstract. Laptev and Safronov conjectured that any non-positive eigenvalue of a

Schrödinger operator −∆ + V in L2(Rν) with complex potential has absolute value

at most a constant times ‖V ‖(γ+ν/2)/γγ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We

prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it

for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that

hold, in particular, for positive eigenvalues.

1. Introduction and main results

In this paper we are interested in eigenvalues of Schrödinger operators

−∆ + V in L2(Rν)

with (possibly) complex-valued potentials V . More precisely, we want to derive bounds

on the location of these eigenvalues assuming only that V belongs to some Lp(Rν) with

p <∞. This assumption, for suitable p, will also guarantee that−∆+V can be defined

via the theory of m-sectorial forms. Also, p < ∞ implies that eigenvalues outside of

[0,∞) are discrete and have finite algebraic multiplicities.

If V is real-valued (so that discrete eigenvalues are negative), it is a straightforward

consequence of Sobolev inequalities that

|E|γ ≤ Cγ,ν

∫
Rν
|V |γ+ν/2 dx (1.1)

for every γ ≥ 1/2 if ν = 1 and every γ > 0 if ν ≥ 2. Here Cγ,ν is a constant

independent of V . For this bound, see [15, 19] and also [4] for optimal constants,

optimal potentials and stability results.

The question becomes much more difficult if V is allowed to be complex-valued.

Laptev and Safronov [18] conjectured that for any ν ≥ 2 and 0 < γ ≤ ν/2 there is a

Cγ,ν such that (1.1) holds for all eigenvalues E ∈ C \ [0,∞). Prior to their conjecture,

Abramov, Aslanyan and Davies [1] (see also [5]) had shown this for ν = 1 and γ = 1/2.

In [8] the Laptev–Safronov conjecture was proved for ν ≥ 2 and 0 < γ ≤ 1/2.

In this paper we accomplish the following:
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(A) We almost disprove the Laptev–Safronov conjecture for ν ≥ 2 and 1/2 < γ <

ν/2 (Theorem 2.1).

(B) We prove the Laptev–Safronov conjecture for radial potentials for ν ≥ 2 and

1/2 < γ < ν/2.

(C) We give a simple proof that for 0 < γ ≤ 1/2 the bound (1.1) holds also for

eigenvalues E ∈ [0,∞). (We note that a deep result of Koch–Tataru [17] shows

that, in fact, there are no positive eigenvalues.)

(D) We prove an eigenvalue bound for V ∈ Lγ1+ν/2(Rν) + Lγ2+ν/2(Rν) with 0 <

γ1 < γ2 ≤ 1/2 if ν = 2 and 0 ≤ γ1 < γ2 ≤ 1/2 if ν ≥ 3.

By ‘almost disprove’ in (A) we mean we construct a sequence of real-valued potentials

Vn such that −∆+Vn has eigenvalue 1 but ‖Vn‖p → 0 for any p > (1+ν)/2. If Laptev

and Safronov had formulated their conjecture for any eigenvalue E ∈ C (and not only

for E ∈ C \ [0,∞)), we would have disproved it. In particular, this is interesting in

view of (C), where we prove that for 0 < γ ≤ 1/2 the conjecture holds in fact also

for eigenvalues in [0,∞). Note that if we were able to show that the eigenvalue 1 of

−∆ + Vn becomes a non-real eigenvalue of −∆ + Vn + εW for some nice W (say with

ImW ≥ 0) and ε small, we could also disprove the conjecture.

Our construction of the potentials Vn in the proof of Theorem 2.1 is inspired by a

construction of Ionescu and Jerison [14]. Using ideas of Wigner and von Neumann

[35] (see also [27, Section XIII.13]) we are able to simplify their construction.

We also prove (Theorem 2.2) that a bound of the form (1.1) cannot hold, even for

radial potentials, if γ > ν/2. Of course, Laptev and Safronov conjectured such a bound

only for γ < ν/2, but the fact that this is the correct upper bound is not obvious.

Our construction extends the Wigner–von Neumann construction [35] (see also [27]) to

arbitrary dimension ν, which is interesting in its own right. Our counterexamples are

constructed in Section 2. In passing we mention that while the Wigner–von Neumann

example has been studied extensively, we are not aware of similar results about the

Ionescu–Jerison example. It would be interesting to extend the results of Naboko

[22] and Simon [29] on dense embedded point spectrum based on the Wigner–von

Neumann example to instead use the Ionescu–Jerison example.

Concerning (B), we recall that the proof in [8] of (1.1) for 0 < γ ≤ 1/2 relied on

uniform Sobolev bounds due to Kenig–Ruiz–Sogge [16], namely,

‖(−∆−z)−1f‖p′ ≤ C|z|−ν/2+ν/p−1‖f‖p , 2ν/(ν+2) < p ≤ 2(ν+1)/(ν+3) , (1.2)

with C independent of z and with p′ = p/(p−1). (In [16] this bound is only proved for

ν ≥ 3, but the same argument works for ν = 2 as well, see [8].) The range of exponents

2ν/(ν + 2) < p ≤ 2(ν + 1)/(ν + 3) in (1.2) corresponds to 0 < γ ≤ 1/2 in (1.1).

Bounds of the form (1.2) cannot hold for exponents 2(ν+ 1)/(ν+ 3) < p < 2ν/(ν+ 1)

(corresponding to 1/2 < γ < ν/2). However, as we shall show (Theorem 4.3), they

do hold if one replaces the space Lp(Rν) by Lp(R+, r
ν−1 dr;L2(Sν−1)) and similarly

for Lp
′
(Rν). In fact, these bounds prove (1.1) not only for radial potentials, but for
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general potentials in Lγ+ν/2(R+, r
ν−1 dr;L∞(Sν−1)) with the obvious replacement on

the right side; see Theorem 4.1. We also prove a Lorentz space result at the endpoint

γ = ν/2; see Theorem 4.2.

Our results for 1/2 < γ ≤ ν/2 are based on arguments by Barcelo, Ruiz and Vega

[2] and, in particular, precise bounds on Bessel functions. This is further discussed in

Section 4 and in the appendix.

We prove (C) in Section 3. Our argument is based on (1.2), like that in [8], but

is more direct and avoids Birman–Schwinger operators. As we mentioned above, the

deep results of Koch and Tataru [17] imply that −∆ + V has no positive eigenvalues

if V ∈ Lγ+ν/2(Rν) with 0 < γ < 1/2; see also [14] for the case γ = 0 in dimensions

ν ≥ 3. (The fact that the results of [17] apply also to complex-valued potentials is

not emphasized there, but is clear from their proof strategy via Carleman inequalities.

Also, the fact that V ∈ Lγ+ν/2(Rν) satisfies Assumption A.2 in [17] for γ as above can

be easily verified using Sobolev embedding theorems; see, for instance, the proof of

Lemma 3.5 in [10].)

We include our proof of (C) since it is much simpler than the arguments in [14, 17]

and since the same reasoning will give the assertion in (B) for E ∈ [0,∞) where the

results of [17] are not applicable.

The bounds mentioned in (D), see Theorem 3.4, are new, even for E ∈ C \ [0,∞).

They are also derived from (1.2). Somewhat related bound in ν = 1 are contained in

[5].

In this paper we have only discussed bounds on single eigenvalues. The situation for

sums of eigenvalues is less understood and we refer to [9, 18, 3, 6, 11] and references

therein for results and open questions in this direction. Also, we emphasize that we

work only under an Lp condition on V . In contrast, results under exponential decay

assumptions are classical (see, e.g., [23, 20, 21] and also [30, 31]) and extensions to sub-

exponential decay were studied in a remarkable series of papers of Pavlov [24, 25, 26].

For results in the discrete, one-dimensional case we refer, for instance, to [7, 12].

Acknowledgemnts. The authors would like to thank L. Golinskii, H. Koch, A.

Laptev, O. Safronov and D. Tataru for helpful corresondence.

2. Counterexamples

The following theorem shows, in particular, that the bound (1.1) cannot be valid

for positive eigenvalues of Schrödinger operators with real potentials if ν ≥ 2 and

γ > (ν + 1)/2. Our proof simplifies the construction of potentials that appeared in

[14] in a different, but related context.
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Theorem 2.1. For any ν ≥ 2 there is a sequence of potentials Vn : Rν → R, n ∈ N,

such that 1 is an eigenvalue of −∆ + V in L2(Rν) and

|Vn(x)| ≤ C

n+ |x1|+ |x′|2
, x = (x1, x

′) ∈ R× Rν−1 ,

with C > 0 independent of n. In particular, for any p > (ν + 1)/2,

‖Vn‖Lp → 0 as n→∞ .

Proof. We look for an eigenfunction of the form ψ(x) = w(x) sinx1. Then

−∆ψ = ψ − 2(∂xw) cosx1 − (∆w) sinx1 ,

so the eigenvalue equation will be satisfied if we set

V := 2
∂1w

w
cotx1 +

∆w

w
.

We need to choose w in such a way that ψ ∈ L2 and that V satisfies the required

bounds. In particular, ∂1w needs to vanish where sinx1 does. In order to achieve this,

we set

g(x1) := 4

∫ x1

0

sin2 y dy = 2x1 − sin(2x1)

and

wn(x) :=
(
n2 + g(x1)2 + |x′|4

)−α
.

The potential Vn is defined with wn in place of w. The parameter n here is not

necessarily an integer, but we do require later that n ≥ 1. Finally, the parameter α

will be chosen so that w ∈ L2(Rν) (which implies ψ ∈ L2(Rν)). Note that∫
Rν
|wn(x)|2 dx = 2|Sν−2|

∫ ∞
0

(n2 + g(x1)2)−2α+(ν−1)/2 dx1

∫ ∞
0

rν−2 dr

(1 + r4)2α

is finite provided α > ν/4, which we assume in the following. We do not keep track

of the dependence of our estimates on α.

A quick computation shows that

Vn = − 4α

mn

gg′ cotx1 +
4α(α + 1)

m2
n

(
g2(g′)2 + 4|x′|6

)
− 2α

mn

(
(g′)2 + gg′′ + 2(ν + 1)|x′|2

)
with mn(x) := n2 + g(x1)2 + |x′|4. Note that g′ cotx1 = 4 sinx1 cosx1 is bounded.

Moreover, |g|, |x′|2 ≤ m
1/2
n and |g′|, |g′′| ≤ C, so

|Vn| ≤ C
(
m−1/2
n +m−1

n

)
.

Using n ≥ 1, we find m−1
n ≤ n−1m

−1/2
n ≤ m

−1/2
n , so |Vn| ≤ Cm

−1/2
n . This bound is

equivalent to the one stated in the theorem.

Finally, we note that by scaling∫
Rν
|Vn|p dx ≤ C

∫
Rν

dx

(n+ |x1|+ |x′|2)p
= n−p+(ν+1)/2C

∫
Rν

dx

(1 + |x1|+ |x′|2)p
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For p > (ν + 1)/2, the right side tends to zero since (1 + |x1| + |x′|2)−1 ∈ Lp in this

case. This finishes the proof of the theorem. �

We emphasize that the eigenfunctions corresponding to the eigenvalue 1 of −∆+Vn
can have arbitrarily fast or slow (consistent with being square-integrable) algebraic

decay in |x1|+|x′|2. We also note that (for fixed n) the potential Vn has the asymptotic

behavior

Vn(x) =− 16αx1 sin2(2x1)

4|x1|2 + |x′|4
+

16α(α + 1)|x′|6

(4|x1|2 + |x′|4)2
− 4α(4x1 cos(2x1) + (ν + 1)|x′|2)

4|x1|2 + |x′|4

+O((|x1|+ |x′|2)−2)

as |x1|+ |x′|2 →∞.

Our next theorem shows, in particular, that the bound (1.1) cannot be valid for

positive eigenvalues of Schrödinger operators with real, radial potentials if ν ≥ 1 and

γ > 1/2. Our proof extends the Wigner–von Neumann construction [35] (see also [27])

to arbitrary dimensions ν ≥ 1.

Theorem 2.2. For any ν ≥ 1 there is a sequence of radial potentials Vn : Rν → R,

n ∈ N, such that 1 is an eigenvalue of −∆ + V in L2(Rν) and

|Vn(x)| ≤ C

n+ |x|
, x ∈ Rν ,

with C > 0 independent of n. In particular, for any p > ν,

‖Vn‖Lp → 0 as n→∞ .

Proof. We first observe that we may assume ν ≥ 2. Indeed, for ν = 1 we simply

extend Vn from ν = 3 to an even function on R. The proof below will show that the

corresponding eigenfunction ψn is radial and we can extend rψn to an odd function

on R which will satisfy the correct equation.

Now let ν ≥ 2. We look for an eigenfunction of the form

ψ(x) = ϕ(r)w(r) , r = |x| ,

where ϕ is a radial function solving −∆ϕ = ϕ in Rν (in particular, ϕ is regular at the

origin). It is known that, up to a multiplicative constant, ϕ(r) = r−(ν−2)/2J(ν−2)/2(r),

where J(ν−2)/2 is a Bessel function. This follows from Bessel’s equation

−J ′′(ν−2)/2 − r−1J ′(ν−2)/2 +

(
ν − 2

2

)2

r−2J(ν−2)/2 = J(ν−2)/2 ,

as well as

J(ν−2)/2(r) ∼ Γ(ν/2)−1(r/2)(ν−2)/2 as r → 0 . (2.1)

In the following we make use of the asymptotics

J(ν−2)/2(r) =

√
2

πr
sin(r − π(ν − 3)/4) +O(r−3/2) as r →∞ , (2.2)
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which may also be differentiated with respect to r. (These asymptotics can be proved

using Jost solutions, without referring to the theory of Bessel functions.) Using−∆ϕ =

ϕ we find

−∆ψ = ψ − w′(2ϕ′ + (ν − 1)r−1ϕ)− ϕw′′

with (·)′ = ∂/∂r. Therefore, the eigenvalue equation for ψ will be satisfied if we set

V :=
w′

w

2ϕ′ + (ν − 1)r−1ϕ

ϕ
+
w′′

w
.

As usual, we want that w′ vanishes where ϕ vanishes and therefore we define

g(r) :=

∫ r

0

ϕ(s)2sν−1 ds =

∫ r

0

J(ν−2)/2(s)2s ds

The asymptotics (2.2) show that

lim
r→∞

r−1g(r) = π−1 (2.3)

We now define

wn(r) := (n2 + g(r)2)−α

and we define Vn with wn in place of w. As in the previous construction, the parameter

n need not be an integer, but we will use later that n ≥ 1. Finally, we will choose

α > ν/4, which by (2.3) will guarantee that ψ ∈ L2(Rν). As before we do not keep

track of how our estimates depend on α.

A quick computation shows that

Vn =
4α(α + 1)

m2
n

g2g′2 − 2α

mn

(
g′2 + gg′′

)
− 2α

mn

gg′
2ϕ′ + (ν − 1)r−1ϕ

ϕ
(2.4)

with mn(r) := n2 + g(r)2. We claim that we can bound

|Vn| ≤ C
(
m−1/2
n +m−1

n

)
(2.5)

with C independent of n. Once this is shown we can use n ≥ 1 to bound m−1
n ≤

n−1m
−1/2
n ≤ m

−1/2
n and obtain |Vn| ≤ Cm

−1/2
n which, in view of (2.3), is equivalent to

the bound stated in the theorem. Clearly this bound will imply ‖Vn‖Lp → 0 if p > ν.

Thus, it remains to prove (2.5). Using (2.1) and (2.2) we obtain g ≤ m
1/2
n and

|g′|, |g′′| ≤ C, which allows us to bound the first two terms on the right side of (2.4)

by C(m
−1/2
n +m−1

n ). In order to bound the last term, we use g′ = ϕ2rν−1, so

g′
2ϕ′ + (ν − 1)r−1ϕ

ϕ
= rν−1ϕ(2ϕ′ + (ν − 1)r−1ϕ) = (rν−1ϕ2)′

Using again (2.1) and (2.2) we obtain |(rν−1ϕ2)′| ≤ C, and therefore also the last term

on the right side of (2.4) is bounded by Cm
−1/2
n . This completes the proof of (2.5)

and of the theorem. �



SCHRÖDINGER OPERATORS WITH COMPLEX POTENTIALS — June 16, 2015 7

3. Bounds for 0 ≤ γ ≤ 1/2

In this section we review the proofs in [8] and show that these bounds are also valid

for positive eigenvalues. Moreover, we shall prove bounds for potentials which belong

to spaces of the form Lγ1+ν/2 + Lγ2+ν/2.

Since we will use a similar argument later in Section 4 we formulate the general

principle in abstract terms.

Proposition 3.1. Let X be a separable complex Banach space of functions on Rν such

that L2(Rν)∩X is dense in X and such that the duality pairing X∗×X → C extends

the inner product in L2(Rν). Assume that

‖(−∆− z)−1‖X→X∗ ≤ N(z) , (3.1)

where N(z) is finite for z ∈ C \ [0,∞) and continuous up to [0,∞) \ I for some set

I ⊂ [0,∞). Assume that multiplication by V : Rν → C is a bounded operator from X

to X∗. Then, if E ∈ C\I is an eigenvalue of −∆+V in L2(Rν) with an eigenfunction

in X∗, then

1 ≤ N(E) ‖V ‖X∗→X .

Proof. We give the proof only for E ∈ [0,∞) \ I, the case E ∈ C \ [0,∞) being similar

(and easier). We denote the eigenfunction by ψ and observe that, since ψ ∈ X∗ and

since multiplication by V is bounded from X∗ to X,

‖V ψ‖X ≤ ‖V ‖X∗→X‖ψ‖X∗ , (3.2)

so V ψ ∈ X. Since (−∆ − E − iε)−1 is bounded from X to X∗ and since, by the

eigenvalue equation,

ψε := (−∆− E − iε)−1(−∆− E)ψ = −(−∆− E − iε)−1(V ψ) ,

we infer that ψε ∈ X∗ and

‖ψε‖X∗ ≤ N(E + iε) ‖V ψ‖X .

Since N(E + iε)→ N(E) as ε→ 0, we see that the ψε are uniformly bounded in X∗

and so they have a limit point in the weak-* topology of X∗. On the other hand, by

dominated convergence in Fourier space, one easily verifies that ψε → ψ strongly (and

hence also weakly) in L2(Rν). Since L2(Rν) ∩X is dense in X and since the duality

pairing X∗ × X → C extends the inner product in L2(Rν), we infer that the limit

point in the weak-* topology of X∗ is unique and given by ψ. Moreover, by lower

semi-continuity of the norm,

‖ψ‖X∗ ≤ lim inf
ε→0

‖ψε‖X∗ ≤ lim inf
ε→0

N(E + iε) ‖V ψ‖X = N(E) ‖V ψ‖X

This, together with the bound (3.2), implies the bound in the proposition. �

Our first application of the abstract principle yields the following theorem, which

extends the bound of [8] to positive eigenvalues.
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Theorem 3.2. Let ν ≥ 2, 0 < γ ≤ 1/2 and V ∈ Lγ+ν/2(Rν). Then any eigenvalue E

of −∆ + V in L2(Rν) satisfies

|E|γ ≤ Cγ,ν

∫
Rν
|V |γ+ν/2 dx

with Cγ,ν independent of V . Moreover, if ν ≥ 3 and∫
Rν
|V |ν/2 dx < Cν ,

then −∆ + V in L2(Rν) has no eigenvalue.

Proof. We apply Proposition 3.1 with X = Lp(Rν), where p is defined by p/(2− p) =

γ + ν/2, so that the assumptions on γ become 2ν/(ν + 2) < p ≤ 2(ν + 1)/(ν + 3).

Since −∆ +V is defined via m-sectorial forms, we know a-priori that an eigenfunction

satisfies ψ ∈ H1(Rν) and so, by Sobolev embedding theorems, ψ ∈ Lp
′
(Rν) = X∗.

Note also that, by Hölder’s inequality,

‖V ‖X∗→X = ‖V ‖p/(2−p)
According to the Kenig–Ruiz–Sogge bound (1.2) assumption (3.1) is satisfied with

N(z) = C|z|−ν/2+ν/p−1 and I = {0}. Therefore the claimed bound follows from

Proposition 3.1. The second part of the theorem is proved similarly, taking γ = 0,

I = ∅ and noting that for ν ≥ 3 the bound (1.2) holds also for p = 2ν/(ν + 2). This

completes the proof. �

Remark 3.3. In a similar spirit we note that if ν = 1 and V ∈ L1(R) (possibly

complex-valued), then −d2/dx2 + V (x) in L2(R) has no positive eigenvalue. Thus

the restriction that the bound |E|1/2 ≤ (1/2)‖V ‖1 holds only for eigenvalues E ∈
C \ (0,∞), which appears frequently in the literature, is unnecessary. (The absence

of positive eigenvalues follows from standard Jost function techniques which show

that for k > 0 the equation −ψ′′ + V ψ = k2ψ has two solutions ψ+ and ψ− with

ψ±(x) ∼ e±ikx as x → ∞, so no solution of this equation is square integrable. These

arguments go back at least to Titchmarsh [33].)

Proposition 3.4. Let V1 ∈ Lγ1+ν/2(Rν), V2 ∈ Lγ2+ν/2(Rν), where 0 < γ1 < γ2 ≤ 1/2

if ν = 2 and 0 ≤ γ1 < γ2 ≤ 1/2 if ν ≥ 3. Then any eigenvalue E ∈ C \ {0} of

−∆ + V1 + V2 in L2(Rν) satisfies

|E|−γ1
∫
Rν
|V1|γ1+ν/2 dx+ |E|−γ2

∫
Rν
|V |γ2+ν/2 dx ≥ cγ1,γ2,ν > 0 .

Proof. Again we prove this only for positive eigenvalues, the other case being simpler.

Let ψ be the eigenfunction and let ε > 0 be a small parameter. We denote Sε :=

| − ∆ − E − iε|(−∆ − E − iε)−1 and ϕε := | − ∆ − E − iε|1/2ψ, where ψ is the

eigenfunction. Since ψ ∈ H1(Rν), ϕε ∈ L2(Rν). We can write the eigenvalue equation

in the form

Sε| −∆− E − iε|−1/2V | −∆− E − iε|−1/2ϕε = − −∆− E
−∆− E − iε

ϕε .
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Therefore,∥∥∥∥ −∆− E
−∆− E − iε

ϕε

∥∥∥∥ = ‖Sε| −∆− E − iε|−1/2V | −∆− E − iε|−1/2ϕε‖

≤
(∥∥Sε| −∆− E − iε|−1/2V1| −∆− E − iε|−1/2

∥∥
+
∥∥Sε| −∆− E − iε|−1/2V2| −∆− E − iε|−1/2

∥∥) ‖ϕε‖ .
(3.3)

Since the operator norm of AB equals that of BA, we have∥∥Sε| −∆− E − iε|−1/2Vj| −∆− E − iε|−1/2
∥∥ =

∥∥(sgnVj)|Vj|1/2(−∆− E − iε)−1|Vj|1/2
∥∥

and, as in [8], the Kenig–Ruiz–Sogge bound (1.2) implies that∥∥(sgnVj)|Vj|1/2(−∆− E − iε)−1|Vj|1/2
∥∥ ≤ C(|E|2 + ε2)−γj/(2γj+ν)‖Vj‖γj+ν/2 .

Inserting this into (3.3) we obtain∥∥∥∥ −∆− E
−∆− E − iε

ϕε

∥∥∥∥ ≤ C
(
(|E|2 + ε2)−γ1/(2γ1+ν)‖V1‖γ1+ν/2

+(|E|2 + ε2)−γ2/(2γ2+ν)‖V2‖γ2+ν/2

)
‖ϕε‖ . (3.4)

Finally, we observe that ‖ϕε‖ ≤ ‖ϕ‖ < ∞ and that −∆−E
−∆−E−iεϕε → ϕ in L2(Rν) (by

dominated convergence in Fourier space. Thus, as ε→ 0, we obtain the claimed bound

in the theorem. �

4. Bounds for 1/2 < γ < ν/2

4.1. Eigenvalue bounds. In this section we show that (1.1) holds for 1/2 < γ <

ν/2 if V is radial and, more generally, if for every r > 0, V (rω) is replaced by

ess-supω∈Sν−1|V (rω)|. The precise statement is

Theorem 4.1. Let ν ≥ 2 and 1/2 < γ < ν/2. Then

|E|γ ≤ Cγ,ν

∫ ∞
0

‖V (r ·)‖γ+ν/2

L∞(Sν−1)r
ν−1 dr .

At the endpoint γ = ν/2 we have the following bound

Theorem 4.2. Let ν ≥ 2. Then

|E|ν/2 ≤ Cν

(∫ ∞
0

|{r > 0 : ess-supω∈Sν−1|V (rω)| > τ}|1/νν dτ

)ν
,

where | · |ν denotes the measure |Sν−1| rν−1 dr on (0,∞)

Note that the integral on the right side in the theorem is the norm in the Lorentz

space Lν,1(R+, r
ν−1 dr;L∞(Sν−1)).

We will deduce Theorems 4.1 and 4.2 from the following two resolvent bounds. The

first one will imply Theorem 4.1.
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Theorem 4.3. Let ν ≥ 2 and 2(ν + 1)/(ν + 3) < p < 2ν/(ν + 1). Then for all

f ∈ Lp(R+, r
ν−1 dr;L2(Sν−1)) and z ∈ C \ [0,∞),(∫ ∞
0

(∫
Sν−1

|((−∆− z)−1f)(rω)|2 dω
)p′/2

rν−1 dr

)1/p′

≤ Cp,ν |z|−ν/2+ν/p−1

(∫ ∞
0

(∫
Sν−1

|f(rω)|2 dω
)p/2

rν−1 dr

)1/p

.

As explained in the introduction, we think of Theorem 4.3 as the analogue of the

uniform Sobolev bounds by Kenig–Ruiz–Sogge [16] which correspond to the range

2ν/(ν + 2) < p ≤ 2(ν + 1)/(ν + 3), see (1.2). Since uniform resolvent bounds imply

Fourier restriction bounds (since (−∆−λ−iε)−1−(−∆−λ+iε)−1 → 2πiδ(−∆−λ) as

ε→ 0+), the Knapp counterexample [32] shows that (1.2) cannot hold for larger values

of p. However, as we show, larger values of p can be achieved by considering mixed

norm spaces. The use of mixed norm spaces in the context of Fourier restriction bounds

seems to have first appeared in Vega [34], who proved the corresponding restriction

inequality in the range 2(ν+1)/(ν+3) < p < 2ν/(ν+1) in dimensions ν ≥ 3; see also

[13] where ν = 2 is included as well. Our resolvent bound seems to be new, although

our arguments follow closely those of Barcelo–Ruiz–Vega [2], and our assumption

p < 2ν/(ν+1) is optimal, since the results of [13] show that the corresponding Fourier

restriction bound does not hold for p ≥ 2ν/(ν + 1).

The following bound will imply Theorem 4.2. As we will see, it is a rather straight-

forward consequence of the main result of [2].

Theorem 4.4. Let ν ≥ 2 and let V be a non-negative, measurable function with

‖V ‖Lν,1(R+,rν−1 dr;L∞(Sν−1)) =

∫ ∞
0

|{r > 0 : ess-supω∈Sν−1|V (rω)| > τ}|1/νν dτ <∞ .

Then, for all f ∈ L2(Rν , V −1 dx) ∩ L2(Rν) and z ∈ C \ [0,∞),∫
Rν
|(−∆− z)−1f |2V dx ≤ C|z|−1‖V ‖2

Lν,1(R+,rν−1 dr;L∞(Sν−1))

∫
Rν
|f |2V −1 dx .

Theorem 4.1 follows from Theorem 4.3 by Proposition 3.1 with the choice X =

Lp(R+, r
ν−1 dr;L2(Sν−1)) in the same way as Theorem 3.2 was derived from (1.2).

Similarly, Theorem 4.2 follows from Theorem 4.4 by Proposition 3.1; here we set

X = L2(w−1) where w = max{|V |, δG}, where G is a strictly positive function in

Lν,1(R+, r
ν−1 dr;L∞(Sν−1)) (for instance, a Gaussian) and δ > 0 is a small parameter.

Having δ > 0 implies that L2 ∩ L2(w−1) is dense in L2(w−1). Moreover, one easily

verifies that

‖V ‖L2(w)→L2(w−1) ≤ 1 ,

so Proposition 3.1 yields

1 ≤ C|z|−1‖max{|V |, δG}‖2
Lν,1(R+,rν−1 dr;L∞(Sν−1))
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and as δ → 0 we obtain the claimed bound.

Thus, it remains to prove Theorems 4.3 and 4.4.

4.2. Proof of Theorem 4.3. It is well known that on spherical harmonics of degree

l ∈ N0 the operator −∆ acts as

hl := −∂2
r − (ν − 1)r−1∂r + l(l + ν − 2)r−2 .

This operator, with an appropriate boundary condition at the origin (coming from

the decomposition into spherical harmonics), is self-adjoint in L2(R+, r
ν−1 dr). It is

well-known that the boundary values of the resolvent (hl − λ− i0)−1 exist in suitably

weighted spaces. The following proposition shows that these boundary values are

bounded operators from Lp(R+, r
ν−1 dr) to Lp

′
(R+, r

ν−1 dr). The key observation is

that their norms are bounded uniformly in l ∈ N0.

Proposition 4.5. For any ν ≥ 2 and 2ν/(ν + 2) < p < 2ν/(ν + 1),

sup
l∈N0

∥∥(hl − 1− i0)−1
∥∥
Lp(R+,rν−1)→Lp′ (R+,rν−1)

<∞ .

To prove this proposition we use the following simple criterion for the boundedness

of an integral operator from Lp to Lp
′
.

Lemma 4.6. Let X and Y be measure spaces and k ∈ Lp′(X×Y ) for some 1 ≤ p ≤ 2.

Then (kf)(y) =
∫
X
k(x, y)f(x) dx defines a bounded operator from Lp(X) to Lp

′
(Y )

with

‖k‖Lp(X)→Lp′ (Y ) ≤ ‖k‖Lp′ (X×Y ) .

Proof of Lemma 4.6. By Minkowski’s and Hölder’s inequality

‖kf‖p
′

p′ =

∫
Y

∣∣∣∣∫
X

k(x, y)f(x) dx

∣∣∣∣p′ dy
≤

(∫
X

(∫
Y

|k(x, y)|p′ dy
)1/p′

|f(x)| dx

)p′

≤
(∫

X

∫
Y

|k(x, y)|p′ dy dx
)(∫

X

|f(x)|p dx
)p′/p

,

which yields the claimed inequality. �

Modulo a technical result about Bessel functions (Proposition A.1), which we prove

in the appendix, we now give the

Proof of Proposition 4.5. According to Sturm–Liouville theory (hl − 1 − i0)−1 is an

integral operator with integral kernel

(hl − 1− i0)−1(r, r′) = (rr′)−(ν−2)/2Jµl(min{r, r′})H(1)
µl

(max{r, r′}) ,
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where Jµl and H
(1)
µl are Bessel and Hankel functions, respectively, and where µl =

l + (ν − 2)/2. Thus, by Lemma 4.6,∥∥(hl − 1− i0)−1
∥∥p′
Lp(R+,rν−1)→Lp′ (R+,rν−1)

≤ 2

∫ ∞
0

∫ ∞
r

|Jµl(r)|p
′|Hµl(r

′)|p′(rr′)−p′(ν−2)/2+ν−1 dr′ dr .

The fact that the right side is finite and uniformly bounded in l follows from Proposi-

tion A.1 in the appendix with q = p′. This completes the proof of the proposition. �

In order to deduce Theorem 4.3 from Proposition 4.5 we need the following general

result.

Lemma 4.7. Let X and Y be measure spaces and 1 ≤ p ≤ 2. Let (Kj) be a sequence

of bounded operators from Lp(X) to Lp
′
(Y ). Let H be a separable Hilbert space with

an orthonormal basis (ej) and define a linear operator K by

K(f ⊗ ej) = (Kjf)⊗ ej for all f ∈ Lp(X) and all j .

Then K is bounded from Lp(X,H) to Lp
′
(Y,H) with

‖K‖Lp(X,H)→Lp′ (Y,H) = sup
j
‖Kj‖Lp(X)→Lp′ (Y ) .

Proof of Lemma 4.7. Since

‖K(f ⊗ ej)‖Lp′ (Y,H) = ‖Kjf‖Lp′ (Y ) ≤ ‖Kj‖Lp(X)→Lp′ (Y )‖f‖Lp(X)

= ‖Kj‖Lp(X)→Lp′ (Y )‖f ⊗ ej‖Lp(Y,H) ,

we have ‖K‖ ≤ sup ‖Kj‖ (with obvious indices). To prove the opposite bound we

write F =
∑
fj ⊗ ej, so that

‖KF‖p
′

Lp
′
(Y,H)

=

∫
Y

(∑
|(Kjfj)(y)|2

)p′/2
dy .

Since p′ ≥ 2 we can bound this from above using Minkowski’s inequality by(∑(∫
Y

|(Kjfj)(y)|p′ dy
)2/p′

)p′/2

,

which in turn is bounded from above by(∑
‖Kj‖2

(∫
X

|fj(x)|p dx
)2/p

)p′/2

≤ (sup ‖Kj‖)p
′

(∑(∫
X

|fj(x)|p dx
)2/p

)p′/2

.

Once again by Minkowski’s inequality, using the fact that p ≤ 2,∑(∫
X

|fj(x)|p dx
)2/p

≤
(∫

X

(∑
|fj(x)|2

)p/2
dx

)2/p

= ‖F‖2
Lp(X,H) .

This proves that ‖KF‖Lp′ (Y,H) ≤ (sup ‖Kj‖) ‖F‖Lp(X,H), as claimed. �

We are finally in position to give the
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Proof of Theorem 4.3. Let ν ≥ 2 and 2(ν + 1)/(ν + 3) < p < 2ν/(ν + 1). (In fact, the

proof works also for 2ν/(ν+2) < p ≤ 2(ν+1)/(ν+3), but the inequality we obtain in

that case is weaker than (1.2).) We begin with a well-known argument reducing the

proof to the case z = 1. For f, g ∈ C∞0 (Rν),

z 7→ zν/2−ν/p+1(g, (−∆− z)−1f)

is an analytic function in {Im z > 0}, continuous up to the boundary, and satisfying

|z|ν/2−ν/p+1|(g, (−∆− z)−1f)| ≤ Cr,ν |z|α‖f‖r‖g‖r
for every 2ν/(ν + 2) < r ≤ 2(ν + 1)/(ν + 3) and a certain α depending on r. This

follows from the Kenig–Ruiz–Sogge bound (1.2). Thus, by the Phragmén–Lindelöf

principle,

sup
Im z>0

|z|ν/2−ν/p+1|(g, (−∆− z)−1f)| = sup
λ∈R
|λ|ν/2−ν/p+1|(g, (−∆− λ− i0)−1f)| .

If we can show that the right side is bounded by Cp,ν‖f‖Lp(L2)‖g‖Lp(L2) (with the

abbreviation Lp(L2) = Lp(R+, r
ν−1 dr;L2(Sν−1))), then, by density, the bound will be

valid for any f, g ∈ Lp(L2). Moreover, since

(g, (−∆− z)−1f) = ((−∆− z)−1g, f) = (f, (−∆− z)−1g) ,

we will have shown the bound claimed in the theorem.

By scaling it suffices to prove the bound

|λ|ν/2−ν/p+1|(g, (−∆− λ− i0)−1f)| ≤ Cp,ν‖f‖Lp(L2)‖g‖Lp(L2) (4.1)

for λ = ±1 only. We begin with λ = −1. Since (−∆ + 1)−1 is convolution with a

function in Lq for any q < ν/(ν − 2), Young’s inequality yields

|(g, (−∆− λ− i0)−1f)| ≤ C ′p,ν‖f‖Lp‖g‖Lp

for any p > 2ν/(ν + 2). Since

‖f‖Lp ≤ |Sν−1|(2−p)/2p ‖f‖Lp(L2)

for p ≤ 2, this bound for λ = −1 is stronger than what we shall prove for λ = 1.

Therefore we have reduced the proof to showing (4.1) for 2(ν + 1)/(ν + 3) < p <

2ν/(ν + 1) and λ = 1. This is the same as

‖(−∆− 1− i0)−1f‖Lp′ (L2) ≤ Cp,ν‖f‖Lp(L2) .

To do so, we expand f with respect to spherical harmonics (Yl,m), with l ∈ N0 and m

running through a certain index set of cardinality depending on l,

f(x) =
∑
l,m

fl,m(|x|)Yl,m(x/|x|) ,

so that ∫ ∞
0

(∫
Sν−1

|f(rω)|2 dω
)p/2

rν−1 dr =

∫ ∞
0

(∑
l,m

|fl,m(r)|2
)p/2

rν−1 dr .
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Separation of variables shows that(
(−∆− 1− i0)−1f

)
(x) =

∑
lm

(
(hl − 1− i0)−1flm

)
(|x|)Ylm(x/|x|) ,

where hl was defined at the beginning of this subsection. By Lemma 4.7 we have

‖(−∆− 1− i0)−1‖Lp(L2)→Lp′ (L2) = sup
l∈N0

‖(hl − 1 + i0)−1‖Lp→Lp′ .

The right hand side is finite by Proposition 4.3. This completes the proof of the

theorem. �

4.3. Proof of Theorem 4.4. We shall deduce Theorem 4.4 from the following the-

orem of Barcelo, Ruiz and Vega [2]. They introduce the following norm,

‖V ‖MT = sup
R>0

∫ ∞
R

ess-supω∈Sν−1|V (rω)| r
(r2 −R2)1/2

dr <∞ .

Theorem 4.8. Let ν ≥ 2 and let V be a non-negative, measurable function with

‖V ‖MT <∞. Then, for all f ∈ L2(Rν , V −1 dx) ∩ L2(Rν) and z ∈ C \ [0,∞),∫
Rν
|(−∆− z)−1f |2V dx ≤ C|z|−1‖V ‖2

MT

∫
Rν
|f |2V −1 dx .

Barcelo, Ruiz and Vega call ‖V ‖MT <∞ the ‘radial Mizohata–Takeuchi’ condition,

thus the subscript ‘MT’. They show that for radial V this condition is, in fact, also

necessary to have a bound of the form ‖u‖L2(V ) ≤ C|z|−1/2‖(−∆− z)u‖L2(V ).

Proof of Theorem 4.4. By Theorem 4.8 it suffices to show that for any ν ≥ 2,

‖V ‖MT ≤ Cν‖V ‖Lν,1(R+,rν−1,L∞(Sν−1)) . (4.2)

Let ρR(r) := r−ν+2(r2−R2)−1/2χ{r>R}. Then, by Hölder’s inequality in Lorentz spaces,

with v(r) := ess-supω∈Sν−1|V (rω)|,∫ ∞
R

ess-supω∈Sν−1|V (rω)| r
(r2 −R2)1/2

dr =

∫ ∞
0

v(r)ρR(r)rν−1 dr

≤ C‖v‖Lν,1(R+,rν−1)‖ρR‖Lν/(ν−1),∞(R+,rν−1)

= C‖V ‖Lν,1(R+,rν−1,L∞(Sν−1))‖ρ1‖Lν/(ν−1),∞(R+,rν−1) ,

where we used that, by scaling, ‖ρR‖Lν/(ν−1),∞(R+,rν−1) = ‖ρ1‖Lν/(ν−1),∞(R+,rν−1). One

easily checks that ρ1 ∈ Lν/(ν−1),∞(R+, r
ν−1), which, after taking the supremeum over

R > 0, yields (4.2). �

The next corollary contains further eigenvalue bounds which are consequences of

Theorem 4.8.

Corollary 4.9. Let E ∈ C be an eigenvalue of −∆ + V in L2(Rν). Then

|E|1/2 ≤ Cν ‖V ‖MT . (4.3)
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Moreover, for any p ∈ (2,∞],

|E|1/2 ≤ Cp,ν
∑
j∈Z

(∫ 2j+1

2j
‖V (r ·)‖pL∞(Sν−1)r

p−1 dr

)1/p

. (4.4)

Clearly, (4.4) for p =∞ means

|E|1/2 ≤ Cν
∑
j∈Z

(
sup

2j<|x|<2j+1

|x||V (x)|

)
.

Since
∑

j∈Z
(
sup2j<|x|<2j+1 |x|(1 + |x|)−1−ε) < ∞ for ε > 0, this bound implies, in

particular,

|E|1/2 ≤ Cν,ε ess-supx∈Rν (1 + |x|)1+ε|V (x)| , ε > 0 .

which is the main result of [28].

Proof. Bound (4.3) follows from Theorem 4.8 by Proposition 3.1 using the arguments

after Theorem 4.4. Having proved this, for (4.4) it suffices to prove that

‖V ‖MT ≤ Cp,ν
∑
j∈Z

(∫ 2j+1

2j
‖V (r ·)‖pL∞(Snu−1)r

p−1 dr

)1/p

. (4.5)

This bound is stated in [2] without proof, so we include it for the sake of completeness.

We abbreviate v(r) := ‖V (r ·)‖L∞(Sν−1). Since p > 2,

∫ 2R1

R

v(r)r

(r2 −R2)1/2
dr ≤

(∫ 2R

R

v(r)prp−1 dr

)1/p
(∫ 2R

R

(
r√

r2 −R2

)p′
dr

r

)1/p′

= cp

(∫ 2R

R

v(r)prp−1 dr

)1/p

.

On the other hand, for r ≥ 2R, r/
√
r2 −R2 ≤ 2/

√
3, and therefore∫ ∞

2R

v(r)r

(r2 −R2)1/2
dr ≤ 2√

3

∞∑
j=1

∫ 2j+1R

2jR

v(r) dr

≤ 2√
3

∞∑
j=1

(∫ 2j+1R

2jR

v(r)prp−1 dr

)1/p(∫ 2j+1R

2jR

dr

r

)1/p′

=
2√
3

(ln 2)1/p′
∞∑
j=1

(∫ 2j+1R

2jR

v(r)prp−1 dr

)1/p

.

Picking k ∈ Z such that 2k ≤ R < 2k+1 we easily deduce (4.5). �
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Appendix A. Bounds on Bessel functions

The key ingredient in our proof of Proposition 4.5 was the following result about

integrals of Bessel and Hankel functions.

Proposition A.1. Let ν ≥ 2 and 2ν/(ν − 1) < q < 2ν/(ν − 2). Then

sup
µ≥0

∫ ∞
0

∫ ∞
r

|Jµ(r)|q|H(1)
µ (r′)|q(rr′)−q(ν−2)/2+ν−1dr dr′ <∞ .

We emphasize that in this result ν is not required to be integer and µ is not required

to be a half-integer (although they will be in our application later on).

In this appendix we prove Proposition A.1 using the techniques of [2]. Using WKB

analysis, Barcelo, Ruiz and Vega prove the following uniform bounds on Bessel func-

tions. We state their complete result although we will not use its full strength.

Proposition A.2. There is a constant C > 0 and a constant α0 ∈ (0, 1/2) such that

the following holds for all µ ≥ 1/2.

(1) For 0 < r ≤ 1,

|Jµ(r)| ≤ C
(r/2)µ

Γ(µ+ 1)
, |H(1)

µ (r)| ≤ C
Γ(µ)

(r/2)µ
.

(2) For 1 ≤ r ≤ µ sechα0,

|Jµ(r)| ≤ C
e−µϕµ(r)

µ1/2
, |H(1)

µ (r)| ≤ C
eµϕµ(r)

µ1/2
.

(3) For µ sechα0 ≤ r ≤ µ− µ1/3,

|Jµ(r)| ≤ C
e−µϕµ(r)

µ1/4(µ− r)1/4
, |H(1)

µ (r)| ≤ C
eµϕµ(r)

µ1/4(µ− r)1/4
.

(4) For µ− µ1/3 ≤ r ≤ µ+ µ1/3,

|Jµ(r)| ≤ C
1

µ1/3
, |H(1)

µ (r)| ≤ C
1

µ1/3
.

(5) For r ≥ µ+ µ1/3,

|Jµ(r)| ≤ C
1

r1/4(r − µ)1/4
, |H(1)

µ (r)| ≤ C
1

r1/4(r − µ)1/4
.

Here, the function ϕµ is defined by ϕµ(µ sechα) = α− tanhα.

We split the proof of Proposition A.1 into two parts. The first part (which is

analogous to Lemma 6 in [2]) is

Lemma A.3. Let q > 0 and ρ > −1 such that

q

2
> ρ+ 1 ,

q

3
≥ ρ+

1

3
.
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Then

sup
µ≥1/2

(∫ ∞
0

|Jµ(r)|qrρ dr +

∫ ∞
µ−µ1/3

|H(1)
µ (r)|qrρ dr

)
<∞ .

Arguing slightly more carefully, we can replace the lower bound ρ > −1 by q
2
+ρ+1 >

0. More generally, it can be improved to µ0q + ρ+ 1 > 0 if we restrict the supremum

to µ ≥ µ0 ≥ 1/2. This is only needed to ensure the integrability of |Jµ(r)|qrρ near

r = 0.

Proof of Lemma A.3. We are going to use the upper bounds from Proposition A.2.

Since they coincide for Jµ and H
(1)
µ in the range r ≥ µ − µ1/3, we only prove the

lemma for Jµ. We write
∫∞

0
|Jµ(r)|qrρ dr = I1 + I2 + I3 + I4 + I5 + I6, where the

different terms correspond to the following regions of integration:

I1 : 0 < r ≤ 1 ,

I2 : 1 < r ≤ µ sechα0 ,

I3 : µ sechα0 < r ≤ µ− µ1/3 ,

I4 : µ− µ1/3 < r ≤ µ+ µ1/3 ,

I5 : µ+ µ1/3 < r ≤ 2µ ,

I6 : r > 2µ .

In each of the regions we use the bounds from Proposition A.2 and we only make a

few remarks about the straightforward computations. The finiteness of I1 requires

qµ + ρ + 1 > 0, which follows from ρ > −1. To bound I2 we use the fact that

|Jµ(r)| ≤ Cµ−1 for 0 < r ≤ µ sechα0, which is an easy consequence of Proposition A.2.

To bound I3 we split the region of integration into intervals (µ− 2j+1µ1/3, µ− 2jµ1/3]

and use ϕµ(r) ≥ ϕµ(µ − 2jµ1/3) ≥ C−1µ−123j/2 in each such interval. This yields

I3 ≤ Cµ−q/3+ρ+1/3, which is uniformly bounded in µ by assumption. We obtain the

same bound on I4 and, if q > 4, on I5. Finally, if q/2− ρ− 1 > 0 then I6 is finite and

satisfies I6 ≤ Cµ−q/2+ρ+1. The same bound holds for I5 if q < 4 and, with a factor of

lnµ, if q = 4. This concludes the sketch of the proof. �

The second part in the proof of Proposition A.1 (which is analogous to equation

(2.28) in [2]) is

Lemma A.4. Let q > 0 and ρ > −1 such that

q

2
> ρ+ 1 ,

q

3
≥ ρ+

1

3
.

Then

sup
µ≥1/2

∫ µ−µ1/3

0

∫ µ−µ1/3

r

|Jµ(r)|q|H(1)
µ (r′)|q(rr′)ρ dr′ dr <∞ .
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Proof of Lemma A.4. We decompose the double integral as I1 + I2, corresponding to

the following regions of integration:

I1 : 0 < r ≤ µ sechα0 , r < r′ ≤ µ− µ1/3 ,

I2 : µ sechα0 < r ≤ µ− µ1/3 , r < r′ ≤ µ− µ1/3 .

To bound I1 we use the fact that r|H(1)
µ (r)|2 is a decreasing function of r [36, p. 446]

and obtain for q/2 > ρ+ 1,∫ µ−µ1/3

r

|H(1)
µ (r′)|q(r′)ρ dr′ ≤ rq/2|H(1)

µ (r)|q
∫ ∞
r

(r′)ρ−q/2 dr′ =
rρ+1

q/2− ρ− 1
|H(1)

µ (r)|q .

The bounds from Proposition A.2 show that |Jµ(r)||H(1)
µ (r)| ≤ C2µ−1 for 0 < r ≤

µ sechα0, and therefore

I1 ≤
C2qµ−q

q/2− ρ− 1

∫ µ−µ1/3

0

r2ρ+1 dr ≤ C ′µ−q+2ρ+2 .

This is uniformly bounded since q/2 > ρ+ 1.

To bound I2 we argue similarly, but we estimate slightly differently∫ µ−µ1/3

r

|H(1)
µ (r′)|q(r′)ρ dr′ ≤ rq/2|H(1)

µ (r)|q
∫ µ

r

(r′)ρ−q/2 dr′ ≤ rρ(µ− r)|H(1)
µ (r)|q .

Proposition A.2 yields |Jµ(r)||H(1)
µ (r)| ≤ C2µ−1/2(µ − r)−1/2 for µ sechα0 < r ≤

µ− µ1/3, and therefore

I2 ≤ C2qµ−q/2
∫ µ−µ1/3

µ sechα0

(µ− r)1−q/2r2ρ dr ≤ Cqµ
2ρ−q/2

∫ µ−µ1/3

µ sechα0

(µ− r)1−q/2 dr .

We conclude that

I2 ≤ C ′q ×


µ2ρ−2q/3+2/3 if q > 4 ,

µ2ρ−2 lnµ if q = 4 ,

µ2ρ−q+2 if q < 4 .

Under our assumptions on q and ρ, this is uniformly bounded, as claimed. �

Finally, we give the

Proof of Proposition A.1. Let ρ = −q(ν−2)/2 +ν−1. The conditions q < 2ν/(ν−2)

and q > 2ν/(ν− 1) imply ρ > −1 and q/2 > ρ+ 1, respectively. Finally, the condition

q/3 ≥ ρ + 1/3 follows from q > 2ν/(ν − 1) and ν ≥ 2. Therefore we can apply
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Lemmas A.3 and A.4 and find that∫ ∞
0

∫ ∞
r

|Jµ(r)|q|H(1)
µ (r)|q(rr′)−q(ν−2)/2+ν−1dr dr′

=

∫ µ−µ1/3

0

∫ µ−µ1/3

r

|Jµ(r)|q|H(1)
µ (r)|q(rr′)−q(ν−2)/2+ν−1dr dr′

+

∫ ∞
0

∫ ∞
max{r,µ−µ1/3}

|Jµ(r)|q|H(1)
µ (r)|q(rr′)−q(ν−2)/2+ν−1dr dr′

is uniformly bounded in µ ≥ 1/2. The fact that the integrals are uniformly bounded

for 0 ≤ µ ≤ 1/2 follows immediately from standard results about Bessel functions.

This concludes the proof of the proposition. �
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