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Abstract. Let K be a doubly infinite, self–adjoint matrix which is finite band (i.e.
Kjk = 0 if |j − k| > m) and periodic (KSn = SnK for some n where (Su)j = uj+1)
and non–degenerate (i.e. Kjj+m 6= 0 for all j). Then, there is a polynomial, p(x, y), in
two variables with p(K,Sn) = 0. This generalizes the tridiagonal case where p(x, y) =
y2 − y∆(x) + 1 where ∆ is the discriminant. I hope Pavel Exner will enjoy this birthday
bouquet.
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1. Introduction–The Magic Formula

Let J be a doubly infinite, self–adjoint, tridiagonal Jacobi matrix (i.e. Jjk = 0 if
|j − k| > 1 and Jjj+1 > 0) that is periodic, i.e. if

(Su)j = uj+1 (1)

then for some n ∈ Z+, SnJ = JSn. There is a huge literature on this subject –
see Simon [7], Chapter 5.

(J − E)u = 0 is a second order difference equation, so there is a linear map
T (E) : C2 → C2 so that if u0, u1 are given, then T (E) ( u0

u1
) = ( un

un+1 ) for the
solution of (J − E)u = 0. ∆(E) = Tr(M(E)) is called the discriminant of J . We
note that det(T (E)) = 1 so T (E) has eigenvalues λ and λ−1 and ∆(E) = λ+λ−1.
If ∆(E) ∈ (−2, 2), then λ = eiθ for some θ in ±(0, π) and then Ju = Eu has
Floquet solutions, u± obeying u±j+nk = e±ikθu±j . These are bounded and there are
only bounded solutions if ∆(E) ∈ [−2, 2]. Thus spec(J) = ∆([−2, 2]). One often
writes this relation as

∆(E) = 2 cos(θ) (2)

In [2], Damanik, Killip and Simon emphasized and exploited the operator form
of (2), namely

∆(J) = Sn + S−n (3)

This follows from (2) and the view of J as a direct integral. More importantly, what
they called the “magic formula”, [2] shows that a two sided, not apriori periodic,
Jacobi matrix, which obeys (3), is periodic and in the isospectral torus of J .
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A Laurent matrix is a finite band doubly infinite matrix that is constant along
diagonals, so a polynomial in S and S−1. Sn+S−n is an example of such a matrix.
The current paper had its genesis in a question asked me by Jonathan Breuer and
Maurice Duits. They asked if K is finite band and periodic but not tridiagonal if
there is a polynomial Q so that Q(K) is a Laurent matrix. They guessed that Q
might be connected to the trace of a transfer matrix.

While I don’t have a formal example where I can prove there is no such Q, I
have found a related result which strongly suggests that, in general, the answer is
no. I found an object which replaces ∆ for more general K which is width 2m+ 1
(i.e. Kjk = 0 if |j − k| > m), self-adjoint and non-degenerate in the sense that for
all j, Kjj+m 6= 0. Namely we prove the existence of a polynomial, p(x, y), in x
and y of degree 2m in y, so that p(K,Sn) = 0. In the Jacobi case,

p(x, y) = y2 − y∆(x) + 1 (4)

so that p(J, Sn) = 0 is equivalent to (3).
We prove this theorem and begin the exploration of this object in Section 2.

That a scalar polynomial vanishes when the variable is replaced by an operator is
the essence of the Cayley-Hamiltonian theorem which says that a matrix obeys its
secular equation. This was proven in 1853 by Hamilton [4] for the two special cases
of three dimensional rotations and for multiplication by quaternions and stated in
general by Cayley [1] in 1858 who proved it only for 2 × 2 matrices although he
said he’d done the calculation for 3×3 matrices. In 1878, Frobenius [3] proved the
general result and attributed it to Cayley. We regard our main result, Theorem
2.1, as a form of the Cayley-Hamiltonian Theorem.

The magic formula had important precursors in two interesting papers of Nǎiman
[5, 6]. These papers are also connected to our work here.

It is a pleasure to present this paper to Pavel Exner for his 70th birthday. I have
long enjoyed his contributions to areas of common interest. I recall with fondness
the visit he arranged for me in Prague. He was a model organizer of an ICMP.
And he is an all around sweet guy. Happy birthday, Pavel.

2. Main Result

By a width 2m+ 1 matrix, m ∈ {1, 2, . . . }, we mean a doubly infinite matrix, K,
with Kjk = 0 if |j − k| > m. If sup |Kjk| < ∞, K defines a bounded operator on
`2(Z) which we also denote by K. We say that K is non-degenerate if Kjj±m 6= 0
for all j. K is periodic (with period n) if SnK = KSn, where S is the unitary
operator given by (1).

We consider width 2m+ 1, non-degenerate, period-n self–adjoint matrices. In
that case, for any E, because K is non-degenerate, Ku = Eu, as a finite difference
equation, has a unique solution for each choice of {uj}2m−1

j=0 . T (E) will be defined as

the map from {uj}2m−1
j=0 to {uj}n+2m−1

j=n – it is a 2m× 2m matrix. If T (E)u = λu

for λ ∈ C, Ku = Eu has a Floquet solution with ukn+j = λkuj . If T (E) is
diagonalizable, the set of Floquet solutions is a basis for all solutions of Ku = Eu.
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If T (E) has Jordan anomalies (see [8] for background on linear algebra), there is
a basis of modified Floquet solutions with some polynomial growth on top of the
exponential λk.

The values of λ are determined by

p(E, λ) = det(λ1− T (E)) (5)

Since

det(λ1− T (E)) = λ2m det(1− λ−1T (E))

= λ2m

 2m∑
j=0

(−λ)jTr(∧j(T (E)))


=

2m∑
j=0

λjpj(E) (6)

where ∧j is given by multilinear algebra ([8, Section 1.3]) with ∧0(T (E)) = 1 on
C so its Trace is 1. Thus in (6),

p2m(E) = 1, pj(E) = (−1)jTr(∧2m−j(T (E))) (7)

and pj is of degree at most (2m− j)n in E.
Since S and K are commuting bounded normal operators, they have a joint

spectral resolution which is supported precisely on the solutions of p(E, λ) = 0
with |λ| = 1. By the spectral theorem (equivalently, a direct integral analysis), we
thus have the main result of this note:

Theorem 2.1. Let K be a self-adjoint, non-degenerate, width 2m + 1, period n
matrix. Then for p given by (6)/ (7), we have that

p(K,Sn) = 0 (8)

We end with a number of comments:
(1) We used the self–adjointness of K to be able to exploit the spectral theorem.

But just as the Cayley–Hamilton Theorem for finite matrices holds in the
non-self-adjoint case, it seems likely that Theorem 2.1 is valid for general
non-degenerate, periodic K, even if not self–adjoint

(2) Since Kjj−m 6= 0, the transfer matrix, T (E) is invertible and thus det(T (E))
has no zeros. Since it is a polynomial, it must be constant, that is p0(E) is
a constant. It is thus of much smaller degree than the bound, 2mn, obtained
by counting powers of E.

(3) In many cases of interest, T (E) will be symplectic, i.e., there exists an anti-
symmetric Q on C2m with Q2 = −1 so that T (E)tQT (E) = Q. Such a T (E)
has T (E)−1 and T (E)t similar, so the eigenvalues {λj}2mj=1 can be ordered so

that λ2m+1−j = λ−1
j , j = 1, . . . ,m. It follows that det(T (E)) = 1 but even
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more, we have that

Tr(∧k(T (E))) =
∑

j1<···<jk

λj1 . . . λjk

=
∑

j1<···<j2m−k

λ−1
j1
. . . λ−1

j2m−k
(9)

=
∑

j1<···<j2m−k

λj1 . . . λj2m−k
(10)

= Tr(∧2m−k(T (E)))

and p2m−k(E) = pk(E). In the above, (9) follows from the fact that the
product of all the λ’s is 1, and we can sum over the complements of all k–sets.
(10) then uses the fact that λ2m+1−j = λ−1

j , j = 1, . . . ,m.

(4) One can ask whether there is a magic formula in this case, i.e. does p(K̃, Sn) =

0 imply that K̃ is periodic and isospectral to K. There is already one subtlety
one faces at the start. If K̃ is not supposed apriori n–periodic, then Snjpj(K̃)

may not equal pj(K̃)Snj so there is a question of what p(K̃, Sn) = 0 means.

Even if one supposes that K̃Sn = SnK̃, p(K̃, Sn) = 0 and the spectral the-

orem only implies that spec(K̃) ⊂ spec(K), so there is more to be proven.
Indeed, the isospectral set in this case remains to be explored.

(5) It seems unlikely that there is another independent relation besides (8) be-
tween a polynomial in K and Laurent polynomial in S. In general one cannot
hope that p(K,Sn) = 0 yields a polynomial in one variable so that Q(K) is
a Laurent polynomial in Sn but it remains to find an explicit example where
one can prove that the Breuer-Duits question has a negative answer.

There are lots of interesting open questions connected to our main result, The-
orem 2.1.

3. References

[1] A. Cayley, A memoir on the theory of matrices, Philos. Trans. Roy. Soc. London 148
(1858), 17-37.

[2] D. Damanik, R. Killip, and B. Simon, Perturbations of orthogonal polynomials with
periodic recursion coefficients, Annals of Math. 171 (2010), 1931-2010.
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