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Abstract. We use the large deviation approach to sum rules pi-
oneered by Gamboa, Nagel and Rouault to prove higher order sum
rules for orthogonal polynomials on the unit circle. In particular,
we prove one half of a conjectured sum rule of Lukic in the case of
two singular points, one simple and one double. This is important
because it is known that the conjecture of Simon fails in exactly
this case, so this paper provides support for the idea that Lukic’s
replacement for Simon’s conjecture might be true.

1. Introduction

This paper is a contribution to the theory of sum rules in the spec-
tral theory of orthogonal polynomials. The earliest such result is
Szegő’s Theorem for orthogonal polynomials on the unit circle (OPUC)
in Verblunsky’s form [28] of which we’ll say more soon. The mod-
ern theory was initiated by Killip–Simon [14] for orthogonal poly-
nomials on the real line (OPRL) with considerable work by others
[5, 11, 15, 16, 17, 18, 19, 26].

Here we’ll consider OPUC. Given a probability measure µ on ∂D, one
can form the non–zero (in L2(∂D, dµ)), monic orthogonal polynomials
{Φn}Mn=0 where M = N − 1 if µ has exactly N points in its support
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and M =∞ if µ has infinitely many points in its support. In the case
there are exactly N points, one defines ΦN to be the unique degree N
monic polynomial vanishing at all N points (so ΦN = 0 in L2(∂D, dµ)).
The recursion (aka Verblunsky) coefficients, {αj}Mj=0, are given by the
recursion relations, 0 ≤ j < M + 1:

Φn+1(z) = zΦn(z)− αnΦ∗n(z); Φ0 ≡ 1; Φ∗n(z) = znΦn

(
1

z̄

)
(1.1)

For N = ∞, {αj}∞j=0 ∈ D∞ (see [21]) and for N < ∞, only
α0, . . . , αN−1 are defined (since Φk is only defined for k ≤ N) and
αk ∈ D, k = 0, . . . , N − 2, αN−1 ∈ ∂D.

Verblunsky’s Theorem states that there is a one–one correspondence,
V , from probability measures to Verblunsky coefficients with the above
restrictions, i.e. ran(V � measures with infinite support) =

∏∞
j=0 D and

ran(V � n–point measures) =
∏n−2

j=0 D × ∂D. Moreover in the natural
topologies, V is a homeomorphism.

Szegő’s Theorem in Verblunsky form says that

H

(
dθ

2π

∣∣∣∣µ) = −
∞∑
n=0

log(1− |αn|2) (1.2)

where H(ν|µ) is the Kullback-Leibler (KL) divergence (aka ± the rela-
tive entropy, depending on the sign convention for the relative entropy):

H(ν |µ) =

{∫
log
(
dν
dµ

)
dν, if ν is µ–a.c.

∞, otherwise.
(1.3)

(1.2) always holds although both sides may be +∞. In particular,
the condition that both sides are finite at the same time implies

∞∑
j=0

|αj|2 <∞ ⇐⇒
∫

log(w(θ))
dθ

2π
> −∞ (1.4)

where

dµ(θ) = w(θ)
dθ

2π
+ dµs (1.5)

where dµs is singular w.r.t dθ. Simon [23] calls a result like (1.4)
that gives equivalence of spectral data and coefficient data a “spectral
theory gem”. (1.4) in particular implies the existence of measures with
arbitrarily bad singular part mixed in with a.c. spectrum and with `2

decaying Verblunsky coefficients.
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The current paper is devoted to higher order sum rules of which the
first is that of Simon [21, Section 2.8]:

−
∫

(1− cos θ) log(w(θ))
dθ

2π
= −1

2
+

1

2

∞∑
n=−1

|αn+1 − αn|2

+
∞∑
n=0

[
− log(1− |αn|2)− |αn|2

]
(1.6)

where α−1 ≡ −1. This implies the gem∫
(1− cos θ) log(w(θ))

dθ

2π
> −∞ ⇐⇒

∞∑
n=0

|αn+1 − αn|2 + |αn|4<∞

(1.7)
In the same section, Simon conjectured (wrongly as we’ll see!) that

for θ1, . . . , θk distinct in [0, 2π) and m1, . . . ,mk strictly positive integers
we have that∫ k∏

j=1

(1− cos(θ − θj))mj log(w(θ)) dθ > −∞ (1.8)

if and only if

(S1)
k∏
j=1

(S − eiθj)mjα ∈ `2 (1.9)

and

(S2) α ∈ `2m+2 m = max
j=1,...,k

mj (1.10)

In (1.9), S is the operator

(Sα)n = αn+1 (1.11)

Moreover, Simon–Zlatoš [26] proved this conjecture in case∑k
j=1mj = 2, i.e. k ≤ 2 and (m1,m2) = (2, 0) or (1, 1). For simplicity

the remainder of this section will mainly discuss the case θ1 = 0, θ2 = π
although the next two sections will revert to the general case. We’ll
use the symbol (m1,m2) to describe this case.

In [17], Lukic found a counterexample to this conjecture for the (2, 1)
case. He found an explicit example where (S1), (S2) hold but∫

(1− cos θ)2(1 + cos θ) log(w(θ))
dθ

2π
= −∞ (1.12)
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To have any hope of an equivalence one needs more that (S1), (S2).
Lukic made an improved conjecture that replaced (S1), (S2) by

(L11) α can be written α = β(1) + · · ·+ β(k) (1.13)

(L12) (S − eiθj)mjβ(j) ∈ `2 (1.14)

(L13) β(j) ∈ `2mj+2 (1.15)

Lukic also proved a flawed gem, i.e. an equivalence under an a priori
condition on the Verblunsky coefficients, that provides evidence for
his conjecture. In Section 9 we’ll obtain some additional evidence for
the correctness of the Lukic conjecture. In Section 2, we’ll consider
equivalent versions of Lukic’s conditions that are directly expressible
in terms of α without reference to a decomposition as a sum. In a
sense, β(j) is the part of α localized near θj in Fourier space, so that for
the (2, 1) case Lukic’s conditions are equivalent to (the (L2) conditions
will appear in the next section).

(L31) (S − 1)2(S + 1)α ∈ `2 (1.16)

(L32) (S − 1)2α ∈ `4 (1.17)

(L33) α ∈ `6 (1.18)

In this case (L31) ≡ (S1), (L33) ≡ (S2) and (L32) is an extra condition.
The precise result we’ll prove in Section 9 is that the (L3) conditions
imply the finiteness of the integral in (1.12) (at least when the αs are
real).

Recently, Gamboa, Nagel and Rouault [8] (henceforth GNR; see also
[9, 10]) discovered a new approach to Szegő’s Theorem (and the Killip–
Simon Theorem) using the theory of large deviations (LD). We wrote
a pedagogical presentation of some of these ideas [3]. Our main goal
in this paper is to use large deviation methods to study higher order
sum rules. We note that GNR [10] discussed (1.6) using LD methods
although for technical reasons, they were unable to prove the actual
sum rules. Below we will assume the reader familiar with some of the
basics of LD theory either from books [6, 4] or from our paper [3].

In Section 3, we will prove a sum rule and gem where one side of the
gem is the integral in (1.8). In general, the other side of the gem will be
a very complicated polynomial in the α’s (with some non–polynomial
terms of the form log(1−|α|2)). This leads to a new insight. The Lukic
conjecture (if true) provides much more humane conditions on the α’s
than what one gets from the naive sum rule. We note that we suspect
that our sum rules are identical to the ones found by Denissov–Kupin
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[5] who did not carry through the examples of Sections 4-9. Section 4
will use these ideas to get the sum rule (1.6) in a new way.

In the last four sections, we make two simplifying assumptions:

(A1) when k = 2, θ1 = 0, θ2 = π (essentially θ2 − θ1 = π is what is
important) and we’ll also consider the symmetric situation where
one has general k points symmetrically arranged as the roots of
unity with all mj = 1.

(A2) ᾱj = αj for all j ≥ 0.

These are mainly to make the sometimes involved calculations sim-
pler. We have no doubt that one can do the calculations without (A2)
and suspect one can drop (A1) although with some effort.

In Sections 5 and 6, we recover the Simon–Zlatoš gems (i.e. (1, 1)
and (2, 0)), at least under the assumptions (A1)–(A2). One thing we’ll
see in these sections is that it is simpler to show that the conditions on
Verblunsky coefficients imply the measure condition than the converse
so in the last two sections, we’ll settle for the simpler half. In Section 7,
we’ll prove this one direction for k equally spaced points, all with order
1, that is we’ll prove that

∑∞
n=1 |αn+k − αn|2 + |αn|4 < ∞ ⇒

∫
(1 −

cos kθ) log(w(θ)) dθ > −∞ and in Section 8, we discuss an arbitrarily
high order single singular point under the hypothesis that α ∈ `4. The
results in Sections 7 and 8 are not new but recover, using new methods,
special cases of results of Golinskii–Zlatoš [11]. In Section 9, we will
prove that for the (2, 1) case under (A1)/(A2), the Lukic conditions
imply finiteness of the integral. Recall that this is a case where the
Simon conditions do not imply finiteness of the integral so we regard
this as strong evidence for the Lukic conjecture.

We believe our main results in this paper are the general sum rule and
gem and the realization that the Lukic conjecture is just about finding
a simpler version of the naive Verblunsky coefficient side. In addition
we show how to use LD methods to recover the gems of Simon and
Simon–Zlatoš and some results of Golinskii–Zlatoš. Finally, we provide
evidence for the general Lukic conjecture by finding a situation where
his conditions imply the finiteness of the relevant integral and where
Simon’s do not.

We thank Peter Yuditskii for telling two of us about [8] and Fabrice
Gamboa, Jan Nagel and Alain Rouault for useful discussions.
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2. The Lukic Condition

In this section, we want to discuss some equivalent forms of the Lukic
conditions (L11-3). This and some of the analysis in later sections will
require some discrete hard analysis that we set up here. First, we’ll
consider

(L21)
k∏
j=1

(S − eiθj)mjα ∈ `2 (2.1)

(L22)
∏
j 6=q

(S − eiθj)mjα ∈ `2mq+2, q = 1, . . . , k (2.2)

In some sense, (L22) says that in “θ–space” α is locally `2mq+2 near
θ = θq. Our first result is

Theorem 2.1. (L11-3) ⇐⇒ (L21-2)

Remark. The same argument shows that (S1-2) are equivalent to (2.1)
and (2.2) but with 2mq + 2 replaced by 2 maxmj + 2. This illustrates
the difference between the Simon and Lukic conditions.

The proof will depend on momentum space localization. We can
view `q(N) as a subspace of `q(Z) and define P : `q(Z) → `q(N) by
restricting {an}∞n=−∞ to {an}∞n=0. We can think of P either as a map
between spaces which clearly has norm 1 or as a map of `q(Z) to itself
whose range is those a with an = 0 for all n < 0. In the latter view,
P is a projection of norm 1. We can extend S to `q(Z) by setting
(Sa)n = an+1. This S is an invertible isometry (on `q(N) it doesn’t
have a left inverse).
S is unitary on `2(Z) with spectrum all of ∂D, so, by the spectral

theorem, we can define F (S) on `2(Z) for any F ∈ L∞(D) and then
F+(S) on `2(N) by a 7→ PF (S)a. These are sometimes called Laurent
and Toeplitz operators respectively. F (S) is made most transparent by
using Fourier transform, f 7→ f#, mapping L2(∂D, dθ

2π
) to `2(Z) by

f#
k =

∫ 2π

0

e−ikθf(eiθ)
dθ

2π
(2.3)

These are, of course, Fourier coefficients of f in the orthonormal basis
of L2(∂D, dθ

2π
), {eikθ}∞k=−∞, so we can define a 7→ a[ from sequences to

functions by defining (with convergence in L2–sense):

a[(eiθ) =
∞∑

k=−∞

ake
ikθ (2.4)
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Then (f#)[ = f .
If F is a trigonometric polynomial so

F (eiθ) =
M∑

k=−M

F#
k e

ikθ

then, for f ∈ L2,

(Ff)#k =

∫ 2π

0

e−ikθ

[
M∑

j=−M

F#
j e

ijθ

]
f(eiθ)

dθ

2π

=
M∑

j=−M

F#
j f

#
k−j (2.5)

i.e. F (S) is convolution with F#. If F ∈ C∞(∂D), by a simple argument

(see [24, Section 6.3]), F#
k decays faster than any inverse polynomial,

so, in particular, F# ∈ `1. Taking limits in (2.5), we see that formula
still holds but with M replaced by ∞. Thus, since F# ∈ `1, we see
that as maps on `p(Z) or `p(N), a 7→ F (S)a maps `p to itself, and since
P maps `p(N) to itself, we see that F+(S) map `p(N) to itself i.e.

Proposition 2.2. a 7→ F (S)a maps any `p(Z) to itself and a 7→
F+(S)a maps any `p(N) for 1 ≤ p < ∞ for any C∞ function, F ,
on ∂D.

In particular, we can localize in θ–space by picking a convenient
partition of unity on ∂D and writing a =

∑k
j=1 Jj(S)a.

Corollary 2.3. Let Q(z) be a Laurent polynomial on C \ {0}. Let F
be a C∞ function on ∂D so that Q(z) has no zeros in the support of F .
Suppose that a lies in some `q. Let 1 ≤ p <∞. Then

Q(S)F (S)a ∈ `p(Z)⇒ F (S)a ∈ `p(Z) (2.6)

Q+(S)F+(S)a ∈ `p(N)⇒ F+(S)a ∈ `p(N) (2.7)

Proof. Suppose first we are dealing with the maps on `q(Z). By the
zero condition, it is easy to find a C∞ function, G, on ∂D so that
G(z)Q(z)F (z) = F (z) for all z ∈ ∂D. Thus, if Q(S)F (S)a ∈ `p, then

F (S)a = G(S)Q(S)F (S)a ∈ `p

since G(S) maps `p to `p.
Now suppose (an) ∈ `q(N) and extend it to Z by an = 0 for

n < 0. Since F (S) is convolution with a function of very rapid de-
cay, F (S)a and Q(S)F (S)a both have rapid decay to the left so since
PQ(S)PF (S)a lies in `p(N), we see that Q(S)PF (S)a lies in `p(Z).
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Since F (S)a has rapid decay on the left, Q(S)(1 − P )F (S)a lies in
`p(Z) and so Q(S)F (S)a lies in `p(Z) as well. By the argument in the
first paragraph, F (S)a lies in `p(Z) so PF (S)a lies in `p(N). �

Proof of Theorem 2.1. (L2 ⇒ L1) Let α obey L2. Pick {Jj}kj=1, C
∞

functions on ∂D so that Jj ≥ 0,
∑k

j=1 Jj = 1 and Jj vanishes in the

neighborhood of {θ`} 6̀=j. Let β(j) = PJj(S)α. (L11) follows from∑k
j=1 Jj = 1. Since Jj(S) commutes with any polynomial in S, by

(2.1), [
k∏

j=1,j 6=q

(S − eiθj)mj

]
(S − eiθq)mqβ(q) ∈ `2 (2.8)

(with a small argument to deal with the P operator) so, by Corollary
2.3, (1.14) holds. A similar argument shows that (2.2) implies (1.15).

(L1 ⇒ L2) Suppose α obeys L1. Since polynomials in S map `p to

itself, (1.14)⇒
∏k

j=1(S − eiθj)mjβ(q) ∈ `2, so by (1.13), we have (2.1).

By (1.14), if r 6= q, then
∏

j 6=q(S − eiθj)mjβ(r) ∈ `2 ⊂ `2mq+2. Also

(1.15) implies
∏

j 6=q(S − eiθj)mjβ(q) ∈ `2mq+2. Therefore, by (1.13), we

get (2.2). �

For comparison with Simon’s conjecture, the following version (which
appeared already in the last section) is useful. Let m = supjmj,

(L31)
k∏
j=1

(S − eiθj)mjα ∈ `2 (2.9)

(L32) For mq < m
∏
j 6=q

(S − eiθj)mjα ∈ `2mq+2 (2.10)

(L33) α ∈ `2m+2 (2.11)

Theorem 2.4. (L11-3) ⇐⇒ (L31-3)

Proof. Clearly, (2.11) implies (2.2) when m = mj, so (L31-3) ⇒
(L21-2)⇒ (L11-3).

On the other hand, by Theorem 2.1, (L11-3)⇒ (L31-3) and trivially,
(1.13) and (1.15) ⇒ (2.11) �

To find some equivalent forms of the Lukic conditions, it will be
useful to have the following:

Theorem 2.5. For any sequence α ∈ `2(Z) of finite support, we have
that:

‖(S − 1)α‖23 ≤ 2‖(S − 1)2α‖2‖α‖6 (2.12)
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Remarks. 1. This is a discrete case of an inequality on derivatives
due to Gagliardo [7] and Nirenberg [20]; see Simon [25, Section 6.3]
and Taylor [27]. Here S − 1 replaces d

dx
. The general version (with

essentially the same proof) is

‖(S − 1)α‖22k/p ≤
2k − p
p
‖(S − 1)2α‖2k/(p+1)‖α‖2k/(p−1)

for k ≥ 1, 1 ≤ p ≤ k. (2.12) is p = 2, k = 3.
2. Once one has Theorem 2.5 then it is easy to show, by dominated

convergence, that α ∈ `6, (S − 1)2α ∈ `2 ⇒ (S − 1)α ∈ `3 and that
(2.12) holds even without the condition on finite support of α.

3. This result is in [26] and probably other places but the proof is
so simple that we give it for the reader’s convenience.

4. (2.17) below can be thought of as resulting from a summation by
parts.

Proof. Given α, define |α| by |α|n ≡ |αn|. We begin by noting that for
a, b ∈ C, we have by the triangle inequality that

||a| − |b|| ≤ |a− b| (2.13)

so that if α ≤ β ⇐⇒ αn ≤ βn for all n, then

|(S − 1)|α|| ≤ |(S − 1)α| (2.14)

Note next that Leibniz rule takes the form (where (αβ)n = αnβn)

(S − 1)(βγ) = [(S − 1)β]γ + (Sβ)[(S − 1)γ] (2.15)

so

(S − 1)(βγκ) = [(S − 1)β]γκ+ (Sβ)[(S − 1)γ]κ

+ (Sβ)(Sγ)[(S − 1)κ] (2.16)

Choose β = α, γ = (S−1)ᾱ, κ = |(S−1)α| and use the fact that a sum
of (S − 1)τ is zero when τ has finite support (because of telescoping)
to see that if α has finite support, then∑

n

|[(S − 1)α]n|3 ≤
∑
n

|Sα|n|(S − 1)2ᾱ|n|(S − 1)α|n

+
∑
n

|Sα|n|S(S − 1)ᾱ|n|(S − 1)2α|n (2.17)

where we used (2.14) to bound |(S − 1)|(S − 1)α|| by |(S − 1)2α|.
Hölder’s inequality and 1

6
+ 1

3
+ 1

2
= 1 says that the first sum on

the right is bounded by ‖Sα‖6‖(S − 1)α‖3‖(S − 1)2ᾱ‖2 = ‖α‖6‖(S −
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1)α‖3‖(S − 1)2α‖2. The second sum has the same bound which shows
that

‖(S − 1)α‖33 ≤ 2‖α‖6‖(S − 1)α‖3‖(S − 1)2α‖2
which implies (2.12) �

Let us focus on the case (θ1, θ2,m1,m2) = (0, π, 2, 1), so we have

(L31) (S + 1)(S − 1)2α ∈ `2 (2.18)

(L32) (S − 1)2α ∈ `4 (2.19)

(L33) α ∈ `6 (2.20)

We want to note that

Theorem 2.6. (L31-3) for (θ1, θ2,m1,m2) = (0, π, 2, 1) is equivalent
to

(L41) (S + 1)(S − 1)2α ∈ `2 (2.21)

(L42) (S − 1)α ∈ `4 (2.22)

(L43) α ∈ `6 (2.23)

Moreover, one also has that if these conditions hold, then

(S2 − 1)α ∈ `3 (2.24)

Remarks. 1. The proof shows that when (L31) and (L33) hold, then
(S − 1)α ∈ `4 is equivalent to (S − 1)k+1α ∈ `4 for any k fixed k =
1, 2, . . . .

2. The example αn = (n + 1)−1/5 obeys (L41-3) but doesn’t have
α ∈ `4.

Proof. Clearly (L41-3) ⇒ (L31-3) since S − 1 maps `4 to itself. So
suppose we have (L31-3). Applying (2.12) to (S + 1)α and noting that
α ∈ `6 ⇒ (S+1)α ∈ `6, we conclude that (S−1)(S+1)α = (S2−1)α ∈
`3 proving (2.24).

Since p > q ⇒ `q ⊂ `p, we see that (S2 − 1)α ∈ `4. Thus

(S2 − 1)α− (S − 1)2α = 2(S − 1)α ∈ `4 (2.25)

�
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3. Sum Rules

In this section, we’ll explain how to use LD methods to obtain sum
rules for any choice of {mj}kj=1 and {θj}kj=1 where one side is (1.8).
The sum rules imply gems. In fact, it will be easier to obtain the gems
and we’ll prove them first as part of the proof of sum rules. While
we haven’t tried to prove it in general, we believe our sum rules are
the same as those of Denisov–Kupin [5] obtained using the method of
Nazarov et. al. [19].

We begin by finding matrix models whose LDP on the spectral side
involves (1.8) up to constants. Our basic random matrix measures will
have the form

Z−1N e−NQ(U) dHN(U) (3.1)

where ZN is a normalization factor, Q is a function of U of the form

Q(U) = Tr(V (U)) (3.2)

where V is a Laurent polynomial

V (z) =
k∑

`=−k

c`z
` (3.3)

(if ck 6= 0 and/or c−k 6= 0, we say that k is the degree of Q or V ) and
where HN is Haar measure (aka circular unitary ensemble, CUE(n)).
GNR [8, 10] also discussed these models, especially the case V (eiθ) =
cos θ (discussed first, in a different context, by Gross–Witten [12] whose
name GNR assign to the model) but they do not prove sum rules or
gems for these models.

There is a huge literature on these matrix models, discussed for ex-
ample in [1, Section 2.7]. Much of the literature discusses perturbations
of GUE rather than CUE but the results that we need extend to CUE,
which is technically simpler because random unitary matrices, unlike
random self–adjoint matrices, are automatically uniformly bounded. A
major result (see, for example, [1, Section 2.6]) is that the associated
limit of empirical measures (aka density of states), dη, obeys

V (eiθ) = 2

∫
log(|eiθ − eiψ|)dη(ψ) + C (3.4)

for some constant C (which when we start with η we will take to be
zero).

Any fixed vector, ϕ ∈ Cn, is a cyclic vector for a.e. U ∈ Un. Asso-
ciated to each such U is a probability measure µ on ∂D which is an
n–point measure with masses at the eigenvalues of U and weights the
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absolute square of the components of ϕ in the corresponding eigenvec-
tors. Thus picking ϕ (conventionally to be δ1 = (1, 0, . . . , 0)), we get a
many-to-one correspondence between a set of unitaries of full measure
and all n-point spectral measures. Thus the measure in (3.1) induces
a probability measure on n-point probability measures and so on sets
of Verblunsky coefficients. The unitaries U and U ′ correspond to the
same spectral measure if and only if there is a unitary W which has ϕ
as an eigenvector with U ′ = WUW−1. It is important to notice that
the spectral measure determines the eigenvalues of U and so Tr(Uk) for
any k, so these traces are only functions of the Verblunsky coefficients
and we can compute the traces in any convenient representation of one
of the unitaries associated to a given spectral measure.

The measure in (3.1) induces a measure PN on N–point measures

and the Verblunsky map drags that to a measure P̃N on the set of
N -point Verblunsky coefficients, i.e. DN−1 × ∂D.

If V obeys (3.4), then the empirical measure converges as N → ∞
to η and by the method of Ben Arous–Guionnet [2], the empirical
measure obeys a LDP with speed N2 and rate function at measure µ,
E(µ)−E(η) where E is the 2D Coulomb energy in external field which
is minimized at µ = η (by (3.4)).

By the arguments in [3, Section 3], once one has this, one finds that
the spectral measure obeys an LDP with speed N and rate function

I(µ) = H(η |µ) (3.5)

where H is given by (1.3). Thus we get a sum rule with the integral in
(1.8) on one side (up to constants due to the normalization of η and a∫

log
(
dη
dθ

)
dη(θ)) term.

In what follows, we will be interested in η of the form

η = Z−1η

k∏
j=1

[1− cos(θ − θj)]mj
dθ

2π
(3.6)

In computing (3.4) with that η, the following is useful

Proposition 3.1. For any n ∈ Z, n 6= 0, we have that

−
∫ 2π

0

einψ log |eiψ − eiθ| dψ
2π

=
einθ

2|n|
(3.7)

If n = 0, the integral is zero.

Proof. While this integral is in the tables, the proof is so simple we
give it. Replacing ψ by ψ − θ, we can suppose that θ = 0. By taking
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complex conjugates, we can suppose that n ≤ 0. Write eiψ = z and

log |z − 1| = 1

2
log |z − 1|2 =

1

2
(log(1− z) + log(1− z̄))

Then note that for n < 0∮
∂D
z̄−n log(1− z̄)

dz̄

z̄
=

∮
∂D
z−n−1 log(1− z) dz = 0

by the Cauchy integral theorem. By the Cauchy formula for Taylor
coefficients and the well known series log(1 − z) = −

∑∞
n=1

zn

n
, for

n ≤ 0 (since the series only converges inside the disk, one needs to
note that the integral over the unit circle is a limit of integrals over
slightly smaller circles)

1

2πi

∮
∂D
zn−1 log(1− z) dz =

{
0, if n = 0

− 1
|n| , if n < 0

(3.8)

�

Thus, for η of the form (3.6), V defined by (3.4) is a Laurent poly-
nomial with no constant term.

As a preliminary to the calculation of the Verblunsky coefficient side,
we want to make two comments about the sum rules and their relation
to the rate function. The first one regards the fact that rather than
the integral in (1.8), the form of the rate function on the measure side
is H(η|µ), which involves an additional term of the form∫

log

(
k∏
j=1

[1− cos(θ − θj)]mj

)
k∏
j=1

[1− cos(θ − θj)]mj
dθ

2π

Computing this constant term is important in writing the sum rule.
As an example, rather than the left side of (1.6), the LD calculation
will give H(η|µ) where

dη(θ) = (1− cos θ)
dθ

2π
(3.9)

Noting that
∫

(1 − cos θ) log(1 − cos θ) dθ
2π

= 1 − log(2) (which follows
as in the proof of Proposition 3.1; see [21, Section 2.8]) we can write
(1.6) as

H(η|µ) = 1− log(2) +
1

2
|α0|2 + Re(α0) +

1

2

∞∑
n=0

|αn+1 − αn|2

+
∞∑
n=0

[
− log(1− |αn|2)− |αn|2

]
(3.10)
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The right hand side has to vanish when the αn are the Verblunsky
coefficients of the measure η (since H(η|η) = 0). Let us confirm this
not only as a check but because it will let us compute the constant in
Section 4 when we only know the sum rule up to a constant.

The Verblunsky coefficients for the η of (3.9) are not hard to compute
[21, Example 1.6.4 and equation (1.6.14)]

α(0)
n = − 1

n+ 2
; n = 0, 1, . . . (3.11)

Since
∑∞

n=0 |α
(0)
n |2 <∞, we can cancel the 1

2
|αn|2 terms in the sums on

the right side in (3.10) and see that when α = α(0) the right side is

1− log(2) +

(
−1

2

)
−
∞∑
n=0

1

(n+ 2)(n+ 3)

− log

(
∞∏
n=0

[
1−

(
1

n+ 2

)2
])

(3.12)

The sum telescopes since [(n+ 2)(n+ 3)]−1 = (n+ 2)−1 − (n+ 3)−1 so
the sum is 1/2 and 1 − 1

2
− 1

2
= 0. To evaluate the infinite product,

note Euler’s formula that

sin(πx) = πx
∞∏
j=1

(
1− x2

j2

)
so

∞∏
n=0

(
1− 1

(n+ 2)2

)
= lim

x→1

sin(πx)

π(1− x2)
= − 1

2π

d

dx
sin(πx)

∣∣∣∣
x=1

=
1

2

and thus the log term in (3.12) is − log(1/2) which cancels the − log(2).
Thus, we confirm that the expression in (3.12) is 0.

The other issue concerns a huge difference in getting sum rules once
a V (θ) is added to the mix. In the V = 0 case, under the mea-

sure P̃N for CUE(N), if j < N , then (α0, . . . , αj) is independent of

(αj+1, . . . , αN−1) so the rate function, Ij of the projection π∗j (P̃N) is
easy to compute (see [3, Section 2] for a discussion of π∗j ). Since V (U)
has cross terms between αk and α` for suitable k ≤ j and ` > j (in (1.6)
the αj+1αj terms), one no longer has independence and the exact cal-
culation of Ij involves the limiting distribution of {α`}`>j. In the case
of (1.6), we want to show that I(α) = F (α0)+

∑∞
k=0G(αk, αk+1) where

G has a 1
2
|αk+1 − αk|2 piece and a piece from the log(1− |αk|2) + |αk|2

term. Instead of computing Ij exactly, we’ll show that (up to constants)

|Ij(α0, . . . , αj−1)−
∑j−2

k=0G(αk, αk+1)− F (α0)| ≤ C|αj|. This fact and
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Rakhmanov’s Theorem (see [22, Chapter 9]) allow one to prove that I
has the required form.

We begin the analysis of the general case with

Theorem 3.2. Let V be a Laurent polynomial of degree d and let UN
be an N × N unitary CMV matrix. Then there exist N–independent
polynomials F± and G, G depending on d+ 1 successive αj’s and ᾱj’s
and F± on d such variables so that

Tr(V (UN)) = F−(α0, . . . , αd−1) + F+(αN−d, . . . .αN−1)

+
N−1−d∑
j=0

G(αj, . . . , αj+d) (3.13)

Moreover, G(0, . . . , 0) = 0.

Remarks. 1. The unitary, U , associated to any spectral measure µ
is multiplication by λ on L2(∂D, dµ). To get a matrix related with
that spectral measure associated to (1, 0, . . . , 0), one needs to pick an
orthonormal basis {ej} for this L2 space with e1 the function 1. [21,
Chapter 4] discusses two natural bases for which the matrix elements
are explicit functions of the α’s and ρ. One choice is the set of orthonor-
mal polynomials for µ. This yields the GGT matrix. The other is to
orthonormalize {1, z, z−1, z2, z−2, . . . } which yields the CMV matrix.
One issue is that for general µ, the orthonormal polynomials may not
be a basis so the naive GGT matrix may not be unitary but for n–point
measures, it is unitary. The CMV matrix is 5 diagonal while the GGT
matrix is a Hessenberg matrix, i.e. only one non-vanishing diagonal
below the principal diagonal but, in general, all non–vanishing matrix
elements above the diagonal. The proof of this theorem will discuss
the explicit form of the CMV matrix and (9.9) below the explicit form
of the GGT matrix.

2. These polynomials have degree at most 2d. (The CMV matrix
has matrix elements that are products of exactly two, α, ᾱ and ρ so G
written in terms of the three variables is of homogeneous degree 2d if
Tr(V (U)) = Tr(Ud) but removing the ρ’s produces lower degree terms
even in this special case.)

3. F±, G are not unique. If H is any function of d successive α, ᾱ
pairs and

F̃−(α0, . . . , αd−1) = F−(α0, . . . , αd−1) +H(α0, . . . , αd−1)

F̃+(αN−d, . . . , αN−1) = F+(αN−d, . . . , αN−1) +H(αN−d, . . . , αN−1)

G̃(α0, . . . , αd) = G(α0, . . . , αd)−H(α0, . . . , αd−1) +H(α1, . . . , αd)

(3.14)
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then (3.13) holds for (G,F±) if and only if it holds for (G̃, F̃±).

Proof. Recall (see [21, Section 4.2]) the LM representation of the CMV
matrix, C, which we write when N is even. Define the 2× 2 matrices

Θ(α) =

(
ᾱ ρ
ρ −α

)
ρ =

√
1− |α|2 (3.15)

Let Θj ≡ Θ(αj). Then

L = Θ0 ⊕Θ2 ⊕ · · · ⊕ΘN−2 (3.16)

M = 1⊕Θ1 ⊕ · · · ⊕ΘN−3 ⊕ αN−11 (3.17)

(L is a direct sum of N/2 2 × 2 matrices while M has 1 × 1 matrices
at the top and bottom and (N/2− 1) 2× 2 in between). And one has
that C (i.e. our parametrization of U) is given by

C = LM (3.18)

We will also write L̃j, j = 0, 2, . . . , N for L with
Θ0, . . . ,Θj−2,Θj+2, . . . ,ΘN−2 replaced by zero (only Θj remains

in the direct sum) and similarly for M̃j, j = −1, 1, . . . , N − 1 (where
Θ−1,ΘN−1 are 1× 1 matrices. Thus we have that

L = L̃0 + L̃2 + . . . L̃N−2; M = M̃−1 + · · ·+ M̃N−1 (3.19)

We note that

L̃kM̃` = M̃`L̃k = 0 unless |`− k| = 1 (3.20)

For N odd, there is a similar representation but now L has a 1 × 1
matrix at the bottom and M only a 1× 1 matrix at the top.

We’ll prove the theorem when V (z) = zd. For V (z) = z−d, the
argument is similar since replacing U by U∗ just interchanges L and
M and replaces αj by ᾱj (since Θ(α)∗ = Θ(ᾱ)). And for 0 < k < d, z±k

yields polynomials of the same form (since functions of fewer variables
can be viewed as having more variables; there will be some lost G’s
near the bottom but they can be made part of F+).

We’ll show first that we have the required function of exact degree
2d where it is a polynomial in α, ᾱ and ρ and then that each ρj occurs
as an even power so using ρ2j = 1−αjᾱj we get the result without any
ρ’s.

We write

(Ud)jj =
∑

k2,...,k2d
k1=k2d+1=j

∑
n1...,nd
m1,...,md

L̃n1;k1,k2M̃m1;k2,k3 · · · M̃md;k2d,k2d+1
(3.21)



LARGE DEVIATIONS AND THE LUKIC CONJECTURE 17

where a symbol like L̃n1;k1,k2 means the k1,k2 matrix element of the ma-

trix L̃n1 . In (3.21), we sum n1, . . . , nd,m1, . . . ,md from−1 to N−1 run-
ning through even and odd integers respectively and kq (q = 2, . . . , 2d)
running from 0 to N−1. The only non–zero terms have |k2p+1−np+1| ≤
1, |kq+1− kq| ≤ 1, |k2p−mp| ≤ 1, |nr −mr| ≤ 1, |mr − nr+1| ≤ 1, with
further restrictions since, for example, |k2p+1 − np+1| ≤ 1 is actually
k2p+1 − np+1 = 0 or 1 and not −1.

This clearly writes Tr(Ud) as a polynomial in α, ᾱ, ρ of homogeneous
degree 2d. For each j = 0, . . . , N − d− 1, group together all where the
smallest index of α, ᾱ, ρ is j. It is easy to see that the resulting sum,
call it Gj(αj, ᾱj, ρj, . . . , ρj+2d−1), has Gj independent of j and gives the
G terms. The terms with α−1 (coming from Θ−1, and hence α−1 = 1)
we put into F− and those whose smallest j so that j ≥ N − d we put
into F+. It is easy to see that F− is N–independent and that the N–
dependence of F+ comes only from translating the indices. Thus we
have proven (3.13) except we have some ρ dependence.

For each product in (3.21), the ρp terms come from increasing some
kq = p to kq+1 = p + 1 or a decrease in the opposite direction and it
is only through such ρp terms that such an increase or decrease can
happen. Since k1 = k2d+1 = j and each step only increases or decreases
by a single step, for every ρp going in one direction, there must be one
going in the other, so an even number in all.

To confirm the assertion that G(0, . . . , 0) = 0, we prove that no term
in (3.21) can only have ρ’s, that is there must be at least one j with
kj = kj+1. For if kj+1 = kj ± 1 it is easy to see that either kj+2 = kj+1

or with the same sign kj+2 = kj+1±1, that is one can’t change direction
without an α term. But to return where one started, one must change
direction. �

Remark. It is an interesting exercise to use the GGT representation
[21, Section 4.1] to prove that the ρ’s only occurs in even powers and
that every term in G has at least one power of α or ᾱ.

Theorem 3.3. Let V be a potential of the form (3.4) and G given by
(3.13). Let M+1,∞(∂D) be the probability measures of infinite support
(i.e. not supported on finitely many points). Let I be the rate function
on the measure side. Let πL◦V : M+1,∞(∂D) → DL mapping µ to its
first L Verblunsky coefficients and let IL be the rate function for the
corresponding LDP. There is a constant C independent of L and µ so
that if L > d and α is the sequence of Verblunsky coefficients of µ, then
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for all such L

|IL(µ)−
L−d−1∑
j=0

G(αj, αj+1, . . . , αj+d)−
L−1∑
j=0

log(1− |αj|2)| ≤ C (3.22)

Remarks. 1. Recall that V is the Verblunsky map taking measures
to Verblunsky coefficient sequences, defined in the Introduction. The
mapping πL is the projection onto the first L elements.

2. Recall (see [3, Theorem 2.6 and Theorem 2.7]) that π∗L(P̃N) obeys
a LDP with speed N and rate IL related to I by

I(µ) = sup
L

(IL(µ)) IL(µ) = inf
{ν |πL(ν)=πL(µ)}

I(ν) (3.23)

Proof. By writing the induced measures on Verblunsky coefficients ac-
cording to Killip–Nenciu [13] (see Theorem 4.2 of [3]) and e−NTr(V (U))

according to (3.21), we see that for W ⊂ DL and N > L+ d+ 1

π∗L(P̃N)[W ] =

∫
π−1
L [W ]

HN(α0, . . . , αN−1)
∏N−2

j=0 d
2αjdθN−1∫

DN−2×∂DHN(α0, . . . , αN−1)
∏N−2

j=0 d
2αjdθN−1

(3.24)

where αN−1 = eiθN−1 and

logHN(α0, . . . , αN−1) = −NF−(α0, . . . , αd−1)−NF+(αN−d, . . . , αN−1)

−N
N−1−d∑
j=0

G(αj, . . . , αj+d)

+
N−2∑
j=0

(N − 2− j) log(1− |αj|2) (3.25)

For fixed L, the function, H̃N,L, obtained by dropping the F− term
and all the G(αj, . . . , αj+d) terms where j = L−d, . . . , L−1 is a prod-
uct of a function of (α0, . . . , αL−1) and a function of (αL, . . . , αN−1).

Since π−1L [W ] = W × DN−L−1 × ∂D (up to a set of zero P̃N measure),
the integrals over (αL, . . . , αN−1) in the numerator and denominator of
the modified (3.24) cancel.

The modified formula defines a probability measure

P̃N,L[W ] =

∫
W
HN,L(α0, . . . , αL−1)

∏L−1
j=0 d

2αj∫
DL HN,L(α0, . . . , αL−1)

∏L−1
j=0 d

2αj
(3.26)

where

logHN,L(α0, . . . , αL−1) = −N
L−1−d∑
j=0

G(αj, . . . , αj+d)
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+
L−1∑
j=0

(N − 2− j) log(1− |αj|2) (3.27)

Since |αj| ≤ 1 and G, F− and F+ are polynomials, the dropped terms
are bounded, so that for some constant, C1,

e−C1N P̃N,L(W ) ≤ π∗L(P̃N)(W ) ≤ eC1N P̃N,L(W ) (3.28)

By an elementary argument (see [3, Theorems 2.1 and 2.2]), P̃N,L
obeys a LDP with speed N and rate function

ĨL(α0, . . . , αL−1) =
L−d−1∑
j=0

G(αj, . . . , αj+d)−
L−1∑
j=0

log(1− |αj|2) + cL

(3.29)
where cL is such that minα0,...,αL−1

ĨL(α0, . . . , αL−1) = 0 (forced by the
condition on the function G (different from our G here) in [3, Theorem
2.2]).

With IL given by (3.23), we conclude by (3.28) that

|IL(µ)− ĨL(α0(µ), . . . , αL−1(µ))| ≤ C1 (3.30)

Taking µ0 = dθ
2π

for which I(µ0) = lim IL(µ0) is finite and using
G(0, . . . , 0) = 0 and log(1 − |α|2)|α=0 = 0, we conclude that cL is
bounded as L → ∞ so sup cL ≡ C2 is finite. (3.22) follows with
C = C1 + C2. �

While not essential, the following lovely lemma of Nazarov et. al [19,
Lemma 3.1] will simplify some arguments.

Proposition 3.4. Let G be a continuous function on Ωk where Ω ⊂ Rm

is compact. Suppose 0 ∈ Ω and that G(0, . . . , 0) = 0. Let Ω∞0 be the
sequences x = (x1, x2, . . . ) ∈ Ω∞ so that eventually xj = 0 (i.e. only
finitely many xj are non-zero). For x ∈ Ω∞0 define

H(x) =
∞∑
j=0

G(xj+1, . . . , xj+k) (3.31)

Suppose there is a C so that for all x ∈ Ω∞0 , H(x) ≥ −C. Then, there

exist continuous functions G̃ on Ωk and Γ on Ωk−1 so that

G̃ ≥ 0 (3.32)

and

G(x1, . . . , xk) = G̃(x1, . . . , xk)+Γ(x1, . . . , xk−1)−Γ(x2, . . . , xk) (3.33)
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Remark. The point, of course, is that if we add a constant to Γ so
that Γ(0, . . . , 0) = 0 (which doesn’t change (3.33)), then

H(x) = Γ(x1, . . . , xk−1) +
∞∑
j=0

G̃(xj+1, . . . , xj+k)

which assures that we can extend H to infinite sequences with a con-
vergent sum or else a sum that diverges to +∞.

Theorem 3.5 (Abstract Gem). Let V be a potential of the form (3.4)
and G given by (3.13). Let (α) ∈ D∞ and let µ = V−1(α) be the
measure with those Verblunsky coefficients and η the measure obeying
(3.6). Then

lim
N→∞

N∑
j=0

[
G(αj, . . . , αj+d)− log(1− |αj|2)

]
(3.34)

exists and the limit is finite if and only if H(η|µ) is finite.

Remark. [11, Theorem 3.3] have a general abstract gem derived by
very different means.

Proof. By the theory of projective limits (see [3, Theorem 2.7]), I(µ) =
limL→∞ IL(µ). Thus by (3.22), if I(µ) = ∞, the limit in (3.34) exists
and is ∞.

Assume now that I(µ) < ∞. We would like to use Proposition 3.4,
but first we need to restrict attention to a compact subset of the unit
disc. Since I(µ) < ∞, the dθ weight of dµ is a.e. non–zero, so, by
Rakhmanov’s Theorem (see [22, Chapter 9]), αj(µ) → 0 as j → ∞.

Thus R = supj |αj(µ)| < 1. Let DR = {z | |z| ≤ R}. This is compact so
we can apply Proposition 3.4, (3.22) and I(ν) ≥ 0 for all ν to conclude
that there is GR ≥ 0 and ΓR so that

G(α0, . . . , αd) = GR(α0, . . . , αd) + Γ(α0, . . . , αd−1)− Γ(α1, . . . , αd)
(3.35)

G(0, . . . , 0) = 0⇒ GR(0, . . . , 0) = 0 and by adding a constant to Γ we
can suppose that Γ(0, . . . , 0) = 0.

The sum in (3.34) is thus

N∑
j=0

GR(αj, . . . , αj+d + Γ(α0, . . . , αd−1)− Γ(αN−1, . . . , αN+d) (3.36)

Since αj → 0,Γ(0, . . . , 0) = 0 and Γ is continuous, the last term goes to
0 as N →∞. Since GR ≥ 0, the sum has a limit (which may be +∞.
By (3.22) and IL(µ) → I(µ) < ∞, we see that the sum is bounded,
hence convergent. �
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Finally, we turn to the abstract sum rule. For any α ∈ D∞ define

S(α) = F−(α0, . . . , αd−1) + the limit in (3.34) (3.37)

S may be infinite if the limit is.

Theorem 3.6 (Abstract Sum Rule). Under the hypothesis of Theorem
3.5, for any µ with infinite support

H(η|µ) = S(α(µ))− S(α(η)) (3.38)

Remark. Basically, on the basis of (3.24), one expects that the rate
function is S(α(µ))+c where c is a constant coming from the Nth root
of the denominator in (3.24). Given that I(η) = 0, the constant has to
be c = −S(α(η)).

Proof. We begin with a formula like (3.26) but with two changes. First,

rather than look at π∗L(P̃N)[W ] for a single W , we look at a ratio

π∗L(P̃N)[W ]

π∗L(P̃N)[W1]
(3.39)

for two open sets W,W1 in DL so we needn’t concern ourselves with
the normalization integral over all of DL but can focus on small sets
where we have control over the α’s.

Secondly, we don’t drop all of the monomials in those G terms for
which {j1, . . . , jd} intersects both {0, . . . , L−1} and {L,L+1, . . . }. We
keep those monomials which only have αL, αL+1, . . . . Thus the dropped
terms all have a factor of some αj with j ∈ {L−d, L−d+1, . . . , L−1}.
What results is that one obtains (still using P̃N,L for the probability
with the, now slightly different, dropped terms):

e−cL(W,W1)
P̃N,L(W )

P̃N,L(W1)
≤ π∗L(P̃N)[W ]

π∗L(P̃N)[W1]
≤ ecL(W,W1)

P̃N,L(W )

P̃N,L(W1)
(3.40)

where

cL(W,W1) = K

(
sup
α∈W

L−1∑
j=L−d

|αj|+ sup
α∈W1

L−1∑
j=L−d

|αj|

)
for some constant K because the dropped terms, being polynomials
that are not of degree zero in all the αj’s, are at least linear in some
αj.

Note that because of lower semicontinuity of IL, for any µ0,

IL(µ0) = lim
W

inf
µ∈W

IL(µ)
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where W runs over all open neighborhoods of µ0 ordered by inverse
inclusion. Moreover, because IL is continuous, one has that

inf
µ∈W

IL(µ) = − lim
N→∞

1

N
PN(W )

Thus taking N → ∞ in (3.40) and shrinking the open sets to two
measures, µ and ν, we get from (3.37) that

|IL(µ)− IL(ν)− SL(α(µ)) + SL(α(ν))| ≤

K

(
L−1∑
j=L−d

|αj(µ)|+
L−1∑
j=L−d

|αj(ν)|

)
(3.41)

where SL is the sum in (3.34) when the infinite sum is replaced by the
sum to L− 1− d.

When H(η|µ) = ∞, we’ve already proven (3.38) so suppose
H(η|µ) < ∞. Then the weight for µ is a.e. non–vanishing, so, by
Rakhmanov’s Theorem, αj(µ) → 0. Take ν = η so also, αj(η) → 0.
Thus the right side of (3.41) goes to zero and we find that

H(η|µ)−H(η|η) = RHS of (3.38)

proving (3.38). �

4. The (1,0) Case

In this section, we’ll consider the case of a single singularity of order
1 and recover the sum rule of Simon (1.6). The calculations are so
simple, we need not make the simplifying assumption that ᾱj = αj
that we’ll make in the later sections.

The normalized empirical measure is

dη(θ) = (1− cos θ)
dθ

2π
(4.1)

so, by (3.4) and (3.7)

V (θ) = 2

∫
(1− cosψ) log |eiθ − eiψ| dψ

2π

= −
∫

(eiψ + e−iψ) log |eiθ − eiψ| dψ
2π

=
1

2
(eiθ + e−iθ) = cos(θ) (4.2)

and

Tr(V (U)) =
1

2
Tr(U + U) (4.3)
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In the CMV basis, Ujj = −αj−1ᾱj where α−1 ≡ −1. Thus, the
Verblunsky side of the sum rule is

−1

2

∞∑
j=0

(αj−1ᾱj + ᾱj−1αj)−
∞∑
j=0

log(1− |αj|2) + C (4.4)

for a suitable constant, C.
In (4.4), the sum rule involves limits of finite N objects so here and

below, sums should involve finite matrices and finite sums. But, as we
explained above we are interested in the limits of such finite sums. So
we’ll write sums up to infinity indicating what one will get after taking
N →∞ at the end of the calculation.

Since
1

2
|αj − αj−1|2 =

1

2
|αj|2 +

1

2
|αj−1|2 −

1

2
αj−1ᾱj −

1

2
ᾱj−1αj

we can rewrite (4.4) as (changed C)

1

2

∞∑
j=−1

|αj+1 − αj|2 +
∞∑
j=0

[
− log(1− |αj|2)− |αj|2

]
+ C (4.5)

That in this form the constant is C = 1
2
− log(2) follows from the

requirement that this vanish if α = α(η) and the calculations in Section
3 that (3.10) is 0. Thus, we have a LD proof of (1.6).

To get the gem (1.7), we need the M = 1 case of

Proposition 4.1. For any α

∞∑
j=0

[
− log(1− |αj|2)−

M∑
m=1

|αj|2m

m

]
<∞ (4.6)

if and only if
∞∑
j=0

|αj|2M+2 <∞ (4.7)

Remark. Since

− log(1− |α|2) =
∞∑
m=1

|α|2m

m
(4.8)

for any |α| < 1, the summand in (4.6) is non–negative so the sum either
converges or diverges to +∞.

Proof. By (4.8), we have that

|α|2M+2

M + 1
≤ − log(1− |α|2)−

M∑
m=1

|α|2m

m
(4.9)
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≤ |α|
2M+2

M + 1

(
∞∑
j=0

|α|2j
)

≤ 2
|α|2M+2

M + 1
if |α|2 ≤ 1

2
(4.10)

By (4.9), we have that (4.6)⇒(4.7). On the other hand, if (4.7)
holds, then |αj| → 0 so, for all large j, |αj|2 ≤ 1

2
so we can apply (4.10)

to the tail of the sum in (4.6) and conclude that (4.7)⇒(4.6) �

We thus have a quick proof of the gem of Simon [21, Section 2.8]:

Theorem 4.2.
∫ 2π

0
(1− cos θ) logw(θ) dθ

2π
> −∞ if and only if

∞∑
j=0

|αj+1 − αj|2 + |αj|4 <∞ (4.11)

5. The (1,1) Case

In terms of (1.8), this section will consider gems where the measure
side is ∫

(1 + cos θ)(1− cos θ) log(w(θ))
dθ

2π
(5.1)

To figure out the normalization, we note that

(1 + cos θ)(1− cos θ) = 1− cos2 θ = sin2 θ

= −1

4
(eiθ − e−iθ)2 =

1

2
(1− cos 2θ) (5.2)

One can also figure this out by noting that the extreme sides of (5.2)
are degree 2 Laurent polynomials in eiθ vanishing at θ = 0, π to second
order with maximum 1 on ∂D. For later use, we note that the same
argument shows that for k = 1, 2, . . .

k−1∏
j=0

[
1− cos

(
θ − 2πj

k

)]
= Kk[1− cos(kθ)] (5.3)

for a constant Kk.
Since

∫
cos(kθ)dθ = 0, we see that the normalized dη is

dηk(θ) = (1− cos kθ)
dθ

2π
(5.4)

so by (3.4) and (3.7), we have that

Vk(θ) =
1

k
cos(kθ) (5.5)
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We discussed k = 1 in Section 4, we’ll discuss k = 2 in this section
(thereby recovering, using large deviations, a special case of a result of
Simon–Zlatǒs [26]) and general k in Section 7. Thus in this section,
we’ll prove

Theorem 5.1. Let α be real. Then∫
(1− cos2 θ) log(w(θ))

dθ

2π
> −∞ ⇐⇒

∞∑
n=0

|αn+2 − αn|2 + |αn|4 <∞ (5.6)

Note that Tr(V (U)) = 1
4
Tr(U2 + U−2) = 1

2
Tr(U2) if α is real. For

such α, the CMV matrix has the form for j ≥ 1 (see [21, eqn(4.2.14)]):

Uj,j = −αjαj−1 U2j−1,2j = −ρ2j−1α2j−2 U2j,2j+1 = ρ2jα2j+1

U2j,2j−1 = ρ2j−1α2j U2j+1,2j = −ρ2jα2j−1 (5.7)

There are also matrix elements that are two off–diagonal, but if Uj,j±2 6=
0, then Uj±2,j = 0, so these terms don’t contribute to Tr(U2) (this is also
clear from the LM factorization and from the GGT representation).
Thus

Tr(U2) = bdy +
∞∑
j=1

[U2
j,j + Uj,j+1Uj+1,j + Uj,j−1Uj−1,j]

= bdy +
∞∑
j=1

(α2
jα

2
j−1 − 2ρ2jαj−1αj+1) (5.8)

where bdy is short for boundary and refers to some finite number of
terms involving small indices (and, later, when it appears with a finite
sum, involving finitely many terms involving large indices with the
number of terms bounded as the upper index of the sum changes).

Therefore, using ρ2j = 1− α2
j , we see that the Verblunsky side of the

gem is
bdy + I2 + I4 + L6 (5.9)

I2 =
∞∑
j=1

(α2
j − αj−1αj+1) (5.10)

I4 =
∞∑
j=1

(
1
2
α2
jα

2
j−1 + αj−1α

2
jαj+1 + 1

2
α4
j

)
(5.11)

L6 =
∞∑
j=0

− log(1− α2
j )− α2

j − 1
2
α4
j (5.12)
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We claim that up to boundary terms

I2 = 1
2

∞∑
j=1

(αj+1 − αj−1)2 (5.13)

Accepting this for a moment, we can show that the conditions of Simon
and Lukic (which agree in this case)

(S1) αj+1 − αj−1 ∈ `2 (5.14)

(S2) α ∈ `4 (5.15)

imply the measure condition, that is (given the gem) that (S1-2) ⇒
I2 < ∞, I4 < ∞,L6 < ∞ . For clearly, by (S1), (5.13)< ∞ and, by
Hölder’s inequality, I4 is bounded by C‖α‖44. Since ‖α‖6 ≤ ‖α‖4 (on
account of |α| ≤ 1), L6 is finite by Proposition 4.1 with M = 2.

To see (5.13), define for ` = 0, 1, 2, . . .

P` =
∞∑
j=0

αjαj+` (5.16)

Proposition 5.2. Let T1 and T2 be two functions on sequences of real
α which are boundary terms plus a sum of the form (3.31) where G is
a quadratic function of its variables (i.e. a second degree homogeneous
polynomial). Suppose for some L, Tr has no terms of the form αjαj+`
with ` > L. Then up to boundary terms, each Tr is a linear combination
of {P`}L`=0 and T1 = T2 up to boundary terms if they are the same linear
combinations.

Remarks. 1. This result is obvious. More subtle is the fact that “if”
in the last sentence can be replaced by “if and only if” but we won’t
need that harder half of this.

2. Again, what is being stated involves limits of finite sums. The
equalities only hold up to finite boundary terms. There are also bound-
ary terms at the upper limit but those go to zero by Rakhmanov’s
Theorem. One infinite sum converges if and only if the other one does.

Corollary 5.3. I2 of (5.10) is given by (5.13) up to constants.

Proof. The RHS of (5.10) is, up to boundary terms P0−P2. Expanding
the square, the RHS of (5.13) is 1

2
(P0 − 2P2 + P0) = P0 − P2. �

Proof of Theorem 5.1. We’ve already proven that (S1-2) imply that the
integral in (5.6) is finite. So we need to go in the opposite direction.
Therefore, we suppose the integral is finite.

By the abstract gems discussed in Section 3, we know that I2+I4+L6

is finite (in that the cutoff sums are uniformly bounded) with I2 given
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by (5.13). In this form I2 is positive and so is L6 as noted in the remark
after Proposition 4.1. So we look at I4 which we write up to boundary
terms as

I4 = I41 + I42 (5.17)

I41 =
∞∑
j=1

1
4
(αjαj−1 + αjαj+1)

2 (5.18)

I42 =
∞∑
j=1

1
2
(α4

j + αj−1α
2
jαj+1) (5.19)

By Hölder’s inequality,
∑J

j=1 |αj−1α2
jαj+1| ≤

∑J+1
j=0 |αj|4, so up to

boundary terms, I42 is positive and thus I2 + I41 + L6 is finite. Since
each term is positive, they are all finite, i.e. I2 < ∞ and I41 < ∞.
I2 <∞ is (S1).
I2 <∞ and |αj| < 1⇒

∑∞
j=1 α

2
j (αj+1−αj−1)2 <∞. I41 <∞means∑∞

j=1 α
2
j (αj+1 +αj−1)

2 <∞. Since (x+ y)2 + (x− y)2 = 2(x2 + y2), we
conclude that

∞∑
j=1

α2
j (α

2
j+1 + α2

j−1) <∞ (5.20)

Since |αj−1α2
jαj+1| ≤ 1

2
(α2

j−1α
2
j + α2

jα
2
j+1), we see that∑∞

j=1 |αj−1α2
jαj+1| <∞. All the other terms in I2+I4+L6 are positive,

so all are finite. In particular, 1
2

∑∞
j=1 α

4
j <∞ which is (S2). �

In particular, we see that the proof from Lukic conditions to conver-
gence of the integral is much easier than the converse.

6. The (2,0) Case

Our goal in this section is to prove:

Theorem 6.1. Let α be a real sequence. Then∫
(1− cos θ)2 log(w(θ))

dθ

2π
> −∞ (6.1)

if and only if

(S1) (S − 1)2α ∈ `2 (6.2)

and

(S2) α ∈ `6 (6.3)
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Remarks. 1. In this case the Lukic and Simon conditions agree.
2. This result, indeed without the reality restriction is in Simon–

Zlatǒs [26]. The main difference in our approach is the method of
deriving the sum rules. Once one has the sum rules the arguments are
related but we feel our presentation is more transparent.

To begin we need to normalize η, i.e. determine Z so that Z−1
∫

(1−
cos θ)2w(θ) dθ

2π
= 1. We’ll use

2(1− cos θ) = −(eiθ/2 − e−iθ/2)2 (6.4)

as one can see by expanding the square or by using 1 − cos θ =
2 sin2(θ/2). Thus

4(1− cos θ)2 = (eiθ/2 − e−iθ/2)4

= 2 cos(2θ)− 8 cos(θ) + 6 (6.5)

Since
∫

cos(kθ) dθ
2π

= δk0, we see that

dη(θ) =

[
1− 4

3
cos(θ) +

1

3
cos(2θ)

]
dθ (6.6)

so by (3.4) and (3.7)

V (θ) = −1

6
cos(2θ) +

4

3
cos(θ) (6.7)

and thus when α is real

Q(U) ≡ Tr(V (U)) = −1

6
Tr(U2) +

4

3
Tr(U) (6.8)

We computed Tr(U) in (4.4) and Tr(U2) in (5.9). Thus the Verblun-
sky side of the sum rule is

bdy + I2 + I4 + L6 (6.9)

I2 =
∞∑
n=1

[
α2
n − 4

3
αn+1αn + 1

3
αnαn+2

]
(6.10)

I4 =
∞∑
n=1

[
1
2
α4
n − 1

6
α2
n−1α

2
n − 1

3
αn−1α

2
nαn+1

]
(6.11)

L6 =
∞∑
n=0

− log(1− α2
n)− α2

n − 1
2
α4
n (6.12)

In terms of the quantities P` of (5.16)

I2 = P0 − 4
3
P1 + 1

3
P2 (6.13)
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up to boundary terms. On the other hand, expanding the square, we
see that up to boundary terms∑

n

(αn−1 − 2αn + αn+1)
2 = 6P0 − 8P1 + 2P2 (6.14)

since 1 + 4 + 1 = 6 and 4 + 4 = 8. Thus we see that up to boundary
terms

I2 = 1
6

∑
n

(αn−1 − 2αn + αn+1)
2 = 1

6
‖(S − 1)2α‖22 (6.15)

Proof of half of Theorem 6.1 that (6.1) ⇒ (S1),(S2). Since 1
6

+ 1
3

= 1
2
,

up to boundary terms, I4 ≥ 0 by Hölder’s inequality. By the abstract
sum rule, (6.1) ⇒ I2 + I4 + I6 is finite. Since each of these terms
is positive (by (6.15) and Proposition 4.1), each is individually finite.
I2 <∞⇒ (S1) and, by Proposition 4.1, P6 <∞⇒ (S2). �

For the other direction, (S1),(S2) clearly imply that I2 and L6

are finite so we need only control I4. Hölder lets one control∑
κ
(1)
n κ

(2)
n κ

(3)
n κ

(4)
n if ‖κ(j)‖pj < ∞ and 1

p1
+ 1

p2
+ 1

p3
+ 1

p4
≥ 1. Since

4
6
< 1, we can’t just look at products of four α’s. However since

1
6

+ 1
6

+ 1
6

+ 1
2

= 1, we can control products of three α’s and one
(S−1)2α. By the Gagliardo-Nirenberg inequality, (2.12), (S1)+(S2)⇒
(S − 1)α ∈ `3. Since 1

6
+ 1

6
+ 1

3
+ 1

3
= 1, a product of two α’s and two

(S − 1)α is also summable. So the goal is to write I4 as sums of these
two terms. We write

I4 = bdy + I41 + I42 (6.16)

12I41 = 4
∞∑
n=1

α2
n(α2

n − αn+1αn−1) (6.17)

12I42 =
∞∑
n=0

(α2
n − α2

n−1)
2 (6.18)

=
∞∑
n=0

(αn − αn−1)2(αn + αn−1)
2 (6.19)

The I42 term is a sum of products of two (S − 1)α terms and two
α terms so by the above, it is a convergent sum by (S1),(S2). Let
ηn = αn+1 − αn so

αn+1αn−1 = (αn + ηn)(αn − ηn−1) (6.20)

and thus

α2
n(α2

n − αn+1αn−1) = α2
nηnηn−1 − α3

n(ηn − ηn−1) (6.21)
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Proof of Other Half of Theorem 6.1 that (S1),(S2)⇒ (6.1). Clearly
(S1)⇒ I2 <∞ and (S2)⇒ P6 <∞ by Proposition 4.1. We’ve already
seen that the sum in I42 is absolutely convergent. By (6.21), I41 is a
sum of (`6)2(`3)2 and (`6)3`2 terms and so a convergent sum. Thus
I4 <∞. �

7. The kth Roots of Unity Case

Fix k ∈ {1, 2, 3, . . . }. In this section, we’ll consider the conditions∫
(1− cos kθ) log(w(θ))

dθ

2π
> −∞ (7.1)

(S1) (Sk − 1)α ∈ `2 (7.2)

(S2) α ∈ `4 (7.3)

By (5.3), this is the same as taking θj = 2(j−1)π
k

, j = 1, . . . , k so

{eiθj}kj=1 are the kth roots of unity. Of course, if ω = eiθ2 is a primitive

kth root of unity, then Sk − 1 =
∏k

j=1(S − ωj), so (7.2)/(7.3) are

precisely the Simon (=Lukic) conditions for this case. In this section,
we’ll prove

Theorem 7.1. Suppose α obeys (S2). Then

(7.1) ⇐⇒ (7.2)

In particular, (S1-2)⇒(7.1).

Remarks. 1. α need not be assumed real.
2. This is a special case of a result of Golinskii–Zlatoš [11].

The key input to proving this will be

Proposition 7.2. If Tr(Uk) is written in terms of α’s only, the term
quadratic in α is

bdy− k
∞∑
n=0

αnᾱn+k (7.4)

Remark. This proof will rely on the CMV representation of unitaries.
It is an interesting exercise to give a different proof using the GGT
representation and ideas of Section 9.

Proof. By (3.21), Tr(Uk) is a homogeneous polynomial of degree 2k in
α, ᾱ and ρ. To be left with quadratic terms after using ρ2 = 1 − ᾱα,
we need products with 2k − 2 ρ’s and two of α and/or ᾱ.

As the end of the proof of theorem 3.2 explains, one gets strings of
increasing or decreasing ρ’s and α or ᾱ at turn around points. The
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2k−2 ρ’s must occur in a string of k−1 increasing and a second string
of k − 1 decreasing ρ’s. The form, (3.15), of Θ shows we get −α at
the bottom turn around and ᾱ at the top turn around, so the only
quadratic terms are (−αn)

∏k−1
j=1 ρn+j(ᾱn+k).

Each diagonal matrix element (Ck)jj has such a term for j = n +
1, n+ 2, . . . , n+ k, so k in all which yields (7.4). �

Proposition 7.3. The quadratic term in the sum rule, (3.29), for (7.1)
with |αn|2 “borrowed” from − log(1−|αn|2) is (up to a boundary term)

1
2

∞∑
n=0

|αn − αn+k|2 (7.5)

Proof. The normalized η is (1− cos kθ) dθ
2π

, so by (5.5), the potential is
1
k

cos kθ and Q is
1

2k
[Tr(Uk) + Tr(U

k
)] (7.6)

Thus, since k in (7.4) cancels the k−1 in (7.6), the quadratic term
including the borrowed |αn|2 is

bdy + 1
2

∞∑
n=0

[
|αn|2 + |αn+k|2 − αnᾱn+k − ᾱnαn+k

]
(7.7)

which is (7.5). �

Proof of Proposition 7.3. The Verblunsky side of the sum rule associ-
ated to (7.1) has quadratic term (7.5) and a remainder that is finite if
α ∈ `4. Thus the equivalence is immediate. �

8. Single kth Order Singularity

We are interested here in measures which obey∫
(1− cos θ)k log(w(θ))

dθ

2π
> −∞ (8.1)

Here the Simon–Lukic conditions are

(S1) (S − 1)kα ∈ `2 (8.2)

(S2) α ∈ `2k+2 (8.3)

Our main goal is to prove that

Theorem 8.1. Suppose α ∈ `4. Then

(8.1) ⇐⇒ (8.2)

Remark. This is a special case of a result of Golinskii–Zlatoš [11].
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To put this in perspective, we note that Lukic [18] has proven

Theorem 8.2 ([18]). Suppose (S − 1)α ∈ `2. Then

(8.1) ⇐⇒ (8.3)

These two extreme cases are consistent with (8.1) ⇐⇒ (S1-2) and
suggest its truth.

The key to our proof will be to show that the quadratic term in the
sum rule is ck‖(S − 1)kα‖22 for an explicit ck. We’ve seen that c1 = 1

2

(4.5) and c2 = 1
6

(6.15). The reader might stop and try to figure out
the general formula.

By (6.4)

2k(1− cos θ)k = (−1)k(eiθ/2 − e−iθ/2)2k

=
2k∑
j=0

(
2k

j

)
(−1)j−kei(j−k)θ (8.4)

Thus the normalized η is

ck

2k∑
j=0

(
2k

j

)
(−1)j−kei(j−k)θ

dθ

2π
(8.5)

where

ck ≡
1(
2k
k

) =
(k!)2

(2k)!
(8.6)

Therefore, by (5.5)

V (θ) = ck

2k∑
j=k+1

1

k

(
2k

j

)
(−1)j−k cos((j − k)θ) (8.7)

Recalling that we need to borrow |αn|2 from − log(1− |αn|2), and that
1
2
Tr(U ` + Ū `) = k

2

∑∞
n=0(αnᾱn+` + ᾱnαn+`), we see that the quadratic

term in the sum rule is

I2 = ck

2k∑
j=k

(
2k

j

)
(−1)j−kPj−k (8.8)

where now, instead of (5.16)

P` = 1
2

∞∑
n=0

(αnᾱn+` + ᾱnαn+`) (8.9)

In the above, the added j = k term is just the
∑∞

n=0 |αn|2.
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On the other hand

‖(S − 1)kα‖22 =
∞∑
n=0

∣∣∣∣∣
k∑
j=0

(
k

j

)
(−1)jαn+j

∣∣∣∣∣
2

=
k∑
`=0

[
k−∑̀
j=0

(
k

j

)(
k

`+ j

)]
(−1)`P` (8.10)

where we use the fact a αn+j1ᾱn+j2 term will contribute to P` if ` =
|j1 − j2|.

Proposition 8.3. For any k = 0, 1, 2, . . . and ` = 0, . . . , k, we have
that

k−∑̀
j=0

(
k

j

)(
k

`+ j

)
=

(
2k

k + `

)
(8.11)

Proof. To pick k − ` elements from among 2k numbered objects, we
can pick j from the first k and k − `− j from the second. Thus

k−∑̀
j=0

(
k

j

)(
k

k − `− j

)
=

(
2k

k − `

)
(8.12)

Since
(
p
q

)
=
(
p
p−q

)
, we have that

(
k

k−`−j

)
=
(
k
`+j

)
and

(
2k
k−`

)
=
(

2k
k+`

)
. We

thus get (8.11). �

Proof of Theorem 8.1. Picking j − k = ` in (8.8), we see that

I2 = ck

k∑
`=0

(
2k

k + `

)
(−1)`P`

which by (8.10) and (8.11) is ck‖(S−1)kα‖22. When α ∈ `4, by Hölder’s
inequality, all terms in the sum rule but the quadratic are finite. So the
Verblunsky side of the sum rule is finite if and only if ‖(S−1)kα‖22 <∞.
By the sum rule, we conclude the result. �

9. The (2,1) Case

Our main result in this section is half the Lukic conjecture in the
(2, 1) case, specifically:

Theorem 9.1. Let µ be a probability measure on ∂D of the form (1.5)
with real Verblunsky coefficients {αj}∞j=0 obeying (1.16)–(1.18). Then
the integral on the left side of (1.12) is finite.
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Remark. As noted, this is important because there are examples
where Simon’s conditions (i.e. (1.16) and (1.18) without (1.17)) hold,
but the integral in (1.12) is −∞.

We’ll compute the sum rule guaranteed by Section 3 to say I2 +I4 +
I6 + L8 <∞ ⇐⇒ the integral in (1.13) is finite, see (9.29)-(9.34) for
notation. Then we’ll show that (1.16)–(1.18)⇒ I2 <∞, I4 <∞, I6 <
∞, L8 <∞. We start by computing the potential, V , of (3.4) for the
(2, 1) case. As noted (see (5.2)), we have that

cos2 θ = 1
4
(eiθ + e−iθ)2 = 1

2
cos 2θ + 1

2
(9.1)

Similarly

cos3 θ = 1
8
(eiθ + e−iθ)3 = 1

4
cos 3θ + 3

4
cos θ (9.2)

Thus

P (θ) = (1− cos θ)2(1 + cos θ)

= (1− cos2 θ)(1− cos θ)

= 1− cos θ − cos2 θ + cos3 θ (9.3)

= 1
2
− 1

4
cos θ − 1

2
cos 2θ + 1

4
cos 3θ (9.4)

by (9.1)–(9.2). Thus, since
∫

cos kθ dθ
2π

= δk0, the normalized dη is

dη(θ) =
(
1− 1

2
cos θ − cos 2θ + 1

2
cos 3θ

)
dθ
2π

(9.5)

Using (3.4) and (3.7), we conclude that

V (θ) = 1
2

cos θ + 1
2

cos 2θ − 1
6

cos 3θ (9.6)

so that if α is real then

Tr(V (U)) = 1
2
Tr(U) + 1

2
Tr(U2)− 1

6
Tr(U3) (9.7)

In earlier sections, we used the CMV matrix representation to com-
pute Tr(U) and Tr(U2). While initially we computed Tr(U3) in this
way also, we realized the calculations are simpler in the GGT matrix
representation. (GGT and CMV representations are discussed in Sec-
tion 4.1 and 4.2 of Simon [21].) This is given by

Gk` = 〈ϕk, zϕ`〉 (9.8)

The explicit calculation is (Simon [21, (4.15)])

Gk` =

 −α`αk−1
∏`−1

j=k ρj 0 ≤ k ≤ `
ρ` k = `+ 1
0 k ≥ `+ 2

(9.9)
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In [21], this is calculated using 〈Φ∗n, P 〉 = ‖Φn‖2P (0) if degP ≤ n.
An easier alternative is to use the Szegő recursion ([21, (1.5.25)]) and
inverse Szegő recursion ([21, 1.5.46])

zϕn(z) = ρnϕn+1(z) + ᾱnϕ
∗
n(z) (9.10)

ϕ∗j(z) = ρj−1ϕ
∗
j−1(z)− αj−1ϕj(z) (9.11)

so

zϕn(z) = ρnϕn+1(z)− ᾱnαn−1ϕn(z) + ᾱnρn−1ϕ
∗
n−1(z)

= ρnϕn+1(z)− ᾱnαn−1ϕn(z)− ᾱnρn−1αn−2ϕn−1(z)

+ ᾱnρn−1ρn−2ϕ
∗
n−2(z) (9.12)

which upon iterating yields

zϕn(z) = ρnϕn+1(z) +
n∑
k=0

Gknϕk(z) (9.13)

with G given by (9.9).
When dealing with the GGT representation, it can be an issue that
{ϕn}∞n=0 is not a basis but the calculations need only be done for finite
matrices where the OPs are a basis (or one can use the extended GGT
basis of [21, Section 4.1] noting that diagonal matrix elements of Gq in
the extra basis elements are zero).

Define G(`) to be the `th diagonal of G so (j, k = 0, . . . , n− 1)

G(−1)jk = ρkδk,j−1 (9.14)

G(`)jk = −ᾱkαj−1

[
k−1∏
m=j

ρm

]
δk,j+` ` ≥ 0 (9.15)

G =
n−1∑
`=−1

G(`) (9.16)

Of course, only G(`1) . . .G(`q) with
∑q

m=1 `m = 0 have non–zero main
diagonal and so if we expand Gq using (9.16), only those terms con-
tribute to Tr(Gq) so

Tr(Gq) =
∑
`1,...,`q∑q
m=1 `m=0

Tr
(
G(`1) . . .G(`q)

)
(9.17)

We can now understand why calculations are easier with the GGT
than CMV matrix. In (9.17), the sums start at `m = −1 while in the
analog for CMV, we start at `m = −2, so at least for q not too large,
there are fewer terms with GGT. Moreover, the form of (9.14)–(9.15) is
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covariant under translation along the diagonal while the CMV matrix
diagonals have an even–odd structure.

For q = 1, we must have `1 = 0 and for q = 2, we have (`1, `2) =
(0, 0), (1,−1) or (−1, 1). Moreover, by cyclicity of the trace, the (1,−1)
and (−1, 1) terms are equal, i.e. Tr(G2) = Tr

(
(G(0))2

)
+2Tr

(
G(1)G(−1)

)
.

We thus recover (4.4) and (5.9) when α is real, that is up to boundary
terms:

Tr(G) = I1,2 = −
∞∑
j=1

αjαj−1 (9.18)

Tr(G2) = I2,2 + I2,4 I2,2 = −2
∞∑
j=2

αjαj−2 (9.19)

I2,4 =
∞∑
j=2

α2
jα

2
j−1 + 2αjα

2
j−1αj−2 (9.20)

For Tr(G3), we have up to cyclic permutations, (`1, `2, `3) = (0, 0, 0)
(once), (2,−1,−1), (0, 1,−1), (0,−1, 1) (each three times). Thus up to
boundary terms:

Tr(G3) = Tr
(
(G(0))3

)
+ 3Tr

(
G(2)(G(−1))2

)
+ 3Tr

(
G(0)G(1)G(−1)

)
+ 3Tr

(
G(0)G(−1)G(1)

)
(9.21)

= I3,2 + I3,4 + I3,6 (9.22)

I3,2 = −3
∞∑
j=3

αjαj−3 (9.23)

I3,4 = 3
∞∑
j=3

αj(α
2
j−1 + α2

j−2)αj−3

+ 3
∞∑
j=2

αjαj−1(αjαj−2 + αj+1αj−1) (9.24)

I3,6 = −
∞∑
j=1

α3
jα

3
j−1 − 3

∞∑
j=3

αjα
2
j−1α

2
j−2αj−3

− 3
∞∑
j=2

α2
jα

3
j−1αj−2 − 3

∞∑
j=1

α3
jαj+1α

2
j−1 (9.25)

We also write

L ≡
∞∑
j=0

log(1− α2
j ) = IL,2 + IL,4 + IL,2 + L8 (9.26)
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IL,2 =
∞∑
j=0

α2
j IL,4 = 1

2

∞∑
j=0

α4
j IL,6 = 1

3

∞∑
j=0

α6
j (9.27)

L8 = −
∞∑
j=0

[
log(1− α2

j )− α2
j − 1

2
α4
j − 1

3
α6
j

]
(9.28)

so the coefficient side of the sum rule is I2 + I4 + I6 + L8 where

I2 = IL,2 + 1
2
I1,2 + 1

2
I2,2 − 1

6
I3,2 (9.29)

= 1
2

∑
j

[
2α2

j − αjαj−1 − 2αjαj−2 + αjαj−3
]

(9.30)

I4 = IL,4 + 1
2
I2,4 − 1

6
I3,4 (9.31)

= 1
2

∑
j

[
α4
j + α2

jα
2
j−1 + 2αjα

2
j−1αj−2 − αjα2

j−1αj−3

−αjα2
j−2αj−3 − α2

jαj−1αj−2 − αjαj−1α2
j−2
]

(9.32)

I6 = IL,6 − 1
6
I3,6 (9.33)

= 1
2

∑
j

[
2
3
α6
j + 1

3
α3
jα

3
j−1 + αjα

2
j−1α

2
j−2αj−3

+α2
jα

3
j−1αj−2 + αjα

3
j−1α

2
j−2
]

(9.34)

where we use the fact that adding a constant to all indices in a sum
only changes the sum by a boundary term.

We start with I2 by using Proposition 5.2. In terms of the Pj of
(5.16), up to boundary terms

I2 = 1
2
(2P0 − P1 − 2P2 + P3) (9.35)

by (9.30). On the other hand, by the same calculation that gave (9.3),
(S − 1)2(S + 1) = S3 − S2 − S + 1 so[

(S − 1)2(S + 1)α
]
j

= αj+3 − αj+2 − αj+1 + αj (9.36)

Thus ∑
j

[
(S − 1)2(S + 1)α

]2
j

= 4P0 − 2P1 − 4P2 + 2P3 (9.37)

We conclude by Proposition 5.2 that up to boundary terms

I2 = 1
4
‖(S − 1)2(S + 1)α‖22 (9.38)

and thus
(1.16)⇒ I2 <∞ (9.39)

By Hölder’s inequality

(1.18)⇒ I6 <∞ (9.40)
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By Proposition 4.1
(1.18)⇒ L8 <∞ (9.41)

Thus, we need to focus on I4. Let β ≡ (S + 1)α. By Theorem 2.6
we have that

γ ≡ (S − 1)β = (S2 − 1)α ∈ `3 (9.42)

Here is the key first step:

Proposition 9.2. (a) For any m1,m2,m3,m4, we have that∑
j

|αj+m1αj+m2γj+m3γj+m4 | <∞ (9.43)

(b) For any m1,m2,m3,m4, we have that∑
j

|αj+m1αj+m2αj+m3 [γj+m4+1 − γj+m4 ]| <∞ (9.44)

(c) For any m1,m2,m3,m4, we have that∑
j

αj+m1αj+m2αj+m3γj+m4 (9.45)

is conditionally convergent.

Remarks. 1. We only need conditional summability so, since γj =
αj+2−αj, (c) implies the conditional summability of the sum in (9.43)
without the | · |. However, we use (a) in the proof of (c).

2. To avoid having to worry about boundary terms at 0, we extend
all sequences to −∞ by setting αn = 0 for n ≤ −1. This doesn’t effect
conditional convergence of any sums. Since α ∈ `6, all of α, β, γ go to
zero as n→ ±∞.

Proof. (a) 1
6

+ 1
6

+ 1
3

+ 1
3

= 1, so since α ∈ `6, γ ∈ `3, Hölder’s inequality
implies (9.43).

(b) 1
6

+ 1
6

+ 1
6

+ 1
2

= 1, so since α ∈ `6, (S − 1)γ ∈ `2, Hölder’s
inequality implies (9.44).

(c) The intuition is simple. The continuum analog is that if f is C1

on R, f(x)→ 0 as |x| → ∞, then
∫ R2

−R1
f(x)3f ′(x)dx = 1

4

∫ R2

−R1
[f 4]′(x)dx

has a zero limit. The sum in (9.45) is a discrete analog so the key will
be a summation by parts.

Since we’ll be summing by parts, we need to know the appropriate
discrete Leibniz rule. Let p ∈ Z \ {0} and D = Sp − 1 so (Da)n =
an+p − an. Then

[D(ab)]n = an+pbn+p − anbn
= an(Db)n + (Da)n(Spb)n (9.46)
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or D(ab) = a(Db) + (Da)Spb. By induction, one sees that

D(a(1) . . . a(k)) =
k∑
j=1

a(1) . . . a(j−1)(Da(j))Spa(j+1) . . . Spa(k) (9.47)

Consider the sum in (9.45) first if m1 = m2 = m3 = m4 = 0. Let
D = S2 − 1. By (9.47)

D(α4) = (Dα)(S2α)3+α(Dα)(S2α)2+α2(Dα)(S2α)+α3(Dα) (9.48)

Given two sequences, κ and η, write κ
.

= η to mean κ − η ∈ `1.
In (9.48), Dα = γ so if we write S2α = α + γ, the γ term produces
products of two α’s and two γ’s, so in `1 by (a). Thus

D(α4)
.

= 4(Dα)α3 = 4γα3 (9.49)

The conditional sum of D(α4) is finite and indeed zero since α ∈ `6
and

n∑
−k

[D(α4)]j = α4
n+2 + α4

n+1 − α4
−k − α4

−k+1 → 0

Thus 4γα3 is conditionally summable.
Consider next the case m1 = m2 = 1,m3 = m4 = 0. By (9.47) and

the same argument that led to (9.49)

D((S2α)2α2)
.

= 2(Sα)2α(Dα) + 2α2(DSα)Sα (9.50)
.

= 2(Sα)2α(Dα) + 2(S2α)2(DSα)Sα (9.51)

since, as above, we can replace α by S2α making an `1 error in the
four–fold product.

Note that whether a sequence is conditionally summable or
not doesn’t change by a translation of index so we can replace
(S2α)2(DSα)Sα by (Sα)2α(Dα) and conclude that

D((S2α)2α2)− 4(Sα)2αDα (9.52)

is conditionally summable and thus (Sα)2αDα is conditionally sum-
mable proving the result when m1 = m2 = 1,m3 = m4 = 0.

Now consider general mj. Since (S − 1)γ ∈ `2, we can change m4

to any value we want making an `1 change. Similarly, by shifting by
multiples of 2 units, we can change each of m1,m2,m3 to 0 or 1. If they
are all equal after this, set m4 to the common value and get conditional
convergence by the case (0,0,0,0). If the first three m’s have two equal
and one unequal, set m4 to the unequal value and get either (1,1,0,0)
or (0,0,1,1). We’ve handled the first and by using the S2 − 1 trick,
(0,0,1,1) is the same as (0,0,-1,-1) and by covariance, that is the same
as (1,1,0,0). �
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Next, we recall the remarkable fact that if (1.16)+(1.18), then (S −
1)α ∈ `4 ⇐⇒ (S − 1)2α ∈ `4! (see Theorem 2.6).

Proof of Theorem 9.1. As we’ve seen, we need only show that I4 is
conditionally convergent. We only used (1.16)+(1.18) so far, but not
(1.17) which we’ll use in the form (S − 1)α ∈ `4.

We begin by noting that because of (c) of the last Proposition,∑
α3
j (αj+1 − αj−1) is conditionally convergent. Using index transla-

tion covariance, we conclude that∑
j

(α3
jαj−1 − αjα3

j−1) (9.53)

is conditionally convergent.
Since [((S − 1)α)j−1]

4 = [αj − αj−1]
4, using translation covariance

and (9.53), we see that ‖(S − 1)α‖44 <∞ implies that∑
j

[
2α4

j − 8α3
jαj−1 + 6α2

jα
2
j−1
]

(9.54)

is conditionally convergent.
On the other hand, by (c) of the last Proposition, in (9.32) we can

replace αj−2 by αj and αj−3 by αj−1 without effecting conditional con-
vergence. If we do that and use (9.53) again, we see that I4 is a
conditionally convergent sum plus

Ĩ4 =
∑
j

[
α4
j + 3α2

jα
2
j−1 − 4α3

jαj−1
]

(9.55)

This is half the sum in (9.54) so (1.17) implies conditional convergence

of the sum in Ĩ4. �
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circle and higher-order Szegő theorems, Constr. Approx. 26 (2007), 361–382.

[12] D. Gross and E. Witten, Possible third-order phase transition in the large–N
lattice gauge theory, Phys. Rev. D 21 (1980), 446–453.

[13] R. Killip and I. Nenciu, CMV: The unitary analogue of Jacobi matrices,
Comm. Pure Appl. Math. 60 (2007), 1148–1188.

[14] R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications
to spectral theory, Ann. Math. 158 (2003), 253–321.

[15] S. Kupin, On a spectral property of Jacobi matrices, Proc. Amer. Math. Soc.
132 (2004),1377–1383.

[16] A. Laptev, S. Naboko and O. Safronov, On new relations between spectral
properties of Jacobi matrices and their coefficients, Comm. Math. Phys. 241
(2003), 91–110.

[17] M. Lukic, On a conjecture for higher-order Szegő theorems, Constr. Approx.
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