
ASYMPTOTICS OF CHEBYSHEV POLYNOMIALS,
II. DCT SUBSETS OF R

JACOB S. CHRISTIANSEN1,5, BARRY SIMON2,6, PETER YUDITSKII3,7

AND MAXIM ZINCHENKO4,8

Abstract. We prove Szegő–Widom asymptotics for the Cheby-
shev polynomials of a compact subset of R which is regular for
potential theory and obeys the Parreau–Widom and DCT condi-
tions.

1. Introduction

Let e ⊂ R be a compact subset with logarithmic capacity C(e) > 0.
Define

‖f‖e = sup
x∈e
|f(x)| (1.1)

The Chebyshev polynomial, Tn(z), is the monic polynomial with

tn ≡ ‖Tn‖e = inf{‖P‖e | degP = n, P monic} (1.2)

It is a consequence of the alternation theorem (a result of Borel [3]
and Markov [13] using ideas that go back to Chebyshev; see [4] for a
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statement and proof) that Tn is unique and that

en ≡ T−1
n ([−tn, tn]) = {z ∈ C | − tn ≤ Tn(z) ≤ tn} (1.3)

is a subset of R. Clearly, by definition of tn,

e ⊂ en (1.4)

Recall that the Green’s function, Ge(z), is the unique function on C
which is positive and harmonic on C \ e, upper semicontinuous on C,
so that Ge(z) = log(|z|) + O(1) near z = ∞ and so that Ge(x) = 0
for quasi-every x ∈ e. A set, e, is called regular (for potential theory)
if Ge(x) = 0 for all x ∈ e (which implies that Ge is continuous on C).
We’ll assume that e is regular. One has that near infinity

Ge(z) = log(|z|)− log(C(e)) + O(1/|z|) (1.5)

Moreover, if dρe is the potential theoretic equilibrium measure for e,
then

Ge(z) = − log(C(e)) +

∫
log(|z − x|)dρe(x) (1.6)

For more on potential theory, see [19, Section 3.6].
It is not hard to see (see [4]) that the Green’s function, Gn, for en is

Gn(z) =
1

n
log

∣∣∣∣∣∣Tn(z)

tn
+ i

√
1−

(
Tn(z)

tn

)2

∣∣∣∣∣∣
 (1.7)

which implies that

tn = 2(C(en))n (1.8)

In particular, since C(e) ≤ C(en), we get Schiefermayr’s bound [16]

tn ≥ 2(C(e))n (1.9)

In [4], we introduced the term Totik–Widom bound (after [22, 24]) if
for some constant D, one has that

tn ≤ D(C(e))n (1.10)

A compact set e ⊂ C is said to obey a Parreau–Widom (PW) con-
dition (after [15, 25]) if and only if

PW (e) ≡
∑
zj∈C

Ge(zj) <∞ (1.11)

where C is the set of points, zj, where ∇Ge(zj) = 0. For regular
subsets of R, all these critical points are real and there is exactly one
such point in each bounded open component, Kj, of R\ e and Ge(zj) =
maxx∈Kj Ge(x).
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In [4], we proved that if e ⊂ R is a regular PW set, then one has an
explicit Totik–Widom bound

tn ≤ 2 exp (PW (e))(C(e))n (1.12)

Our methods there say nothing about the complex case. In this
regard, we mention the recent interesting paper of Andrievskii [2] who
has proven Totik–Widom bounds for a class of sets that, for example,
includes the Koch snowflake.

One of our results in this paper (see Theorem 1.4 and Section 2)
will be a kind of weak converse – under an additional condition on e
which should hold generically, if e ⊂ C is compact, regular and obeys
a Totik–Widom bound, then e is a PW set.

For a general positive capacity, regular, compact set e ⊂ C, we define
Ω to be its complement in the Riemann sphere, i.e.,

Ω = (C ∪ {∞}) \ e (1.13)

which we suppose is connected (this always holds if e ⊂ R). We let

Ω̃ be its universal cover and π : Ω̃ → Ω the covering map. It is a
consequence of the uniformization theorem (see [18, Section 8.7]) that

Ω̃ is conformally equivalent to the disk, D, a fact we will use. We denote
by x : D → Ω the unique covering map normalized by x(0) = ∞ and
near z = 0, x(z) = Dz−1 + O(1) with D > 0.

There is an important multivalued analytic function, Be(z), on Ω
determined by

|Be(z)| = e−Ge(z) (1.14)

and that near ∞,

Be(z) = C(e)z−1 + O(z−2) (1.15)

One way of constructing it is to use the fact that −Ge has a harmonic
conjugate locally so that locally on C \ e, it is the real part of an
analytic function whose exponential is Be(z). It is easy to see that this

allows Be to be continued along any curve in Ω̃ so by the monodromy

theorem ([18, Section 11.2]), Be(z) has an analytic continuation to Ω̃
which defines a multivalued analytic function on Ω.

By analyticity, (1.14) holds for all branches of Be(z). In particular,
going around a closed curve, γ, can only change Be by a phase factor
which implies there is a character, χe, of the fundamental group, π1(Ω),
so that going around γ changes Be by χe([γ]). It is not hard to see ([4,
Theorem 2.7]) that

χe(γ) = exp

(
−2πi

∫
e

N(γ, x)dρe(x)

)
(1.16)
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where N(γ, x) is the winding number for the curve γ about x. Thus
Be is a character automorphic function.

An alternate construction is to consider elementary Blaschke factors
b(z, w)(= (w̄/|w|)[(w−z)/(1−w̄z)] if w 6= 0) for z, w ∈ D. Then, lifted
to D,

Be(z) =
∏

{wj |x(wj)=∞}

b(z, wj) (1.17)

We will call Be the canonical Blaschke product for e and χe, the canon-
ical character.

Similarly, we can define for each w ∈ Ω, Be(z, w) either by using
(1.17) with {wj |x(wj) = ∞} replaced by {wj |x(wj) = w} or by us-
ing the Green’s function Ge(z, w) with pole at w and demanding that
|Be(z, w)| = exp(−Ge(z, w)) and fixing the phase by demanding that
Be(∞, w) > 0.

One can consider character automorphic functions for general char-
acters, χ ∈ π1(Ω)∗, the full character group. In this regard the follow-
ing theorem of Widom [25] (see also Hasumi [11, Theorem 5.2B]) is
important:

Theorem 1.1. (Widom) Suppose that e is a compact set regular for
potential theory. Then e is a PW set if and only if for every character,

χ ∈ π1(Ω)∗, there is a non-zero analytic χ-automorphic function on Ω̃
which is bounded.

Single-valued analytic functions on Ω̃ correspond to multi-valued
functions on Ω and we will often refer to them as if they are ordi-
nary functions. In essence we view Ω with the convex hull of e removed

as a subset of Ω̃.
For a PW set, e, and any character, χ, we let H∞(Ω, χ) be the set of

bounded analytic χ-automorphic functions on Ω̃ and denote by ‖ · ‖∞
the corresponding norm. We use H2(Ω, χ) or Hχ for the set of analytic
χ-automorphic functions, f , for which |f |2 has a harmonic majorant
in Ω. Evidently, H∞(Ω, χ) ⊂ H2(Ω, χ). It is easy to see that H2(Ω, χ)
is precisely those χ-automorphic functions, f , on Ω whose lifts to D
under x are in H2(D).

When e is a PW set, there exist h ∈ H∞(Ω, χ) with h(∞) 6= 0, for
if f ∈ H∞(Ω, χ) with f(z) = Cz−n + O(z−n−1); C 6= 0, then h(z) =
znf(z) is also in H∞(Ω, χ) and h(∞) = C.

For any χ, the Widom trial functions for χ is the set, {h ∈
H∞(Ω, χ) |h(∞) = 1}. The Widom minimizer, Fχ(z), is a bounded
χ-character automorphic function with Fχ(∞) = 1 so that

‖Fχ‖∞ = inf{‖h‖∞ |h ∈ H∞(Ω, χ); h(∞) = 1} (1.18)
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Knowing that there are Widom trial functions, it is easy to prove using
Montel’s Theorem ([18, Section 6.2]) that minimizers exist. In Section
2, we’ll prove that minimizers are unique (this is not a new result
although our proof is simpler than previous ones).

We will also consider a dual problem. The dual Widom trial func-
tions are {g ∈ H∞(Ω, χ) | ‖g‖∞ = 1}. The dual Widom maximizer is
that function Qχ in the dual Widom trial functions with

Qχ(∞) = sup{g(∞) | g ∈ H∞(Ω, χ), ‖g‖∞ = 1, g(∞) > 0} (1.19)

If g is a dual Widom trial function with g(∞) 6= 0, then g/g(∞) is a
Widom trial function. Conversely, if h is a Widom trial function, then
h/‖h‖∞ is a dual Widom trial function. This shows that for the two
problems, either both or neither have unique solutions and

Qχ = Fχ/‖Fχ‖∞, Fχ = Qχ/Qχ(∞), Qχ(∞) = 1/‖Fχ‖∞ (1.20)

Suppose now that e ⊂ C is compact, connected and simply con-
nected. Then Ω is simply connected and Be is analytic (rather
than multivalued analytic) and is, in fact, the Riemann map of Ω
to D (uniquely specified by Be(∞) = 0 and that near ∞, Be(z) =
Cz−1 + O(z−2) with C > 0). In 1919, assuming that ∂Ω is an analytic
Jordan curve, Faber [7] proved that in this case

Tn(z)Be(z)n

C(e)n
→ 1 (1.21)

uniformly on Ω.
In 1969, Widom [24] considered e ⊂ C which is a finite union of

C1+ Jordan curves and arcs. He noted that (1.21) couldn’t hold when
there was more than one arc or curve since, in that case, Be(z)n is
now a character automorphic function with character χne . If Fn ≡ Fχne ,
Widom suggested what we call the Widom surmise, that

Tn(z)Be(z)n

C(e)n
− Fn(z)→ 0 (1.22)

uniformly on compact subsets of Ω̃. He proved this when e consisted
only of (closed) Jordan curves and in [4], we proved it for e a finite gap
set in R.

We say that Tn has strong Szegő–Widom asymptotics if (see [20,
Section 6.6] for a discussion of almost periodic functions)

(a) (1.22) holds uniformly on compact subsets of Ω̃
(b) n 7→ ‖Fn‖∞ is an almost periodic function
(c) n 7→ Fn(z) is an almost periodic function uniformly on compact

subsets of Ω̃.
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We note that the above results of Widom [24] and [4] prove (b) and (c)
also.

A final element we need before stating our main theorem is the no-
tion of the Direct Cauchy Theorem (DCT) property. There are many
equivalent definitions of DCT – see Hasumi [11] or Volberg–Yuditskii
[23]. Rather than stating a formal definition, we first of all quote a
theorem that could be used as one definition of DCT:

Theorem 1.2 (Hayashi [12], Hasumi [11]). A PW set e obeys a DCT
if and only if the function χ 7→ Qχ(∞) of the dual Widom maximizer
problem is a continuous function on π1(Ω)∗.

We’ll also quote as needed some other results that rely on the DCT
condition. We note that any homogeneous subset of R (in the sense
of Carleson [21]) obeys DCT [21]. On the other hand, Hasumi [11]
has found rather simple explicit examples (with thin components) of
subsets of R which obey PW but not DCT. Volberg–Yuditskii [23] have
even found examples all of whose reflectionless measures are absolutely
continuous.

We can now state the main result of this paper:

Theorem 1.3. Let e ⊂ R be a compact set which is regular for potential
theory and that obeys the PW and DCT conditions. Then its Chebyshev
polynomials have strong Szegő–Widom asymptotics. Moreover,

lim
n→∞

tn
C(e)n‖Fn‖∞

= 2 (1.23)

Remarks. 1. Given the limit (1.22), the 2 in (1.23) may seem sur-
prising. Widom noted the 2 in the easy special case e = [−1, 1] and
proved (1.23) for general finite gap subsets of R. This fact was used in
our proof of (1.22) for the finite gap case in [4]. Here we’ll prove (1.22)
first and then prove (1.23).

2. Our proof uses a partially variant strategy to the one in [4] and we
believe is simpler even in the finite gap case (especially if you include
the need there for some results of Widom that we don’t need to prove
a priori).

For our other main results, we need a new definition. We say a set
e ⊂ R has a canonical generator if {χne }∞n=−∞ is dense in the character
group π1(Ω)∗. This holds if and only if for each decomposition e =
e1 ∪ · · · ∪ e` into closed disjoint sets and rational numbers {qj}`−1

j=1, we
have that

`−1∑
j=1

qjρe(ej) 6= 0 (1.24)
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Remarks. 1. The class of regular PW sets can be parametrized by
comb domains of the form

Π = {x+ iy | 0 < x < 1, y > 0} \ ∪k{ωk + iy | 0 < y ≤ hk} (1.25)

with ωk ∈ (0, 1), ωk 6= ωj for k 6= j and hk > 0,
∑

k hk < ∞. Specifi-
cally, if e is scaled to the interval [0, 1], then

θ(z) =
− logBe(z)

πi
(1.26)

is a conformal mapping of C+ onto such a domain (see [6] for more
details). In that parametrization, the property of a canonical generator
is generic. For one can show that ωk = ρe({x ∈ e |x ≤ ak}) and the
collection of comb domains with rationally independent ωk’s clearly
form a dense Gδ set.

2. It seems likely that the condition of a canonical generator holds in
various other generic senses as well. For example, given a fixed nowhere
dense, infinite gap set, we can pick a positive integer labeling of the
gaps and, for any λ ∈

∏∞
1 [1/2, 2], consider the set obtained by scaling

the jth gap by λj. We suspect the set of λ’s for which this set has a
canonical generator, is a dense Gδ. In the finite gap case, that this is
true follows from results of Totik [22].

Theorem 1.4. Let e ⊂ C be a compact set regular for potential theory
with a canonical generator. If e has a Totik–Widom bound, then e is a
PW set.

Remarks. 1. While we need to assume canonical generator, this result
suggests that Totik–Widom fails if the set is not PW.

2. We emphasize that this result holds for e ⊂ C and not just e ⊂ R.

Theorem 1.5. Let e ⊂ C be a compact set regular for potential theory
with a canonical generator. Suppose that e is a PW set and that n 7→
‖Fn‖∞ is a bounded almost periodic function on Z. Then e is a DCT
set.

Remarks. 1. Again, we emphasize that this holds for all e ⊂ C not
just e ⊂ R.

2. So, one small part of Szegő–Widom asymptotics, namely asymp-
totic almost periodicity of ‖Tn‖e/C(e)n and the limit result (1.23), im-
plies that e is a DCT set (at least if e has a canonical generator).

We will note results from [4] as needed but mention some that are
needed to overview the contents of the paper. Let Bn ≡ Ben . Then [4]
proved that

2Tn(z)

tn
= Bn(z)n +Bn(z)−n (1.27)
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Thus, instead of looking at

Ln(z) ≡ Tn(z)Be(z)n

C(e)n
(1.28)

we’ll look at

Mn(z) = Be(z)n/Bn(z)n (1.29)

which obeys

|Mn(z)| = exp(−nhn(z)), hn(z) ≡ Ge(z)−Gen(z) (1.30)

By (1.27)

Ln(z) = (1 +Bn(z)2n)Hn(z), Hn(z) =
C(en)n

C(e)n
Be(z)n

Bn(z)n
=

Mn(z)

Mn(∞)
(1.31)

The first equation in (1.31) explains the 2 in (1.23). By a simple
argument,

sup
n,z∈K

|Bn(z)| < 1 for any compact set K ⊂ Ω̃ (1.32)

so that Bn(z)2n goes to zero, but for supz∈Ω |1+Bn(z)2n|, we get 2 since
there are points x ∈ en with Bn(x+ i0) = 1.

By the first equation in (1.31) and (1.32), (1.22) is equivalent to

Hn(z)− Fn(z)→ 0 (1.33)

By the second equation in (1.31), it seems likely that it suffices to
control limits of Mn and that is what we’ll do. By the maximum
principle for harmonic functions and (1.30), |Mn(z)| ≤ 1. We will prove
that limn→∞‖Mn‖∞ = 1 and that limit points of Mn with nj →∞ so
that χ

nj
e → χ0 for some χ0 ∈ π1(Ω)∗ are dual Widom maximizers which

will let us prove (1.33).
Here is an overview of the rest of this paper. In section 2, following

ideas of Fisher [8], we prove uniqueness of solutions of the Widom min-
imization problem (this is not a new result – only a new proof – see
the discussion there) and prove Theorem 1.4. In Section 3, we discuss
continuity of Fχ in χ and prove Theorem 1.5. In Section 4, we prove
that limit points of the Mn are Blaschke products of suitable B(z, xj)
and in Section 5 that these products are dual Widom maximizers. This
result has been obtained by Volberg–Yuditskii [23] but we found an al-
ternate proof using ideas of Eichinger–Yuditskii [5]. Finally, in Section
6, we put things together and prove Theorem 1.3



CHEBYSHEV POLYNOMIALS, II 9

2. Uniqueness of the Dual Widom Maximizer

In this section, we provide a proof of uniqueness of solutions of the
dual Widom maximizer problem and so uniqueness of solutions of the
Widom minimizer problem. If e obeys a PW condition, H∞(Ω, χ)
is non-empty (by Theorem 1.1) and so contains h with h(∞) > 0.
By Montel’s theorem ([18, Section 6.2]), {h ∈ H∞(Ω, χ) | ‖h‖∞ ≤
1, h(∞) ≥ 0} is compact in the topology of uniform convergence on

compact subsets of Ω̃. Thus, there exists a maximizer. We need to
prove that this is unique.

Recall that the Ahlfors problem for a compact set e ⊂ C is to
look for bounded analytic functions, f , on Ω = (C ∪ {∞}) \ e with
supz∈Ω |f(z)| ≤ 1 and f(∞) = 0 that maximize f ′(∞) (defined by
f(z) = f(∞) + f ′(∞)z−1 + O(z−2) near z = ∞). This maximum is
called the analytic capacity (because if “analytic” is replaced by “har-
monic”, the maximum is the potential theoretic capacity). There is an
enormous literature on the Ahlfors problem, in particular two sets of
lecture notes [9, 14] and a textbook presentation in [18, Section 8.8].

This is clearly analogous to the dual Widom maximizer problem so
proofs of uniqueness for the Ahlfors problem should have analogs for our
problem. In his original paper, Ahlfors [1] considered an n-connected
domain Ω (i.e., e ⊂ C has n connected components) and proved that
any maximizer, g, has limiting values for almost every point in ∂Ω
(maybe only one sided if e has a one dimensional component) with
|g(w)| = 1 for w ∈ ∂Ω. This can be used to prove uniqueness. In
[24], Widom proved that uniqueness for the dual maximizer by proving
any maximizer had absolute value one on ∂Ω. The same idea occurs
for general Parreau–Widom sets in Volberg–Yuditskii [23] who had the
first proof of the result in this section.

A simple, elegant approach to uniqueness of the Ahlfors problem is
due to Fisher [8]. We will modify his approach to accommodate change
of character and the fact that the vanishing at ∞ is different.

Theorem 2.1. Let e ⊂ C be a PW set regular for potential theory.
Then for any character χ ∈ π1(Ω)∗, the dual Widom maximizer (and
so also the Widom minimizer) exists and is unique.

Remarks. 1. As noted above this has already been proven by Volberg–
Yuditskii [23] but starting from first principles, our proof is simpler.

2. Uniqueness implies that the maximizer in the dual problem is an
extreme point in H∞(Ω, χ)1, the closed unit ball in H∞(Ω, χ). For if
Qχ = 1

2
(q1 + q2) with qj ∈ H∞(Ω, χ)1, then by the maximum property,
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qj(∞) = Qχ(∞). So the qj are also maximizers, and hence equal to
Qχ.

Proof. Without loss, we can suppose χ 6≡ 1 since if χ ≡ 1, the unique
dual maximizer is f ≡ 1. In particular, since χ 6≡ 1, we have that
f(∞) < 1 by the maximum principle. Let f1 and f2 be two maximizers
and define

f = 1
2
(f1 + f2), k = 1

2
(f1 − f2) (2.1)

Pick q ∈ H∞(Ω, χ) with q(∞) 6= 0 and ‖q‖∞ = 1 which exists by the
PW condition and Theorem 1.1.

Since ‖fj‖∞ = 1, we have that ‖f ± k‖∞ = 1 so

|f |2 + |k|2 = 1
2

(
|f + k|2 + |f − k|2

)
≤ 1 (2.2)

Define
g = qk2/2 (2.3)

so g ∈ H∞(Ω, χ). By (2.2),

|g| ≤ 1− |f |2

2
= (1− |f |)

(
1 + |f |

2

)
≤ 1− |f |

so
|g|+ |f | ≤ 1 (2.4)

Since f1(∞) = f2(∞) is the maximum value, g(∞) = 0, so if g 6≡ 0,
then, near ∞, we can write

g(z) =
∞∑
k=`

akz
−k, a` 6= 0 (2.5)

for some ` ≥ 1.
We’ll consider as a trial function

hε(z) = f(z) + εā`z
`g(z) (2.6)

where ε will be picked below. Since f(∞) ∈ (0, 1), we can pick ε0 > 0
so that

f(∞) + ε0|a`|2 < 1 (2.7)

Therefore, we can find R > 0 so that

|z| > R⇒ |f(z)|+ ε0|a`||z`g(z)| < 1 (2.8)

Pick ε1 > 0 so that

ε1 < ε0, ε1|a`|R` < 1 (2.9)

We claim that ‖hε1‖ ≤ 1, for by (2.8) if |z| > R, then |hε1(z)| ≤ 1, and,
if |z| ≤ R, then by (2.9)

|hε1(z)| ≤ |f(z)|+ ε1|a`|R`|g(z)| < |f(z)|+ |g(z)| ≤ 1
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by (2.4). Thus hε1 is a trial function for the dual Widom problem.
On the other hand,

hε1(∞) = f(∞) + ε1|a`|2 > f(∞) (2.10)

violating maximality. We conclude that g ≡ 0, so k ≡ 0, and f1 =
f2. �

Proof of Theorem 1.4. Suppose we have a Totik–Widom bound

tn ≤ D(C(e))n (2.11)

Given χ∞ ∈ π1(Ω)∗, pick nj → ∞ so that χ
nj
e , the character of B

nj
e ,

converges to χ∞ (which we can do by the assumption of canonical
generator). Let

fj(z) =
Tnj(z)Be(z)nj

C(e)nj
(2.12)

By the maximum principle,

‖fj‖∞ ≤ sup
z→e
|fj(z)| ≤ tnjC(e)−nj ≤ D

so by Montel’s theorem, we can find jk →∞, so that fjk converges to
f∞ uniformly on compacts. Since Tnj is monic and Be(z) = C(e)/z +
O(z−2), we have fj(∞) = 1 and, therefore, f∞ is non-zero. Clearly,
f∞ ∈ H∞(Ω, χ∞). By Theorem 1.1, e obeys a PW condition. �

3. Continuity of the Widom Minimizer

In this section, we study continuity properties (in χ) of Qχ(z), Fχ(z)
and ‖Fχ‖∞. We’ll show there is continuity if and only if the DCT
holds. Applying this to n → Fχne , we’ll see that DCT implies almost
periodicity.

Theorem 3.1. Let e ⊂ C be a compact, PW and DCT set that is
regular for potential theory. Then χ 7→ Qχ and χ 7→ Fχ are contin-

uous in the topology of uniform convergence on compact subsets of Ω̃.
Moreover, χ 7→ ‖Fχ‖∞ is continuous. Conversely, if χ 7→ ‖Fχ‖∞ is
continuous for e a regular PW set, then e is a DCT set.

Proof. By Theorem 1.2, if e is a DCT set, then Qχ(∞) is continuous.
If χn → χ for some sequence so that Qχn converges to a function

g uniformly on compact subsets of Ω̃, then by continuity, g(∞) =
Qχ(∞) and ‖g‖∞ ≤ 1. It follows by uniqueness of the minimizer
that g = Qχ. By Montel’s Theorem, χ 7→ Qχ is continuous. Since
Fχ(z) = Qχ(z)/Qχ(∞) and ‖Fχ‖∞ = 1/Qχ(∞), we conclude continuity
of Fχ and ‖Fχ‖∞.

The converse follows from Theorem 1.2 and Qχ(∞) = 1/‖Fχ‖∞ �
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Theorem 3.2. Let e ⊂ C be a compact, PW and DCT set that is
regular for potential theory. Then n 7→ Fχne (z) and n 7→ Qχne (z) are

almost periodic uniformly for z in compact subsets of Ω̃. Moreover,
n 7→ ‖Fχne ‖∞ is a bounded almost periodic function.

Proof. Almost periodicity of a function, f , on Z can be defined in terms
of the family fm ≡ f(· − m) lying in a compact family of functions.
Since π1(Ω)∗ is compact, {Fχ}χ∈π1(Ω)∗ and {Qχ}χ∈π1(Ω)∗ are the required
compact families. Since Qχ(∞) is a continuous function, it takes its
minimum value which is always non-zero. Thus Qχ(∞) is bounded
away from zero and thus, ‖Fχ‖∞ = 1/Qχ(∞) is bounded. �

We now turn to the proof of Theorem 1.5. The first two of four lem-
mas require neither almost periodicity nor canonical generator. We’ll
focus on the dual maximizer, Qχ, given by (1.20).

Lemma 3.3. Let e be a regular PW set. Then χ 7→ Qχ(∞), the map
from π1(Ω)∗ to (0, 1], is upper semicontinuous, i.e.,

χj → χ ⇒ lim sup
j→∞

Qχj(∞) ≤ Qχ(∞) (3.1)

Proof. By Montel’s theorem, we can always pick a subsequence so that
Qχjn

(∞)→ lim supj→∞Qχj(∞) and so that Qχjn
has a pointwise limit,

g, on the universal cover which has ‖g‖∞ ≤ 1 and for which the con-
vergence is uniform on compact subsets of the universal cover. Since
χjn → χ, g is a trial function for the dual Widom problem with char-
acter χ. Since Qχ is a maximizer, g(∞) ≤ Qχ(∞), i.e., (3.1) holds. �

Lemma 3.4. Let e be a regular PW set. If χ 7→ Qχ(∞) is continuous
at χ = 1 (i.e., we know that χj → 1⇒ Qχ(∞)→ 1), then χ 7→ Qχ(∞)
is continuous on π1(Ω)∗.

Proof. Suppose χj → c. Then χj/c → 1. Since QcQχj/c is a trial
function for the χj dual maximizer problem, we have that

Qc(∞)Qχj/c(∞) ≤ Qχj(∞) (3.2)

By hypothesis, Qχj/c(∞)→ 1, so (3.2) implies that

Qc(∞) ≤ lim inf
j→∞

Qχj(∞). (3.3)

This and (3.1) imply that Qχj(∞)→ Qc(∞). �

Lemma 3.5. Let e be a regular PW set. Suppose n 7→ ‖Fn‖∞ is a
bounded almost periodic function and that χ

nj
e → 1. Then Q

χ
nj
e
→ 1.



CHEBYSHEV POLYNOMIALS, II 13

Proof. By hypothesis, there exists a compact additive group K and a
bounded continuous function, B, on K so that Z is a dense subgroup
in K and B(n) = ‖Fn‖∞. Let A(α) = B(α)−1 which is also continuous
on K, bounded away from 0 (and bounded above by 1) with

Qχne (∞) = A(n) (3.4)

By passing to a subsequence, we can suppose that nj → α ∈ K and
that Q

χ
nj
e

(∞) has a limit q.

Fix ns. By passing to a further subsequence, we can suppose that
Q
χ
ns−nj
e

has a limit, g, on the universal cover. Since χ
nj
e → 1, g is a

trial function for the χnse problem so

Qχnse (∞) ≥ g(∞) = lim
nj→∞

A(ns − nj) = A(ns − α) (3.5)

by the continuity of A. Now take ns →∞. By definition of q, we have

q = lim
ns→∞

Qχnse (∞) ≥ lim sup
ns→∞

A(ns − α) = A(0) = 1

since ns → α and A(0) = 1 by (3.4). Thus q ≥ 1. Since Qχ(∞) ∈ (0, 1],
we conclude that q = 1, i.e., 1 is the only limit point ofQ

χ
nj
e

(∞) proving

the lemma. �

Lemma 3.6. Let e be a regular PW set. Suppose that n→ ‖Fn‖∞ is a
bounded almost periodic function and that e has a canonical generator.
Then χ 7→ Qχ(∞) is continuous at χ = 1, i.e.,

χj → 1 ⇒ lim
j→∞

Qχj(∞) = 1 (3.6)

Proof. π1(Ω)∗ is a compact, separable group, so metrizable. Let d
be a metric on π1(Ω)∗ yielding the usual topology. Since {χme } is
dense, we can pick integers mj(`) for each j and ` = 1, 2, . . . so that

d(χj, χ
mj(`)
e ) ≤ 2−`.

By Lemma 3.3, we can pick `j ≥ j so that

Q
χ
mj(`j)
e

(∞) ≤ Qχj(∞) + 2−j (3.7)

Let k(j) = mj(`j). Since d(1, χ
k(j)
e ) ≤ d(1, χj) + 2−j, we see that

χ
k(j)
e → 1, so by Lemma 3.5, Q

χ
k(j)
e

(∞) → 1. By (3.7), we conclude

that lim inf Qχj(∞) ≥ 1. Since Qχj(∞) ∈ (0, 1], we conclude that the
limit is 1. �

Proof of Theorem 1.5. By the hypothesis, Lemma 3.6 applies, so we
conclude that χ 7→ Qχ(∞) is continuous at 1. By Lemma 3.4, χ 7→
Qχ(∞) is continuous on all of π1(Ω)∗, so, by Theorem 1.2, the set e is
DCT. �
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4. Limit Points of Mn are Blaschke Products

In this section and the next, we consider the functions Mn(z) =
[Be(z)/Bn(z)]n of (1.29). Since e ⊂ en, we have that Gn(z) ≤ Ge(z) so

|Mn(z)| ≤ 1 (4.1)

Mn(z) is analytic on the universal cover of (C ∪ {∞}) \ en. Since the
harmonic measures of components of en are j/n, Bn(z)n is single valued

analytic on C\ en, so Mn(z) has character χn ≡ χne for curves in Ω̃ that
avoid en.

In this section, we’ll prove that limit points of Mn (after removing
some removable potential singular points) are Blaschke products an-

alytic on Ω̃ and, in the next, that these Blaschke products are dual
Widom maximizers. This section will only require that e ⊂ R is regu-
lar for potential theory and obeys a PW condition while the next will
also require the DCT condition.

R \ e is a disjoint union of bounded open components (plus two
unbounded components), K ∈ G. We’ll call these the gaps and G the
set of gaps. A gap collection is a subset G0 ⊂ G. A gap set is a gap
collection, G0, and for each Kk ∈ G0 a point xk ∈ Kk. For any gap
K = (β − α, β + α), we define

K(ε) = (β − (1− ε)α, β + (1− ε)α)

so that K(ε) ⊂ K and |K(ε)| = (1− ε)|K|.
For any gap set, S, we define the associated Blaschke product

BS(z) =
∏

Kk∈G0

Be(z, xk) (4.2)

Lifted to D, each Be(z, xk) is a product of elementary Blaschke factors
and thus, so is the product in (4.2). It is known ([18, Theorem 9.9.4])
that such products either converge to 0 uniformly on compacts, or else
converge to an analytic function vanishing only at the individual zeros
and, in the latter case, the product has limr↑1 |BS(x(reiθ))| = 1 for
a.e. θ ([19, Theorem 5.3.1]). Since

∑
K∈G supy∈K Ge(∞, y) <∞ by the

PW condition, we see that the product in (4.2) converges to a non-

zero value at z = ∞. Thus BS(z) is an analytic function on Ω̃ which
vanishes exactly at points w with π(w) ∈ {xj}Kj∈G0 . Moreover, for a.e.
point y ∈ e,

lim
ε↓0
|BS(y + iε)| = 1 (4.3)
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Recall ([4, (b) following Theorem 1.1]) that any Chebyshev polyno-
mial, Tn, has at most one zero in any gap K ∈ G. Our main result in
this section is

Theorem 4.1. Let nj →∞ so that for some gap set, S, we have that if

Kk ∈ G0, then for large j, Tnj(z) has a zero z
(k)
j in Kk which converges

to xk as j →∞ and so that for any K ∈ G\G0, and for all ε > 0, Tnj(z)

has no zero in K(ε) for all large j. Then, as j →∞, Mnj(z)→ BS(z)

uniformly on compact subsets of Ω̃ \ {w | π(w) ∈ {xk}}.

Remarks. 1. The points w with π(w) = xk for some k are removable
singular points for BS. In fact, it is easy to see that while Mnj(xk + i0)
and Mnj(xk − i0) may be different, both values converge to 0, so, in a

certain sense, one has convergence on all of Ω̃.
2. By Montel’s Theorem and (4.1), the functions Mn lie in a com-

pact set in the Fréchet topology of uniform convergence on compact
subsets. We can therefore make multiple demands and one might guess
that, as in [4], we want to also demand that χnj has a limit as does
[C(enj)/C(e)]nj and the Mnj . It turns out that the single condition on
the limits of zeros will automatically imply these other objects con-
verge.

We will prove this result by controlling convergence for z near ∞
using

Proposition 4.2. Let Υ be a Riemann surface and Un open sets so that
for any compact set K ⊂ Υ, eventually, K ⊂ Un. Let fn be analytic
functions on Un so that

sup
n

sup
z∈Un
|fn(z)| <∞ (4.4)

Let f∞ be analytic on Υ so that for some z0 ∈ Υ and some neighbor-
hood, V , of z0, we have that

lim
n→∞

|fn(z)| = |f∞(z)| for all z ∈ V (4.5)

fn(z0) > 0, f∞(z0) > 0 (4.6)

z ∈ V ⇒ ∀n : fn(z) 6= 0 and f∞(z) 6= 0 (4.7)

Then fn → f uniformly on compact subsets of Υ.

Proof. By shrinking V , we can suppose that it is simply connected and
V is compact. By (4.6)/(4.7), we can define gn(z) = log fn(z) uniquely
if we demand that

Imgn(z0) = 0 (4.8)
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By (4.5), Regn → Reg∞ on V so by the Cauchy–Riemann equations,
∇(Imgn)→ ∇(Img∞). By (4.8), Imgn → Img∞, so fn → f∞ on V . By
Vitali’s Theorem ([18, Section 6.2]) and (4.4), fn → f∞ uniformly on
compacts. �

Thus instead of Mn(z), we can look at

|Mn(z)| = exp(−nhn(z)), hn(z) = Ge(z)−Gn(z) (4.9)

Let dρn be the potential theoretic equilibrium measure of en (see [19,
Section 3.6–3.7] for background on potential theory). Then

Proposition 4.3. One has that

hn(z) =

∫
⋃
Kj∈G

Kj

Ge(x, z)dρn(x) (4.10)

Remark. In [4], we proved the Totik–Widom bound (1.12) for PW
sets, e ⊂ R, by using this when z =∞, i.e.,

hn(∞) =

∫
⋃
Kj∈G

Kj

Ge(x)dρn(x)

We proved this by thinking of dρn as harmonic measure at ∞, i.e., if
H is harmonic on (C ∪ {∞}) \ en with boundary values H(x) on en,
then

H(∞) =

∫
en

H(x)dρn(x)

If we wrote the analog of this for general z, we’d get

H(z) =

∫
en

H(x)dρn(x, z)

varying the harmonic measure. Instead we think of (4.10) with Ge

arising as the Green’s function for solving Poisson’s equation with zero
boundary values on e and dρn occurs as the Laplacian of Gn.

Proof. Both sides of (4.10) are continuous functions of z ∈ C ∪ {∞}
(by regularity of e and en) and both sides vanish on e. Off e, they
have the same distributional Laplacian, namely dρn � (en \ e). Thus
the difference is harmonic on (C ∪ {∞}) \ e, continuous on C ∪ {∞},
vanishing on e and bounded near ∞. The boundedness means the
difference is also harmonic at ∞ ([19, Theorem 3.1.26]) and then the
maximum principle implies that the difference is 0. �

The final step in the proof of Theorem 4.1 involves the form as n→
∞ of dρn � K for K ∈ G. Recall that en is a union of n bands which
are closures of the connected components of T−1

n [(−tn, tn)]. On each
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of these, as x increases, Tn is either strictly monotone increasing or
strictly decreasing from −tn to tn or vice-versa. Recall also that each
of the bands has ρn measure exactly 1/n (see [4, Thm. 2.3]). In [4],
it is proven that each gap, K, contains all or part of a single band so
that

nρn(K) ≤ 1 (4.11)

If there is x∞ ∈ K which is a limit as j →∞ of zeros, xnj of Tnj , then
for j large, enj ∩K is a complete band of exponentially small width so,
in that case

njρnj � K → δx∞ (4.12)

weakly. If for each ε, there is a large Jε so if j ≥ Jε, then Tnj has no

zero in K(ε), then for all sufficiently large j, ρnj(K
(ε)) = 0. Since Ge

vanishes at the edges of K (and so supx∈K\K(ε) Ge(x, z) → 0 as ε ↓ 0
uniformly as z runs through compact sets), we conclude that

n

∫
K

Ge(x, z)dρn(x)→
{
Ge(x∞, z), if K ∈ G0

0, if K /∈ G0
(4.13)

By the PW condition,
∑

K∈G supy∈K Ge(z, y) <∞ uniformly in z on
compacts, we can go from pointwise limits in (4.12) to limits on sums.
We conclude that:

Proposition 4.4. Under the hypotheses of Theorem 4.1, uniformly for
z in compact subsets of Ω \ {xk}Kk∈G0, we have that

n

∫
⋃
Kk∈G

Kk

Ge(x, z)dρn(x)→
∑
Kk∈G0

Ge(xk, z) (4.14)

Proof of Theorem 4.1. By (4.9), (4.10) and (4.14),

lim
nj→∞

|Mnj(z)| =
∏

Kk∈G0

|Be(z, xk)| = |BS(z)| (4.15)

That Mnj → BS then follows from Proposition 4.2. �

5. Blaschke Products are Dual Widom Maximizers

Given the setup of Theorem 4.1, the function BS(z) is character
automorphic with some character β. In this section, we’ll prove that
BS is a dual Widom maximizer for character β. One can deduce this
from results of Volberg–Yuditskii [23, Lemma 6.4]. Instead, we’ll follow
an approach of Eichinger–Yuditskii [5] (who study an Ahlfors problem
rather than a dual Widom problem) that relies on results of Sodin–
Yuditskii [21].

A basic technique of Sodin–Yuditskii is to consider the space, Hα,

of all functions on Ω̃ which are in H2(D) when moved to D and which
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are character automorphic with character α ∈ π1(Ω)∗. Hα is a family

of functions on Ω̃ which is a reproducing kernel Hilbert space ([17,
Problems 4–11 of Section 3.3]) under the inner product of H2. In
particular, there is a function Kα ∈ Hα so that for all f ∈ Hα

f(∞) = 〈Kα, f〉 (5.1)

Note: Our inner products are linear in the second factor and anti-linear
in the first as in [17].

We will prove

Theorem 5.1. For any gap set, S, if BS is the associated Blaschke
product and β its character, then BS is a dual Widom maximizer for
β, i.e.,

‖BS‖∞ = 1 (5.2)

and if f ∈ H∞(Ω, β) with ‖f‖∞ ≤ 1, then

|f(∞)| ≤ BS(∞) (5.3)

(5.2) is, of course, true for any (convergent) Blaschke product. We
prove (5.3) by proving two facts:

(1) For any character, γ, and f ∈ H∞(Ω, β) with ‖f‖∞ ≤ 1, one has
that

|f(∞)|2 ≤ Kγβ(∞)

Kγ(∞)
(5.4)

(2) There exists at least one α0 with

|BS(∞)|2 =
Kα0β(∞)

Kα0(∞)
(5.5)

Lemma 5.2. (5.4) holds.

Proof. Since f ∈ H∞(Ω, β) and Kγ ∈ Hγ, we have that fKγ ∈ Hγβ.
Thus

|f(∞)Kγ(∞)|2 = |〈Kγβ, fKγ〉|2

≤ ‖fKγ‖2
2‖Kγβ‖2

2 (5.6)

≤ ‖Kγ‖2
2‖Kγβ‖2

2 (5.7)

= 〈Kγ, Kγ〉〈Kγβ, Kγβ〉
= Kγ(∞)Kγβ(∞) (5.8)

which is (5.4) since Kγ(∞) > 0. In the above, (5.6) is the Schwarz
inequality, (5.7) uses ‖f‖∞ ≤ 1 and (5.8) is (5.1). �
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For step 2, we need a deep result of Sodin–Yuditskii. For each gap
K ∈ G, we define CK to be two copies glued together at the ends, i.e.,
we take two copies {(y,+), (y,−) | y ∈ K} and for y ∈ ∂K (two points),
we set (y,+) = (y,−) so CK is topologically a circle. According to
Sodin–Yuditskii [21], there is a map, A, the Abel map, from

∏
K∈G CK

to the character group, so that, in particular, the inner part of KA(y,σ)

is BS where S is the gap set with

G0 = {K | (yK , σK) has σK = + and yK ∈ K}

(i.e., yK /∈ ∂K) and for K ∈ G0, the point in K is yK .
In particular, if S is given and (y, σ) = {(yK , σK)}K∈G is picked so

that for Kk ∈ G0, we have that (yKk , σKk) = (xk,+) (and for K /∈ G0,
(yK , σK) is arbitrary in CK), then the inner factor of KA(y,σ) is divisible
by BS, i.e., if α1 = A(y, σ), then Kα1/BS is in Hα0 where α0 = α1β

−1.
If g ∈ Hα0 , then because multiplication by BS is an isometry on H2,
we have that

〈Kα0βB−1
S , g〉 = 〈Kα0β, BSg〉

= BS(∞)g(∞) (5.9)

= BS(∞)〈Kα0 , g〉 (5.10)

= 〈BS(∞)Kα0 , g〉 (5.11)

Since g is arbitrary in Hα0 and both Kα0 and Kα0βB−1
S lie in Hα0 ,

we conclude that

Kα0β(z)BS(z)−1 = BS(∞)Kα0(z) (5.12)

Evaluating at z =∞, we find that

Lemma 5.3. (5.5) holds for α0 = α1β
−1 where α1 is the image under

the Abel map of data {(yK , σK)}K∈G which has (yKk , σKk) = (xk,+) if
Kk ∈ G0.

Proof of Theorem 5.1. By Lemmas 5.2 and 5.3, if g ∈ H∞(Ω, β) with
‖g‖∞ ≤ 1, then

|g(∞)|2 ≤ Kα0β(∞)

Kα0(∞)
= |BS(∞)|2 (5.13)

Thus, if g(∞) > 0, we have that

0 < g(∞) ≤ BS(∞) (5.14)

so BS is a dual Widom maximizer. �
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6. Proof of the Main Theorem

In this section, we’ll prove Theorem 1.3.

Proposition 6.1. Under the hypotheses of Theorem 4.1, we have that

Lnj(z) (given by (1.28)) converges uniformly on compact subsets of Ω̃
to the Widom minimizer for the character, β, of BS.

Remark. Mn only converge away from the {xk}Kk∈G0 because the Mn’s

aren’t analytic on Ω̃ but only on those points whose images under

x aren’t in en. But Ln is analytic on all of Ω̃ so we can hope for
convergence at the xk’s too. Indeed, the xk’s are limit points of zeros
and the Widom minimizers vanish at those points.

Proof. We have that Mnj(∞) =
[
C(e)/C(enj)

]nj , so by Theorem 4.1,

BS(∞) = lim
j→∞

[
C(e)/C(enj)

]nj (6.1)

Thus, if Hn is given by (1.31), then

Hnj(z)→ BS(z)/BS(∞) (6.2)

for z near ∞ (in fact on compact subsets of Ω̃ \ {w | π(w) ∈ {xk}}).
Since BS is the dual Widom maximizer for β, BS(z)/BS(∞) is Fβ,

the Widom minimizer for β. By the first equation in (1.31), we get
that Lnj(z) converges to Fβ(z) for z near ∞.

By the Totik–Widom bound, ‖Lnj‖∞ are uniformly bounded, so by
Vitali’s Theorem, Lnj converges to Fβ uniformly on compact subsets

of Ω̃. �

Proposition 6.2. Under the hypotheses of Theorem 4.1, we have that

lim
j→∞
‖Lnj‖∞ = 2‖Fβ‖∞ (6.3)

Proof. Since log |Lnj(z)| is harmonic on Ω away from those zeros of Tnj
in the gaps where it goes to −∞, its maximum occurs at limit points
on e. Since |Be(x)| = 1 for x ∈ e, we conclude that

‖Lnj‖∞ =
tnj

C(e)nj
=

2C(enj)
nj

C(e)nj
(6.4)

by (1.8)
By (6.1), we conclude that

lim
j→∞
‖Lnj‖∞ = 2 [BS(∞)]−1 (6.5)

and by (1.20), noting that Qβ = BS,

[BS(∞)]−1 = ‖Fβ‖∞ (6.6)
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proving (6.3). �

Proof of Theorem 1.3. By Theorem 3.2, we have the required almost
periodicity of Fn(z) and ‖Fn‖∞. By continuity of ‖Fχ‖∞ and the Totik–
Widom bound, the functions on the left of (1.22) lie in a compact set,
so if the limit is not zero, by passing to suitable subsequences, we can
find one whose limit is zero for which the hypotheses of Theorem 4.1
hold. But then the limit is zero by Proposition 6.1. We conclude that
(1.22) holds.

Again, by continuity of ‖Fχ‖∞ and the Totik–Widom bound, the
numbers on the left side of (1.23) are bounded above and away from
zero, so if (1.23) fails we can find a subsequence for which the limit is
not 2 and for which the hypotheses of Theorem 4.1 hold. This violates
Proposition 6.2 so we conclude that (1.23) holds. �
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[15] M. Parreau, Theórème de Fatou et problème de Dirichlet pour les lignes de
Green de certaines surfaces de Riemann, Ann. Acad. Sci. Fenn. Ser. A. I, no.
250/25 (1958).



22 J. S. CHRISTIANSEN, B. SIMON, P. YUDITSKII AND M. ZINCHENKO

[16] K. Schiefermayr, A lower bound for the minimum deviation of the Chebyshev
polynomial on a compact real set, East J. Approx. 14 (2008), 223–233.

[17] B. Simon, A Comprehensive Course in Analysis, Part 1, Real Analysis, Amer-
ican Mathematical Society, Providence, R.I., 2015.

[18] B. Simon, A Comprehensive Course in Analysis, Part 2A, Basic Complex
Analysis, American Mathematical Society, Providence, R.I., 2015.

[19] B. Simon, A Comprehensive Course in Analysis, Part 3, Harmonic Analysis,
American Mathematical Society, Providence, R.I., 2015.

[20] B. Simon, A Comprehensive Course in Analysis, Part 4, Operator Theory,
American Mathematical Society, Providence, R.I., 2015.

[21] M. Sodin and P. Yuditskii, Almost periodic Jacobi matrices with homoge-
neous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of
character-automorphic functions, J. Geom. Anal. 7 (1997), 387–435.

[22] V. Totik, Chebyshev constants and the inheritance problem, J. Approx. Theory
160 (2009), 187–201.

[23] A. Volberg and P. Yuditskii, Kotani–Last problem and Hardy spaces on sur-
faces of Widom type, Invent. Math. 197 (2014), 683–740.

[24] H. Widom, Extremal polynomials associated with a system of curves in the
complex plane, Adv. in Math. 3 (1969), 127–232.

[25] H. Widom, Hp sections of vector bundles over Riemann surfaces, Ann. of
Math. 94 (1971), 304–324.

[26] P. Yuditskii, On the Direct Cauchy Theorem in Widom domains: Positive and
Negative Examples, Comput. Methods Funct. Theory 11 (2011), 395–414.


