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Abstract. We consider matrices on infinite trees which are uni-
versal covers of Jacobi matrices on finite graphs. We are interested
in the question of the existence of sequences of finite covers whose
normalized eigenvalue counting measures converge to the density of
states of the operator on the infinite tree. We first of all construct
a simple example where this convergence fails and then discuss two
ways of constructing the required sequences: with random bound-
ary conditions and through normal subgroups.

1. Introduction

This paper is a contribution to the growing literature on periodic
Jacobi matrices on trees [2, 4, 6, 9]. In particular, we refer the reader
to [2] whose notation and ideas we will follow; see that paper for the
definitions from graph theory that we will use. We will always associate
a graph with the obvious topological space.

One starts out with a finite leafless graph, G, and a Jacobi matrix
on that graph. By this we mean a matrix with indices labelled by
the vertices in the graph, whose diagonal elements are a function, b,
on the vertices and off diagonal elements, which are only non-zero for
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pairs of vertices which are the two ends of some edge, with matrix
elements determined by a strictly positive function, a, on the edges.
The universal cover, T , of G is always a leafless tree. There is a unique
and natural lift of any Jacobi matrix, J , on T to an operator, H,
(still called a Jacobi matrix) on `2(T ). Because H is invariant under
a group of deck transformations on T (see [11] or [17, Section 1.7] for
the covering space language we exploit), we call H a periodic Jacobi
matrix.

There are three big general theorems in the subject: (1) a result
of Sunada [18] (see also [2]) on labelling of gaps in the spectrum that
implies the spectrum of H is at most p bands where p is the number
of vertices in the underlying finite graph G, (2) a result of Aomoto [1]
stating that if G has a fixed degree, then H has no point spectrum
(see also [2, 4]), and (3) a result of Avni–Breuer–Simon [2] that there
is no singular spectrum because matrix elements of the resolvent are
algebraic functions. Besides a very few additional theorems, the subject
at this point is mainly some interesting examples and lots of conjectures
and questions.

A basic object is the density of states (DOS), dk (and the weight
this measure assigns to (−∞, E), the integrated density of states (IDS),
k(E)). We fix a finite graph, G, with p vertices and q edges. For each
vertex, j ∈ G, the spectral measure for H at vertex r ∈ T , dµr is the
same for all r ∈ T with Ξ(r) = j, where Ξ : T → G is the covering
map. The DOS is defined by picking one dµr for each j ∈ G, summing
over j and dividing by p, the number of vertices in G, that is

dk(λ) =
1

p

∑
j∈G;r so that Ξ(r)=j

dµr(λ) (1.1)

In the one dimensional case, a fundamental fact [3] is that the DOS
can be computed as a limit of normalized eigenvalue counting of opera-
tors restricted to boxes with either periodic or free boundary conditions
(we say one dimensional because we are discussing trees but the result
in [3] holds also on Zν). In [2], it is proven that for any tree but the
line, this result fails for the free boundary condition case and our goal
in this paper is to explore the case of periodic boundary conditions.

Of course, it isn’t quite clear what one should mean by periodic
BC which is illuminated by the lego block picture. Before discussing
that, we want to remind the reader about what [2] calls the lego block
picture of periodic Jacobi matrices on trees, an unpublished realization
of Christiansen, Simon and Zinchenko. In this view, the fundamental
trees are T2`, the homogenous degree 2` tree. Any leafless finite graph,
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G has as its universal cover, a tree which can be realized as some T2`

with each vertex replaced by a finite tree! (see also [5, 12] for discussions
of universal covers of non-regular graphs). Indeed, if G, has p vertices
and q edges, there is a maximal connected subtree, F , obtained by
removing ` edges and it is then easy to see that the homotopy group
of G is F`, the free non-abelian group on ` generators, whose natural
Cayley graph is T2`. In general we think of the 2` edges coming out
of each vertex as labelled e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` with the rule that each

e±j has to be connected to an e∓j edge of a neighboring graph.
Now view G as the finite tree, F , with ` edges added but rather than

removing these edges, one imagines cutting them and leaving 2` half
edges e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` dangling. These are the lego blocks which

we place one at each vertex of T2` and connect the dangling edges by
the above rules. Thus the Hilbert space for H = `2(T ) on which H
acts is replaced by vector valued functions on `2(T2`;Cp). H is now
a block Jacobi matrix where the diagonal elements are p × p block
Jacobi matrices obtained by restricting the original Jacobi matrix on
G to the subgraph F , i.e. dropping the a’s from the cut edges. The off
diagonal piece linking two neighboring vertices v1 and v2 is a rank one
p × p matrix, which associated to the edge ej linking v1 and v2 in T2`

has a single non-zero matrix element (namely the G Jacobi parameter
associated to ej) at the vertices inside the copies of F corresponding
to the vertices v1 and v2.

Because of the lego representation, if we prove convergence of eigen-
value counting measure for some class of periodic BC operators for
the case of scalar T2` but where these periodic operators respect
e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` labelling (see below after (1.6)), then automati-

cally we have results for infinite trees built over general finite leafless
graphs G. Thus, henceforth, we will only discuss and state results for
the scalar T2` case bearing in mind that these automatically imply the
more general results.

Because all the measures we consider (i.e., normalized eigenvalue
counting and DOS) have supports in some fixed bounded set (once we
fix all the Jacobi parameters), to prove convergence of measures, it
suffices to prove convergence of moments. In this regard, we will need
a graphical representation of the moments of the density of states. If
dµj is the spectral measure of a point j ∈ T , then

ˆ
λkdµj(λ) = 〈δj, Hkδj〉 (1.2)
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Expanding Hk, one sees that

〈δj, Hkδj〉 =
∑

ω∈Wj,k

ρ(ω) (1.3)

where Wj,k is the set of all “walks” of length k starting and ending at
site j, i.e. ω1, . . . , ωk+1 ∈ T where ω1 = ωk+1 = j and for m = 1, . . . , k,
one has that either ωm+1 = ωm or ωm and ωm+1 are neighbors in T (i.e.
two ends of a single edge). Moreover

ρ(ω) = ρ1(ω) . . . ρk(ω) (1.4)

ρm(ω) =

{
bωm , if ωm = ωm+1

a(ωm,ωm+1) if ωm 6= ωm+1
(1.5)

On the other hand, suppose we have a finite cover, Gr of G (of cover-
ing order r) and we let Hr be the lift of J to Gr, nr = #(Gr) and Nr the
normalized eigenvalue counting measure for Hr (later we’ll sometimes
use N (r)), then ˆ

λkdNr(λ) = n−1
r Tr(Hk

r )

= n−1
r

∑
j∈Gr

〈δj, Hk
r δj〉

= n−1
r

∑
j∈Gr

∑
ω∈Wj,k,r

ρ(ω) (1.6)

where Wj,k,r is defined like Wj,k except that we require ωm ∈ Gr instead
of ωm ∈ T .

In the tree, the only paths that start and end at j retrace where they
have been so a little thought shows that difference between the average
of (1.3) over a cell and (1.6) is due to the existence of simple closed
loops in Gr. Thus if there are no short closed loops in Gr as r → ∞,
we expect that dNr will converge to dk. Indeed, it suffices that there
be few such closed path compared to nr.

If the operator is acting on `2(T2`;Cp) with matrix Jacobi parameters,
there is still a random walk representation. In (1.5) the a’s and b’s are
replaced by matrices, the order in (1.4) matters and the right side of
(1.4) is Tr(ρ1(ω) . . . ρk(ω)). All the arguments in later sections where
we prove results for general period 1 operators on `2(T2`) easily extend
to matrix valued period 1 Jacobi operators on `2(T2`;Cp). Then via the
Lego representation we get results for general scalar periodic Jacobi
matrices on trees.

One way to construct natural periodic boundary condition objects is
to start with a fixed vertex in T2`, most naturally, the identity after T2`
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is identified with F`, and look at Λr, the set of all vertices a distance
at most r from the centered point. The boundary of this set (i.e. all
points a distance equal to r from the center), ∂Λr has (2`)(2` − 1)r−1

points. Each of them can be viewed as having 2`−1 dangling half edges
sticking out which have natural labels with one of e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
`

missing. We can form a natural cover of the basic G (which for this

case is a graph, G̃`, with one vertex and ` self loops) by pairing each
dangling e+

j with some dangling e−j .
For a natural way to do this, view T2` as the Cayley graph of F`,

take the center of Λr to be the identity in F` so that Λr is all words
in e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` (with the only relation being that e−j is the

inverse of e+
j ) of length at most r. If b = w1 . . . wr ∈ ∂Λr, then b̃ =

w−1
1 . . . w−1

r are distinct points in ∂Λr whose dangling edges match (i.e.

for each e±j coming out of b where is an e∓j coming out of b̃) and we can
form a cover, Gr, by joining together these dangling edges. This is in
some way the most natural kind of periodic BC object and in Section
2 we will see this has too many short closed loops and its normalized
eigenvalue counting measures do not converge to dk. Our main result
in Section 2 will be that if the dangling edges in Λr are connected in
a random manner, then the eigenvalue counting measures do converge
to dk. This is because we’ll show such random graphs have very few
small loops. This result is related, of course, to the result of McKay
[13] that the eigenvalue measures for Laplacians of large random graphs
of fixed degree converge to the DOS of the Laplacian of a tree of the
same degree.

There is, of course, another way of thinking about collections of
larger and larger finite covers of a fixed graph, G. By the theory of
covering spaces [11] the covers, C, of G are associated to subgroups
of the fundamental group of G and C is a finite cover if and only the
subgroup is of finite index. We’ll sketch the ideas here with details in
Section 3. Thus a sequence of periodic BC objects is a sequence of finite
index subgroups H1, H2, . . . of π1(G). The naive notion of their going
to infinity is that for any finite subset, F , of π1(G) not containing the
identity, eventually, one has that Hj ∩ F is empty. One might expect
that is the same as saying there are no small closed loops but that is, in
general, wrong (as can be seen by looking at the example at the start
of Section 2): the point is that the condition

(condition K) ∀finite F not containing the identityHj ∩ F = ∅, eventually

only implies the absence of small closed loops containing the base point
of the cover. For other points we need hHjh

−1∩F = ∅ for conjugates of
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H. Thus a special role is played by covers, which we’ll call homogenous
covers, associated to normal subgroups of π1(G) (we note that the sub-
groups associated to the covers of Section 2 are (once r is large) never
normal). If all the Hj are normal, we will see easily that condition K
is enough to imply that eigenvalue counting measures converge to the
DOS. So the issue becomes the existence of sequences of normal sub-
groups of F` that obey condition K. This is a well known folk theorem
that we’ll discuss in Section 3 providing a second class of periodic BC
objects for which the desired convergence result holds.

In summary, we construct two classes of periodic BC Hamiltonians
for which the normalized eigenvalue counting measures converge to the
tree DOS. In Section 2, we look at Λr with random pairings of the
dangling ends. In Section 3 we construct homogeneous covers with
this property.

Remark. In general (unless the tree is of degree two), the spectrum of
the Jacobi matrix on the finite graph is not contained in the spectrum
of its lift to the tree [19]. The convergence of the eigenvalue counting
measures of random covers to the density of states says in particular
that these covers have few eigenvalues outside the spectrum of the
tree. Related to this, using Bordenave-Collins [7], it is possible to
show that for the sequence of random covers (chosen uniformly of the
set of all degree k covers) of growing degree, the Hausdorff distance
between the added eigenvalues and the spectrum of the tree converges
in probability to zero, a direct analog of McKay’s result [13]. That is
there is a third collection of covers for which we can prove convergence
of the normalized eigenvalue counting measure to the DOS of the tree.

Shmuel Agmon is a giant in spectral theory whose innovations have
long charmed and benefitted us. It is a great pleasure to present him
this bouquet on his 100th birthday.

2. Random Centered BC

In this section, we will fix ` ∈ Z; ` ≥ 2 and take G to be the graph
with one vertex and ` self loops so that the covering tree, T2`, is the
homogeneous tree of degree 2`, which we can identify with the Cayley
graph of F`, the free group on ` generators. We also fix a Jacobi matrix,
J , on G. We’ll discuss covers of G where we can label the edges coming
out from a vertex as e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` with the rule that each e±j

has to be connected to an e∓j edge of a neighboring vertex of the cover.
As we explained in the introduction, if we prove results about a class of
finite covers whose normalized eigenvalue counting measure converges
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to the tree DOS, then using lego blocks, there are automatically results
about general graphs which we will not state explicitly (essentially
by extending the results to vector valued functions and block Jacobi
matrices).

We will first describe our general framework, then give the example
mentioned in the introduction with too many short loops, next state
our general result and finally describe its proof.

For the time being, we fix r although eventually, we will use r as a
label on sequences where we take r → ∞. In T2`, let Λr be the set of
all vertices a distance at most r from the origin of T2` thought of as F`
so that Λr is the all words in e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` of length at most r

(with the relations that e−j = (e+
j )−1). Let Mr = (2`− 1)r so that

#(∂Λr) = 2`
2`−1

Mr; #(Λr) = `Mr−1
`−1

(2.1)

are comparable to Mr. For each vertex in ∂Λr we imagine extra half
edges labelled by all the labels among e+

1 , . . . , e
+
` , e

−
1 , . . . , e

−
` except for

the label of the edge that connects that vertex to the interior of Λr. It
is easy to see that for each j and ± there are exactly Mr e

±
j dangling

half vertices. By a pairing, we mean a bijective association of each e+
j

half-edge to a e−j half-edge (at the same or a different vertex in ∂Λr).
The set of all pairings we denote by Qr. If we fix a pairing, all other
pairings are related by a permutation of each of the e−j vertices, so the

number of points in Qr is (Mr!)
`. For each q ∈ Qr, we get a graph, Gq

by adding to Λr edges along the linked pairs and this graph is a cover

of G. We let Jq be the associated Jacobi matrix on Gq and let N
(r)
q be

the associated normalized eigenvalue counting measure.
In Section 1, we defined a map b 7→ b̃ of Λr which also maps ∂Λr to

itself (the square of the map is 1 and it leaves no point of ∂Λr fixed).
Moreover, the map is such that if α ∈ ∂Λr is linked to the interior by
e±j then α̃ is linked to the interior by e∓j . We can thus define a natural
element, q0 of Qr by pairing all the dangling edges from each α to the
matching dangling edges of α̃.

Proposition 2.1. For any choice of Jacobi parameters J on G, the

limit limr→∞
´
λ2dN

(r)
q0 (λ) exists and is strictly large than the second

moment of the associated infinite tree DOS.

Proof. Let b be the Jacobi parameter for the vertex in G and a1, . . . , a`
for the ` edges. Since the full tree is fully translation invariant, the
DOS is the spectral measure associated to any vertex so, by (1.2) and
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(1.3), we see that

ˆ
λ2dk(λ) = b2 + 2

∑̀
m=1

a2
m (2.2)

since paths of length two that start and end at a vertex on the tree
either stay at that vertex for two steps (giving b2) or go out and back
in one of the 2` edges e±m giving each a2

m twice.
For all vertices in Gq0 other than those on the boundary, these are the

only paths of length 2 so the contribution to (1.6) from sites j /∈ ∂Λr is
as given on the right of (2.2). But there are additional paths of length
two that start at j ∈ ∂Λr go to j̃ by one link and go back via another.
One gets Mr factors of each a2

m by going to j̃ along e+
m and coming back

via e−m and an additional Mr factor by going to j̃ along e−m and coming
back via e+

m. There is a different number, Cr, of terms that count up
the number of vertices j which have a pair of links between j and j̃ with
a1 on one link and a2 on the other (counting multiplicities). We will
not make Cr explicit except to note that c ≡ limr→∞Cr/nr exists and
is non zero. We also note that by (2.1), limr→∞Mr/nr = (2` − 1)/2`.
We conclude from (1.6) that

lim
r→∞

ˆ
λ2dN (r)

q0
(λ) =

2`− 1

`

∑̀
m=1

a2
m + c

∑
m6=n

aman +

ˆ
λ2dk(λ) (2.3)

proving the claim. �

Thus, because of small closed loops, we can’t expect the periodic BC
eigenvalue counting measure to converge to the DOS for all possible
pairs and we turn to random pairings. We put normalized counting
measure, Ξr, on Qr with associated probability, Pr and expectation,
Er. We want to consider sequences (qr)(1≤r<∞) ∈

∏∞
r=1Qr ≡ Q and

put the product measure
⊗∞

j=1 Ξr on Q, so the qr are independent and
randomly distributed. Here is the main result of this section:

Theorem 2.2. For almost every choice (qr) ∈ Q, we have that the
normalized eigenvalue counting measures, dN (r), converges weakly to
the DOS, dk.

We will prove this by a sequence of steps:
Step 1. Fix a positive integer m and a site α ∈ Λr. Call q ∈ Qr

m,α-bad if there is a simple closed loop in Gq of length at most 2m all
within distance m (in Gq-distance) of α. Let

Bm,α = {q | q is m,α-bad } (2.4)
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We will prove that there is a constant Tm so that for all r and all α ∈ Λr

we have that
Pr(Bm,α) ≤ Tm/Mr (2.5)

Step 2. If q ∈ Qr is not m,α-bad, then the set of β ∈ Gq a distance
at most m from α is a truncated degree 2` tree centered at α. From
this it follows that

〈δα, (Jq)mδα〉 =

ˆ
λmdk(λ) (2.6)

Step 3. Prove that for each positive integer, m, there is a constant
Um so that

Er
(∣∣∣∣ˆ λmdN (r)

qr (λ)−
ˆ
λmdk(λ)

∣∣∣∣) ≤ Um/Mr (2.7)

Step 4. Prove that for almost every choice (qr) ∈ Q, we have that

lim
q→∞

ˆ
λmdN (r)

qr (λ) =

ˆ
λmdk(λ) (2.8)

and deduce the theorem from this.

Proof of Step 1. This is the most involved argument in the paper and
is critical. We use the word “finitely” to indicate that a quantity only
depends on m but can be chosen independently of r. The idea is that
for each x ∈ ∂Λr in some bad graph, G, finitely far from α we can get
swap a extra edge in a small loop with an edge from x to get a new
graph K. One shows that the number of times a given K is bounded
(independently of r) while the number of choices for x grows like Mr

which yields a bound like (2.5).
We will fix r, α ∈ Λr, and m and call the half-edge 2` possibilities, e±j ,

colors labelled by γ. We will suppose r is fairly large (to be specified
later). Given, p, s ∈ ∂Λr, a Λr-distance at most 2m from each other,
we let

Bp,s,γ = {q ∈ Qr | there is a path of length at most

2m from p to s leaving p along half edge γ} (2.9)

where γ is one of the 2` − 1 half edges that does not link p to the
interior of Λr.

Since any simple closed path within distance m of α in some Gq must
contain a link not in Λr, we can label such paths be the first and last
times the path lies in ∂Λr and the direction it leaves that first point
and we see that

Bm,α ⊂
⋃
p,s,γ

Bp,s,γ (2.10)
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where p, s are points in ∂Λr a Λr-distance at most 2m of α (since these
points are linked to α by a path entirely in Λr). An over count of the
number of such points is 2`(2` − 1)2m−1). In (2.10), γ is one of the
2`− 1 half edges that does not link p to the interior of Λr. Thus

the number of terms in (2.10) ≤ (2`− 1)[2`(2`− 1)2m−1]2 (2.11)

We will be considering a variety of graphs, G with degree at most
2` at each vertex. dG will denote distance on that graph, i.e. shortest
path between two vertices. If G and H have the same vertices but H
has more edges, clearly

dH(x, y) ≤ dG(x, y) (2.12)

Let Dr = #(Λr) given by (2.1). Then if G has maximum degree 2`, it
is easy to see that the number of points a distance at most r from a
fixed x ∈ G is bounded by Dr.

Now suppose G ∈ Bp,s,γ and suppose that x ∈ ∂Λr with dG(x, s) >
2m + 1 and so that x is not linked to the interior by a vertex whose
link to x is γ. The distance condition implies that x is not linked to p
by the vertex labelled γ. So we let y 6= x be the vertex linked to p by
the edge labelled γ coming out of p and let z 6= p be the vertex whose
edge labelled by gamma has x at the other end. Let G̃ be G with the
gamma edges coming out of p and z removed (so if say γ = e+

1 , we have
that x and y have dangling e−1 edges). By the distance condition, the
path length at most 2m from p to s does not include x or z and thus

dG̃(y, s) ≤ 2m (2.13)

Let τx(G) be the graph obtained from G̃ by linking p to x and z to
y by the edges labelled γ coming out of the first points (i.e τx(G) is
obtained from G by switching end points the gamma edges coming out
of p and z). Suppose that K = τx(G) for some G ∈ Bp,s,γ and some x.
The key observation is the bound on how many G’s there can be with
τx(G) = K. Clearly, to recover G from K, it suffices to know p, x, z, y.
p is fixed and x is the vertex linked to it in K by the γ edge. If two G’s
with τx(G) = K have the same y they are equal. By (2.13) and (2.12),
dK(y, s) ≤ 2m so we conclude

the number of G with τx(G) = K ≤ D2m (2.14)

Instead of counting numbers of possibilities it is simpler to divide by
the number of points in Qr, and note that for each G ∈ Bp,s,γ we can
form τx(G) for at least Mr −D2m+1 points and see that (for any single
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graph L, we have that Pr(L) = 1/#(Qr))

(Mr −D2m+1)Pr(G) ≤
∑

K | ∃x with τx(G)=K

Pr(K) (2.15)

If we sum over all G ∈ Bp,s,γ and use (2.14) and the fact that∑
K Pr(K) = 1 to conclude that

(Mr −D2m+1)Pr(Bp,s,γ) ≤ D2m (2.16)

If r so large that Mr ≥ 2D2m+1 we conclude using (2.10) and (2.11)
that for such r we have that

Pr(Bm,α) ≤ (2`− 1)[2`(2`− 1)2m−1]22D2m

Mr

(2.17)

which proves (2.6) with

Um = max((2`− 1)[2`(2`− 1)2m−1]22D2m, 2D2m+1) (2.18)

since then, when r is small, the right side is bigger than 1. �

Remark. There is an alternate proof of this step that we have that
relies on McKay’s result. While it is somewhat shorter, we decided to
use this result because it is self-contained and conceptually simple.

Proof of Step 2. Suppose that Gq has no simple closed loop of size no
more than 2m all of whose sites are within distance m of α. Since it is
a cover, every vertex in Gq has degree 2`. All of the 2` edges coming
out of α must have second ends different from α (to avoid a closed loop
of length 1) and from each other (to avoid a closed loop of length 2).
Each of the 2` vertices a distance one from α have 2`− 1 edges coming
out besides the one linking to α. Those edges can’t have a distance one
vertex as their other end (to avoid loops of length 1 or 3) and must have
all different second vertices (to avoid loops of length 2 or 4) so there
are 2`(2`− 1) vertices a distance 2 from α. Repeating this shows that
the vertices in Gr a distance at most m from α is exactly the truncated
tree centered at α as claimed.

Since this implies all walks of length m starting and α are the same
as would be on an infinite tree starting at α, we obtain (2.6) from
(1.3). �

Proof of Step 3. Fix α. Let f(q) = 〈δα, (Jq)mδα〉 −
´
λmdk(λ). It is

easy to see that ‖Jq‖ ≤ |b| + 2
∑`

s=1 as ≡ Γ. It follows (ignoring
possible cancelling from the minus sign) that for all q, one has that
|f(q)| ≤ 2Γm. Since f vanishes off the set on the left side of (2.5), we
see that

Er(|f |) ≤ ‖f‖∞Pr(q | q is m,α-bad ) ≤ 2ΓmTm/Mr (2.19)
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Summing over α and dividing by the number of α yields (2.7) with
Um = 2ΓmTm. �

Proof of Step 4. By (2.7) and Markov’s inequality

Pr
(∣∣∣∣ˆ λmdN (r)

qr (λ)−
ˆ
λmdk(λ)

∣∣∣∣ ≥M−1/2
r

)
≤ Um/M

1/2
r (2.20)

Since Mr grows exponentially in r, we have that
∞∑
r=1

Pr
(∣∣∣∣ˆ λmdN (r)

qr (λ)−
ˆ
λmdk(λ)

∣∣∣∣ ≥M−1/2
r

)
<∞ (2.21)

Thus, by the Borel-Cantelli lemma [16, Theorem 7.2.1], for a.e. q ∈ Q,

we have that eventually
∣∣∣´ λmdN (r)

qr (λ)−
´
λmdk(λ)

∣∣∣ ≤ M
−1/2
r so that

a.e., any given moment of dN
(r)
qr converges to that moment of dk. It

follows that a.e., we have convergence for all moments. Since there is an
apriori compact set in R that supports all the measures, the Weierstrass
density theorem [16, Theorem 2.4.1] implies weak convergence a.e. �

Remark. The relation between the spectrum of Laplacians of finite
graphs and that of the covering tree is a central theme in graph the-
ory and is related to the notions of expander graphs, and Ramanujan
graphs. Analysis of sizes of cycles for random graphs has a crucial
role in proving spectral properties for random regular graphs and espe-
cially expansion properties and relatives of the Ramanujan properties
(see Hoori, Linial, Wigderson’s survey of expander graphs [12] and
Friedman [8]). It could be of interest to extend notions related to ex-
pander graphs based on the Laplacian to Jacobi operators and various
Schrödinger operators. In particular it would be interesting to extend
to more general operators the Alon-Bopanna theorem (see [14] or [12,
Section 5.2]) that asserts that the spectrum of regular graphs is con-
trolled by the spectrum of the covering tree.

3. Homogeneous BC

In this section, we will identify finite covers of the basic graph G
with 1 vertex and ` self loops with subgroups of F` and use this to
find sequences of finite covers whose normalized eigenvalue counting
measures converge to the DOS (distinct from the examples in Section
2). By using the lego block representation one could then construct
such sequences of finite covers for the Jacobi matrix on any finite leafless
graph.

We quickly recall some basics of covering spaces for this situation.
We can view the universal cover as the Cayley graph F`. If C is any



PERIODIC BC TREES 13

cover of G, then there is a covering map π : F` → C and if 1 is the
identity in F` and we let v0 = π(1), then H ≡ π−1[v0] is precisely
those h ∈ F` so that the simple path from 1 to h is pushed by π
to a closed curve. This easily implies that H is a group and that π
from H to the just mentioned closed path is an isomorphism of H to
the fundamental group, π1(C, v0). Thus there is a 1-1 correspondence
between subgroups of F` and equivalence classes of covers of G. The
finite covers correspond precisely to subgroups, H, of finite index.

We are interested in sequences of finite covers, {Cn}∞n=1, which in
some sense converge to F`. One notion of this that the correspond-
ing subgroups Hn have the property that any given h 6= 1 lies in only
finitely many Hn. We’ll call the corresponding covering Jacobi matri-
ces a sequence of periodic BC objects converging to infinity. We are
especially interested in the case where each Cn+1 is a finite cover of Cn
for all n, which we call a tower of periodic BC objects converging to
infinity (if it indeed converges to infinity). We have a tower if and only
if the sequence Hn is nested, i.e. Hn ⊂ Hn+1 in which case convergence
to infinity is equivalent to ∩Hn = {1}.

As we’ve seen, to get convergence of the normalized eigenvalue count-
ing measures to the DOS we need very few small loops. At first sight,
one might think that is automatic when the covers converge to infin-
ity since H is connected to closed loops through v0 so a condition like
∩Hn = {1}. Indeed, by the random walk representation, this implies
that 〈δv0 , JmCnδv0〉 converges to the mth moment of the DOS. But, of
course, it can’t always be true for the normalized eigenvalue counting
measures since all the periodic BC operators we discussed in Section 2
converge to infinity and by Proposition 2.1 we do not have convergence
of the normalized counting measures for the sequence of q0’s!

A little thought shows that if v1 = π(g) for some g ∈ F` and C
corresponds to the subgroup, H, then the paths through v1 moved to
1 are given by gHg−1. In terms of measuring how big the closed paths
are, that might seem harmless, but we note that if, for example, ` = 2
and a, b are generators of F2, then (ab)na(ab)−n = h is distance 2n+ 1
from 1, while if g = (ab)−n, then ghg−1 = a is close to 1. The moral is
that the absence of small loops through 1 does not imply the same for
all points. But, if gHg−1 = H, then no small loops through v0 implies
no small loops through v1! This suggests that finite covers associated
to normal subgroups should be especially interesting. We will call the
cover associated to such a normal subgroup a homogeneous cover for
reasons that will become clear in a moment.

If C is a homogeneous cover associated to a normal subgroup H,
then C is the Cayley graph of the quotient group G/H. In particular
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by group multiplication G/H acts freely and transitively on C by an
action which preserves the Cayley links (so C looks the same from any
point which is why we call it homogeneous). In particular, 〈δv, JmCnδv〉
is independent of v, so we conclude that

Theorem 3.1. If Jn a sequence of periodic BC objects converging to
infinity which are all operators on homogenous covers, then its normal-
ized eigenvalue counting measures converge to the DOS.

Of course, for this to be interesting, there have to exist such se-
quences so the following is interesting

Theorem 3.2. For any ` there exist nested sequences of finite index
normal subgroups of F` and so towers of homogenous covers converging
to infinity. In particular, for these towers, we get associated Jacobi
matrices whose normalized eigenvalue counting measures converge to
the DOS.

There is of course a huge literature and knowledge about the struc-
ture of F` and we believe many experts would regard this theorem as
folk wisdom, but we feel it is useful to sketch one explicit construc-
tion. We note that if Hn ⊂ G is a nested sequence of finite index
normal subgroups with ∩nHn = {1} and if K ⊂ G is any subgroup of
G, then K ∩ Hn is a nested sequence of normal subgroups of K with
∩n(K ∩Hn) = {1}. The strategy will be to show that for each `, F` is
isomorphic to a subgroup of SL(2,Z) and then to show that SL(2,Z)
has the required family of nested normal subgroups. So our proof is
via a sequence of simple Propositions.

Proposition 3.3. For each ` > 2, F` is isomorphic to a subgroup of
F2.

Proof. It is remarkable that this algebraic fact about discrete groups
will be proven using covering space theory, a subject that arose in
complex analysis! For n ≥ 2, form a graph Kn whose vertices are the
points in Zn = Z/nZ, the integers mod n, and where m is connected
by four edges to the points m±1,m±2 (for n ≤ 4, one has to describe
things more carefully and describe in terms of self-loops for n = 2 and
multiple edges for n = 2, 3, 4 but it is still a degree 4 graph with n
points). A maximal spanning tree obviously has n − 1 edges so one
needs to remove 2n− (n−1) edges to get from Kn to the tree and thus,
the fundamental group of Kn is Fn+1.

On the other hand, as a homogenous degree 4 graph, Kn is a finite
cover of G2, the graph with a single point and two self loops whose
fundamental group is F2 (for example one can get an explicit covering



PERIODIC BC TREES 15

map by taking all vertices of Kn to the single vertex of G2 and taking
the m,m ± 1 edges to one self loop and the m,m ± 2 edges to the
other self loop with the ± edges going in opposite directions). Taking
n = `−1, the covering map induces an injection on fundamental groups
realizing F` as a subgroup of F2, indeed one of index `− 1. �

Remark. One can take any homogenous graph of degree 4. For ex-
ample, if H2 is the graph with 2 vertices and 4 edges between them,
the spanning tree is a single edge and F3 is generated by loops that
go from the base point to the other by the spanning tree and return
by one of the three others. The four edges map to a±1, b±1 under the
induced covering map to G2, so we see that a2, ab, ab−1 are free in F2

giving an explicit set of generators.

Proposition 3.4. Each F`, ` ≥ 2 is isomorphic to a subgroup of
SL(2,Z)

Proof. By the previous proposition, it suffices to prove it for ` = 2.

It is well known that the two matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
are free generators (and generate the group of matrices of the form(

4a+ 1 2b
2c 4d+ 1

)
for arbitrary a, b, c, d ∈ Z). This group is often

called the Sanov group after [15] who first proved the generators are
free. For a simple proof in English, see Goldbeg-Newman [10] �

The proof of Theorem 3.2 is clearly completed by

Proposition 3.5. SL(2,Z) contains nested sequences of normal sub-
groups that converge to infinity.

Proof. Let Hn be the subgroup of all matrices in SL(2,Z) which are
congruent to 1 mod 2n. This is clearly a decreasing sequence of sub-
groups whose intersection is {1}. Since the set of matrices congruent
to zero mod 2n is obviously an ideal in SL(2,Z), if C ≡ 0, mod 2n and
B ∈ SL(2,Z), then B(1+C)B−1−1 ≡ 0 mod 2n, so Hn is normal. �
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