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A Useful Formula for Periodic Jacobi Matrices on
Trees
Jess Banksa, Jonathan Breuerb, Jorge Garza-Vargasc, Eyal Seeligd, and Barry Simone,1

We introduce a function of the density of states for periodic Jacobi matrices on trees and
prove a useful formula for it in terms of entries of the resolvent of the matrix and its ‘half-tree’
restrictions. This formula is closely related to the one-dimensional Thouless formula and
associates a natural phase with points in the bands. This allows new, streamlined proofs of
the gap labelling and Aomoto index theorems. We give a complete proof of gap labelling and
sketch the proof of the Aomoto index theorem. We also prove a version of this new formula
for the Anderson model on trees.

Jacobi Matrices | Trees | Spectral Theory

1. Introduction

Graph Jacobi matrices provide a unified framework for dealing with graph adjacency
matrices, weighted Laplacians and Schrödinger operators. Their spectral theory
therefore has connections with various fields, among those are mathematical physics,
analysis, probability and number theory. This note deals with periodic Jacobi
matrices on trees, which arise through viewing the tree as the universal cover of
a finite graph. Such operators have attracted a considerable amount of interest
recently (5–10, 12, 14, 15, 17–19, 24, 28, 30). The purpose of this note is to announce
and give an interim report on the use of a new formula which, in particular, provides
a short proof of Sunada’s gap labelling result (28), without the use of C∗ algebras.

We start out with a connected, finite graph, G, which can have self-loops and
multiple edges between a pair of vertices but which, for simplicity of exposition,
we suppose is leafless. We use V (G) for the vertex set of G and E(G) (sometimes
just V and E) for the set of edges. We pick an orientation for each edge, e, using ě
for the oppositely directed edge. σ(e) is the initial vertex and τ(e) the final of the
directed edge e, so for example, σ(ě) = τ(e). We let Ẽ denote the set of all edges
with arbitrary assigned orientation so that #(Ẽ) = 2#(E). We assign a potential,
b(v) ∈ R, to each vertex and coupling, a(e) = a(ě) > 0, to each edge, calling these
the Jacobi parameters of G.

Let T be the universal cover of G - it is always an infinite tree, and let π : T → G
be the covering map. We can lift the Jacobi parameters of G to T by setting
b(ṽ) = b(π(ṽ)); a(ẽ) = a(π(ẽ)). One defines an infinite matrix, H, indexed by
V (T ) by

Hṽw̃ =

{
b(ṽ), if ṽ = w̃

a(ẽ), if (ṽw̃) = ẽ an edge in Ẽ(T )
0, otherwise

[1.1]

and a corresponding bounded self-adjoint operator, H, on H = ℓ2(V (T )). One
defines the period, p, to be #(V (G)). If G is a single cycle, then T is Z and the
Jacobi parameters are periodic in the naive sense. This classical subject (of 1D
periodic Jacobi matrices) has been extensively studied; see for example, Simon (27,
Chaps. 5, 6, 8).

Deck transformations induce unitary maps on H which commute with H. In
particular, for every v ∈ V (G), the spectral measure, dµṽ, and Green’s function,
⟨δṽ, (H − z)−1δṽ⟩, are the same for all ṽ ∈ V (T ) with π(ṽ) = v. We use dµv and
Gv(z) for these common values. It is a basic fact that in one form goes back at
least to (11) (see also (18, 29)) that each Gv(z) defined for z ∈ C+ is an algebraic
function which can be continued across the real axis with finitely many points
removed (this implies, see (8, Theorem 6.7), that the spectrum of H has no singular
continuous part and the densities of the a.c. part of the spectral measures are real
analytic in the interior of the spectrum except for possible algebraic singularities).

One defines the density of states measure, dk(E) (and
integrated density of states, aka IDS, k(E) = dk((−∞, E))),
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by
dk = 1

p

∑
v∈V

dµv [1.2]

remark. For Jacobi matrices on Zν , the analog is the
limiting empirical spectral distribution of the Jacobi matrices
associated to larger and larger boxes (with, say, free boundary
conditions); because truncated trees have so many boundary
points, the same is not true for trees with general boundary
conditions (BC) although one can carefully choose periodic
BC so that it is (7).

The support of the measure dk is the spectrum of H and
by the definition of spectral measures, one has that�

1
λ− z

dk(λ) = 1
p

∑
v∈V

Gv(z) [1.3]

One of the fundamental results in the theory is

theorem 1.1 (Sunada (28)). In any gap of the spectrum of
H, the IDS is an integral multiple of 1/p. In particular, the
spectrum has at most p connected components.

Sunada’s proof, while elegant, is involved since it uses
some deep results of Pimsner-Voiculescu (25) from the K-
theory of C∗-algebras. One of our main new results is a short
proof of Sunada’s theorem that, in particular, makes no use
of C∗-algebras.

Another fundamental result is the Aomoto index theorem.
In the 1D case, H does not have any point spectrum but in
other cases that is not true - see, for example, Avni et al. (8,
Example 7.2) or the extensive study in Banks et al. (9). In
that case, given an eigenvalue, λ, define X1(λ) to be the set
of vertices, v ∈ V , so that for some ṽ with π(ṽ) = v there is
some eigenfunction ψ associated to λ, with ψ(ṽ) ̸= 0. Define
∂X1(λ) to be those v ∈ V not in X1(λ) but neighbors of
points in X1(λ), and we let E(λ) be the set of edges with
both endpoints in X1(λ).

theorem 1.2 (Aomoto Index Theorem (6)). The measure
dk has a mass at an eigenvalue, λ, of weight I(λ)/p where

I(λ) = #(X1(λ)) − #(∂X1(λ)) − #(E(λ)) [1.4]

A second proof of this theorem can be found in Banks
et al. (9). Both earlier proofs involve detailed combinatorial
analyses. The second of our new results here is a different
proof of the Aomoto index theorem that some may find
simpler but that, in any event, is very illuminating.

Our new approach concerns a basic function which we will
call the Floquet function defined in C+ by

Φ(z) = exp
(
p

�
log(t− z) dk(t)

)
[1.5]

which clearly has an analytic continuation to a neighborhood
of C+∪(R\spec(H)). In the 1D case, under the normalization∏p

j=1 aj = 1, the Thouless formula ((27, Theorem 5.4.12))
implies that if uj(z) is a Floquet solution (i.e. solution of the
difference equation

ajuj+1 + bjuj + aj−1uj−1 = zuj [1.6]

with uj+p = Auj for a constant A), then ((27, Theorem
5.4.15)) (−1)pA = Φ(z) or Φ(z)−1 which is why we give Φ

this name. There is another approach to 1D periodic Jacobi
matrices that extends the celebrated work of Marchenko-
Ostrovskii (22) from the case of Hill’s ODE (a pedagogical
discussion of the 1D periodic Jacobi matrix Marchenko-
Ostrovskii theory can be found in Lukic (21, esp. (10.47) and
(10.48))). The Marchenko-Ostrovskii conformal map is (up
to a factor of i and unimportant constant), the logarithmic
integral appearing in [1.5]. So our Floquet function can
also be viewed as an extension of the Marchenko-Ostrovskii
conformal map from cyclic graphs to general finite graphs.

Because of Eq. (1.3) we have that

d

dz
log(Φ(z)) = −

∑
v∈V

Gv(z) [1.7]

In Section 2, we’ll prove an explicit formula for the Floquet
function in terms of Green’s functions and m-functions
(objects whose definition we recall there). In Section 3, we’ll
use this Floquet formula to prove the Sunada gap labelling
theorem and in Section 4, we’ll sketch our new proof of the
Aomoto index theorem (in the case where the eigenvalue is
isolated from the continuous spectrum; see the discussion
there). In Section 5, we will discuss a version of the Floquet
formula for the Anderson model on trees. Since, as we’ll
explain, one can regard the Floquet formula as half a Thouless
formula, we hope to find some interesting applications of that
result.

2. The Floquet Formula

We will prove a useful formula for the Floquet function. To
do so, we need to recall what the m-functions are and the
relations between the Green’s and m-functions. Given e ∈ E,
pick ẽ ∈ E(T ) with π(ẽ) = e. Removing ẽ from T breaks
that graph into two pieces, T +

ẽ with τ(ẽ) and T −
ẽ with σ(ẽ).

We let H±
ẽ be the operators on ℓ2(V (T ±

ẽ )) with the restricted
Jacobi parameters and set

me(z) = ⟨δτ(ẽ), (H+
ẽ − z)−1δτ(ẽ)⟩ [2.1]

The use of deck transformations shows this depends only on
e and not the choice of ẽ over e.

The use of the method of Schur complements (see (8,
Section 6) for a proof; the formulae appear at least as early
as (20, Proposition 2.1)) shows that

1
Gu(z) = −z + bu −

∑
f∈Ẽ: σ(f)=u

a2
fmf (z) [2.2]

1
mf (z) = −z + bu −

∑
f ′∈Ẽ,f ′ ̸=f̌

σ(f ′)=τ(f)

a2
f ′mf ′ (z) [2.3]

which implies for any e ∈ Ẽ that

Gσ(e) = 1
m−1

ě − a2
eme

= mě

1 − a2
ememě

[2.4]

Define

Qe(z) = 1
1 − a2

eme(z)mě(z) =
Gσ(e)(z)
mě(z) =

Gτ(e)(z)
me(z) [2.5]

We are heading towards the proof of a lovely formula we
call the Floquet formula:
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theorem 2.1 (Floquet Formula). We have that

Φ(z) =

∏
e∈E(G) Qe(z)∏
u∈V (G) Gu(z)

[2.6]

initially for z ∈ C+, but the right side defines
a meromorphic continuation to (C \ spec(H)) ∪
(isolated point spectrum of H).

remark. Using Eq. (2.5), this can also be written

Φ(z) =

∏
e∈E(G) Gτ(e)(z)∏

u∈V (G) Gu(z)
∏

e∈E(G) me(z)
[2.7]

In particular, this implies that Φ is an algebraic function.

We sketch our proof of this result. Let Ψ be the right
side of Eq. (2.6). It is easy to see that as x → ∞ in R, that
Φ(−x) = xp + O(xp−1) and Ψ(−x) = xp + O(xp−1) so to
prove Eq. (2.6), it suffices to prove that for z ∈ C+

log(Ψ)′(z) = log(Φ)′(z) [2.8]

where ·′ = d·
dz

.
To compute log(Ψ)′(z), we note that, by Eq. (2.2), we

have that

(log(Gu))′ = −
(

log
( 1
Gu

))′
= −Gu

( 1
Gu

)′

= Gu +
∑

e∈Ẽ: σ(e)=u

a2
em

′
eGu [2.9]

and that by, Eq. (2.5),

(log(Qe))′ = (a2
em

′
emě + a2

emem
′
ě)Qe

= a2
eGσ(e)m

′
e + a2

eGτ(e)m
′
ě [2.10]

Therefore∑
e∈E

(log(Qe))′ =
∑
e∈Ẽ

a2
eGσ(e)m

′
e

=
∑
u∈V

∑
e∈Ẽ: σ(e)=u

a2
em

′
eGu

=
∑
u∈V

(−Gu + (log(Gu))′) [2.11]

which, by Eq. (1.7), proves Eq. (2.8) and so Theorem 2.1.

3. Gap Labelling

In this section, we present our new proof of Sunada’s Gap
Labelling theorem, Theorem 1.1. Basically, it is an immediate
consequence of the Floquet formula Eq. (2.6). We need some
care in determining the branch of log used Eq. (1.5). We
pick the branch where when z ∈ C+ is taken near −∞ on
the real axis, Φ has an argument near 0. That is, we are
using the branch where when z = −x (x near +∞) and t in
a bounded interval, we have that log(t− z) > 0 and we are
then continuing z through the upper plane. Thus, if E0 is
a real point in the resolvent set of H, the integral defining
Φ, Eq. (1.5), can be analytically continued from C+ to a
neighborhood of E0 and for s = t−E0 ̸= 0 real, we have that

Im(log(s)) =
{

0, if s > 0
−π, if s < 0 [3.1]

Moreover, the Floquet formula can be analytically continued
to a set including E0. Thus

Im
(
p

�
log(t− E0) dk(t)

)
= −pπk(E0) [3.2]

That means that pk(E0) ∈ Z ⇐⇒ Φ(E0) is real. But
for x ∈ R \ spec(H), each Gv(x) and me(x) is analytic
(meromorphic for m), we see that except for potential isolated
poles (actually, it is easy to see that Φ has no poles), Φ is
real in gaps!

4. Aomoto Index Theorem

In this section, we will sketch (with full details in a later
publication) a proof of the Aomoto Index Theorem (Theorem
1.2) at least in the case where the eigenvalue is an isolated
point of the spectrum (we hope in the later publication to deal
with the general case; we’ll explain the potential difficulty
soon - see point (1) below; the next paragraph also uses that
the eigenvalue is isolated). We note that the earlier proofs of
this theorem ((6, 9)) handle the general case and that Banks
et al. (9) provide examples where there are non-isolated
eigenvalues and also where there are isolated eigenvalues.

The Floquet function is involved with the question of the
weight of an eigenvalue because, by the discussion in the last
section, λ is an isolated eigenvalue with dk-weight I/p if and
only if the argument of Φ(x) jumps by Iπ as x passes through
λ. For isolated eigenvalues, by the Sunada theorem, I is an
integer so this happens if and only if Φ has a zero of order I
at λ.

The punch line is that Eq. (1.4) will come from the Floquet
formula, Eq. (2.6), and the fact that Gv(z) has a simple pole
at z = λ if and only if v ∈ X1(λ), it has a simple zero when
v ∈ ∂X1(λ) and Qe(z) has a simple pole at z = λ if and only
if e ∈ E(λ). There can be some additional zeros of Gv and
Qe but we will see that they cancel.

We will use X0(λ) = V \ (X1(λ) ∪ ∂X1(λ)). Henceforth,
without loss, we can suppose that λ = 0 for simplicity of
notation and we drop (λ) from X0,1(λ).

The proof relies on a sequence of observations:
(1) If 0 is an isolated point in the spectrum then all Green’s

and m-functions are meromorphic in a neighborhood of 0. If
they have poles they are simple with negative residue and if
they are zero, the zeros are simple with positive derivative
(this follows from the fact that by the spectral theorem, the
derivative of Green’s and m-functions away from poles are
strictly positive). Thus in counting the order of a zero in
Eq. (2.7), each G or m contributes either a single +1, −1 or 0.
(For non-isolated zeros, the functions are only algebraic and
so have Laurent-Puiseux series – one needs to track potential
fractional powers; this is why we have limited our discussion
here to isolated points of the spectrum).

(2) If v ∈ X1, Gv has a simple pole at 0 and for other v’s
either a zero or a non-zero finite value at 0.

(3) A direct analysis of the possibilities proves that if
e = (vw) with both points in X1, then me has a finite non-
zero value at 0 so, by Eq. (2.5), Qe has a simple pole.

(4) A direct analysis of the possibilities proves that if
e = (vw) with v ∈ X1, w ∈ ∂X1, then me(0) = 0 and mě

has a pole at 0 so Qe has a finite, non-zero value at 0 (since
memě has a negative value at 0 so the denominator in the
first equality in Eq. (2.5) is non-varnishing) and Gw(0) = 0.

Lead author last name et al. PNAS — March 6, 2024 — vol. XXX — no. XX — 3
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(5) A direct analysis of the possibilities proves that if
e = (vw) with both points not in X1, then Qe does not have
a pole at 0 so by (3) and (4), Qe has a pole at zero if and
only if both endpoints lie in X1.

(6) The final equalities in Eq. (2.5) show that if e = (vw)
and Qe(0) = 0, then neither v nor w can lie in X1. It also
shows that if me has a pole at 0, and neither v nor w lies
in X1, then Qe(0) = 0. It follows that for such e’s, Qe has
a double 0 at 0 if both me and mě have poles there (by the
first equality in Eq. (2.5)), and Qe has a simple pole at 0 if
exactly one of them has a pole. Thus for such e’s, we can
count poles of me rather than zeros of Qe so long as we run
e through all of Ẽ.

(7) It follows from Eq. (2.2), that if Gu(0) = 0, then at
least one mf with u = σ(f) has a pole, and because poles
all have negative residues, the converse is true. A careful
analysis shows that if mf with σ(f) = u has a pole, then
for any e ̸= f with σ(e) = u and with τ(e) /∈ X1, one can
conclude that me is not infinite. This means if that there
is a 1 − 1 correspondence between v ∈ X0 with Gv(0) = 0
and those e with me having a pole with σ(e) ∈ X0. By the
argument in (5), it also says that if σ(e) ∈ ∂X1, τ(e) /∈ X1,
then me does not have a pole. These two conclusions show
that the number of zeros of the Gu(z) with u ∈ X0 exactly
cancel the number of zeros of Qe(z), for those e with no ends
in X1.

In summary, Theorem 2.1 allows us to compute the
multiplicity of the zero of the Floquet function at any given
point by counting the multiplicities of the zeroes and poles
of the Gv and Qe (keeping in mind that the Qe are in the
numerator and the Gv in the denominator). Specifically,
point (2) shows that for each v ∈ X1(λ) the Gv(z) has a
simple pole at z = λ, which is responsible for the #(X1(λ))
in Aomoto’s index formula. Point (3) shows that Qe(z) has
a simple pole at z = λ for all e ∈ E(λ), which yields the
−#(E(λ)) in the index formula. And, point (4) shows that
Gv(z) has a zero for all v ∈ ∂X1(λ), yielding the −#(∂X1(λ))
in the index formula. The other points argue that the other
terms in the Floquet formula either do not contribute with
a pole or a zero, or their contributions cancel out with each
other.

We remark that the earlier proofs of Aomoto’s theorem
((6, 9)) show that X1 is a forest (disjoint union of trees)
which allows one to prove that the index is also equal
to ccX1(λ) − #(∂X1(λ)) where ccX1(λ) is the number of
connected components of X1(λ). So long as we use the
formula Eq. (1.4), we don’t need to prove the forest result.

5. Anderson Model on a Tree

In this final section we will note that the ideas of Section
2 also imply results for the Anderson model on a tree, a
subject with considerable work in both the physics (1, 13, 23)
and mathematical physics (2–4, 16, 20) literatures. One
fixes a strictly positive integer, d, and considers a Jacobi
matrix on the homogeneous tree of degree d. The a’s and
b’s are both given by independent identically distributed
(separately for a and b) random variables (for technical
simplicity, we suppose the supports of the distributions are
bounded). Most commonly the distributions of the a’s set
them to be identically one but that doesn’t affect anything
in our arguments.

For us, as for Klein (20), the density of states is given by
the expectation of the spectral measure over the ensemble of
random Hamiltonians. By taking expectations of Eq. (1.7)
and Eq. (2.11), we prove that�

log(t−z) dk(t) =
(

d
2 − 1

)
E(log(Gu))− d

2E(log(me)) [5.1]

In case d = 2 this is what follows from the Thouless formula
and (26, (1.7)) so this is sort of a half-Thouless formula. We
are currently studying possible applications of Eq. (5.1).
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