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1. Introduction

Perhaps the most common theme in Fritz Gesztesy’s broad opus is the study
of problems with periodic or almost periodic finite gap differential and difference
equations, especially those connected to integrable systems. The present paper
reviews recent progress in the understanding of finite gap Jacobi matrices and their
perturbations. We’d like to acknowledge our debt to Fritz as a collaborator and
friend. We hope Fritz enjoys this birthday bouquet!

We consider Jacobi matrices, J , on ℓ2({1, 2, . . . , }) indexed by {an, bn}∞n=1,
an > 0, bn ∈ R, where (u0 ≡ 0)

(Ju)n = anun+1 + bnun + an−1un−1 (1.1)

or its two-sided analog on ℓ2(Z) where an, bn, un are indexed by n ∈ Z and J is still
given by (1.1) (we refer to “Jacobi matrix” for the one-sided objects and “two-sided
Jacobi matrix” for the Z analog). Here the a’s and b’s parametrize the operator J
and {un} ∈ ℓ2.

We recall that associated to each bounded Jacobi matrix, J , there is a unique
probability measure, µ, of compact support in R characterized by either of the
equivalent
(a) J is unitarily equivalent to multiplication by x on L2(R, dµ) by a unitary with

(Uδ1)(x) ≡ 1.
(b) {an, bn}∞n=1 are the recursion parameters for the orthogonal polynomials for µ.
We’ll call µ the spectral measure for J .

By a finite gap Jacobi matrix, we mean one whose essential spectrum is a finite
union

σess(J) = e ≡ [α1, β1] ∪ · · · ∪ [αℓ+1, βℓ+1] (1.2)

where
α1 < β1 < · · · < αℓ+1 < βℓ+1 (1.3)
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ℓ counts the number of gaps.
We will see that for each such e, there is an ℓ-dimensional torus of two-sided

J ’s with σ(J) = e and J almost periodic and regular in the sense of Stahl–Totik
[56]. We’ll present the theory of perturbations of such J that decay but not too
slowly. Our interest will be in spectral types, Lieb–Thirring bounds on the discrete
eigenvalues and on orthogonal polynomial asymptotics. We begin in Section 2 with
a discussion of the case ℓ = 0 where we may as well take e = [−2, 2], in which the
(0-dimensional) torus is the single point with an ≡ 1, bn ≡ 0. We’ll discuss the
theory in that case as background.

Section 3 describes the isospectral torus. Section 4 discusses the results for
general finite gap sets with a mention of the special results that occur if each
[αj , βj ] has rational harmonic measure, in which case the isospectral torus contains
only periodic J ’s. Section 5 discusses a method for the general finite gap case
which relies on the realization of C∪{∞}\e as the quotient of the unit disk in C by
a Fuchsian group—a method pioneered by Peherstorfer–Sodin–Yuditskii [42, 55],
who were motivated by earlier work of Widom [64] and Aptekarev [4].

While we focus on the finite gap case, we note there are some results on general
compact e’s in R with various restrictive conditions on e (e.g., Parreau–Widom).
Peherstorfer–Yuditskii [42] discuss homogeneous sets and Christiansen [8, 9] proves
versions of Theorems 4.3 and 4.5 below for suitable infinite gap e’s. See [16, 65]
for discussion of properties of some e’s and examples relevant to this area.

These works suggest forms of two conditions in the finite gap case suitable
for generalization. Let ρe be the equilibrium measure for e and Ge(z) its Green’s
function (−E(ρe)− Φρe

(z) in terms of (3.1)/(3.2)). Then (4.5) should read

N∑

n=1

Ge(xn) <∞ (1.4)

(which for finite gap e is equivalent to (4.5)). Similarly, (4.6) should read
∫

log[f(x)] dρe(x) > −∞ (1.5)

(again, for finite gap e equivalent to (4.6)).

J.S.C. and M.Z. would like to thank Caltech for its hospitality where this man-
uscript was written.

2. The Zero Gap Case

The Jacobi matrix, J0, with an ≡ 1, bn ≡ 0 is called the free Jacobi matrix. It
is easy to see that the solutions of J0u = λu are given by solving

α+ α−1 = λ (2.1)

for λ ∈ C and setting

un =
1

2i
(αn − α−n) (2.2)

This is polynomially bounded in n if and only if |α| = 1. If α = eik, then

λ = 2 cos k, un = sin(kn) (2.3)

Thus,

σ(J0) = [−2, 2], λ ∈ (−2, 2) ⇒ all eigenfunctions bounded (2.4)
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(by all eigenfunctions here, we mean without the boundary condition u0 = 0).
In identifying the spectral type, the following is useful:

Theorem 2.1. Let J be a Jacobi matrix with an+a
−1
n + |bn| bounded. Suppose

all solutions of (Ju)n = λun (where u0, u1 are arbitrary) are bounded for λ ∈ S ⊂ R.

Then the spectrum of J on S is purely a.c. in the sense that if µ is the spectral

measure of J and | · | is Lebesgue measure, then

µs(S) = 0, T ⊂ S and |T | > 0 ⇒ µac(T ) > 0 (2.5)

Remark. The modern approach to this theorem would use the inequalities of
Jitomirskaya–Last [28, 29] or Gilbert–Pearson subordinacy theory [23, 24, 30, 40]
to handle µs and the results of Last–Simon [36] for the a.c. spectrum. The simplest
proof for this special case (where the above ideas are overkill) is perhaps Simon
[49].

A simple variation of parameters in the difference equation implies that under
ℓ1 perturbations, eigenfunctions remain bounded when λ ∈ (−2, 2), that is,

Theorem 2.2. Let J be a Jacobi matrix with
∞∑

n=1

|an − 1|+ |bn| <∞ (2.6)

Then σess(J) = [−2, 2] and the spectrum on (−2, 2) is purely a.c.

Remark. The continuum analog of Theorem 2.2 goes back to Titchmarsh [60].

Thus, the spectrum outside [−2, 2] is a set of eigenvalues {xn}Nn=1 where N ∈
N ∪ {∞}. (2.6) has implications for these eigenvalues.

Theorem 2.3. Let {xn}Nn=1 be the eigenvalues of a Jacobi matrix. Then

N∑

n=1

(x2n − 4)1/2 ≤
∞∑

n=1

|bn|+ 4

∞∑

n=1

|an − 1| (2.7)

Remarks. 1. This implies

N∑

n=1

dist(xn, [−2, 2])1/2 ≤ 1

2

( ∞∑

n=1

|bn|+ 4

∞∑

n=1

|an − 1|
)

(2.8)

2. The analog of (2.8) in the continuum case is due to Lieb–Thirring [37] who
proved it when the power 1/2 is replaced by p > 1/2 and the right side is replaced
by |bn|p+1/2, |an − 1|p+1/2 and 1/2 by a suitable constant. They proved the analog
is false if p < 1/2 and conjectured the result if p = 1/2. This conjecture was proven
by Weidl [63] with an alternate proof and optimal constant by Hundermark–Lieb–
Thomas [25]. (2.8) and its p > 1/2 analogs are called Lieb–Thirring inequalities
after [37].

3. This theorem is a result of Hundertmark–Simon [26] who used a method
inspired by [25].

4. (2.7) is optimal in the sense that its p < 1/2 analog is false and one cannot
put a constant γ < 1 in front of neither the b sum nor the a − 1 sum. The same
also applies to (2.8).

5. (2.7) implies p > 1/2 analogs by an argument of Aizenman–Lieb [3].
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6. The one-half power in (2.7)/(2.8) is especially significant for the following
reason:

x(z) = z + z−1 (2.9)

maps D to C ∪ {∞} \ [−2, 2]. Its inverse

z(x) = 1
2

(
x−

√
x2 − 4

)
(2.10)

has a square root singularity at x = ±2. Thus, the finiteness of the left side of
(2.7)/(2.8) is equivalent to a Blaschke condition

N∑

n=1

(1− |z(xn)|) <∞ (2.11)

Theorem 2.4. Let J be a Jacobi matrix with σess(J) = [−2, 2] and Jacobi

parameters {an, bn}∞n=1. Suppose its spectral measure has the form

dµ = f(x) dx + dµs (2.12)

where dµs is singular with respect to dx. Suppose that {xn}Nn=1 are its pure points

outside [−2, 2]. Consider the three conditions:

(a)

N∑

n=1

dist(xn, [−2, 2])1/2 <∞ (2.13)

(b)

∫ 2

−2

(4 − x2)−1/2 log[f(x)] dx > −∞ (2.14)

(c) lim
n→∞

a1 . . . an exists in (0,∞) (2.15)

Then any two conditions imply the third. Moreover, in that case,

(d)

∞∑

n=1

(an − 1)2 + b2n <∞ (2.16)

(e) lim
K→∞

K∑

n=1

(an − 1) and lim
K→∞

K∑

n=1

bn exist (2.17)

Remarks. 1. (2.13) is called a critical Lieb–Thirring inequality. (2.14) is the
Szegő condition.

2. Since f ∈ L1, the integral in (2.14) can only diverge to −∞. That is, the
integral over log+ is always finite and (2.14) is equivalent to the integral converging
absolutely.

3. By a result of Ullman [62], σess(J) = [−2, 2] and f(x) > 0 for a.e. x in
[−2, 2] implies limn→∞(a1 . . . an)

1/n = 1, so (2.15) can be thought of as a second
term in the asymptotics of 1

n log(a1 . . . an).

4. Condition (c) can be thought of as three statements: lim sup <∞, lim inf >
0, and lim sup = lim inf. The full strength of (c) is not always needed. For example,
(a) plus lim sup > 0 implies (b) and the rest of (c).

5. This result can be thought of as an analog of a theorem of Szegő for OPUC
[57] (see also [50, Ch. 2]). That (b) ⇒ (c), if there are no eigenvalues, is due to
Shohat [47] and that (b) ⇔ (c), if there are finitely many x’s, is due to Nevai [38].
The general (a) + (b) ⇒ (c) is due to Peherstorfer–Yuditskii [41] and the essence
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of this theorem is from Killip–Simon [32], although the precise theorem is from
Simon–Zlatoš [54].

Corollary 2.5. If (2.6) holds, then so does (2.14).

Proof. (2.6) implies
∏∞

n=1 an converges absolutely and, by Theorem 2.3, it
implies (2.13). Thus, (2.14) holds by Theorem 2.4. �

Remarks. 1. This result was a conjecture of Nevai [39].

2. It was proven by Killip–Simon [32]. It was the need to complete the proof
of this that motivated Hundertmark–Simon [26].

There is a close connection between these conditions and asymptotics of the
OPRL:

Theorem 2.6. Let {pn(x)}∞n=0 be the orthonormal polynomials for a Jacobi

matrix, J , obeying the conditions (a)–(c) of Theorem 2.4. Then uniformly for x in

compact subsets of C ∪ {∞} \ [−2, 2],

lim
n→∞

pn(x)[
1
2 (x +

√
x2 − 4 )

]n (2.18)

exists and is analytic with zeros only at the xn’s.

Remarks. 1. When there are no xn’s, this is essentially a result of Szegő
[57, 58]. For the general case, see Peherstorfer–Yuditskii [41].

2. This is called Szegő asymptotics.

3. The reason for the different sign in (2.10) and (2.18) is that, as n → ∞,
pn(x) → ∞, |z(x)| < 1 so z(x)npn(x) is bounded. The other solution of (2.9) is
z(x)−1 and it is that solution that appears in the denominator of (2.18).

While conditions (a)–(c) of Theorem 2.4 are sufficient for Szegő asymptotics,
they are not necessary:

Theorem 2.7. Let J be a Jacobi matrix whose parameters obey (2.16) and

(2.17). Then (2.18) holds on compact subsets of C ∪ {∞} \ [−2, 2]. Conversely, if

(2.18) holds uniformly on the circle |x| = R for some R > 2, then (2.16) and (2.17)
hold.

Remarks. 1. This is a result of Damanik–Simon [14].

2. There exist examples where (2.16) and (2.17) hold but both (2.13) and (2.14)
fail.

Theorem 2.8. For a Jacobi matrix, J , with parameters {an, bn}∞n=1, spectral

measure obeying (2.12), and discrete eigenvalues {xn}Nn=1, one has

∞∑

n=1

(an − 1)2 + b2n <∞ (2.19)

if and only if

(a) σess(J) = [−2, 2] (2.20)

(b)

N∑

n=1

dist(xn, [−2, 2])3/2 <∞ (2.21)
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(c)

∫ 2

−2

(4− x2)+1/2 log[f(x)] dx > −∞ (2.22)

Remarks. 1. This theorem is due to Killip–Simon [32]. They call (a)
Blumenthal–Weyl, (b) Lieb–Thirring, and (c) quasi-Szegő.

2. The continuous analog of (2.19) ⇒ (2.21) is due to Lieb–Thirring [37].

Theorem 2.9. Let J be a Jacobi matrix with σess(J) = [−2, 2] and spectral

measure, dµ, given by (2.12). Suppose f(x) > 0 for a.e. x in [−2, 2]. Then

lim
n→∞

|an − 1|+ |bn| = 0 (2.23)

Remark. This is often called the Denisov–Rakhmanov theorem after [44, 45,
15]. The result is due to Denisov. Rakhmanov had the analog for OPUC which
implies the weak version of Theorem 2.9, where σess(J) = [−2, 2] is replaced by
σ(J) = [−2, 2]. That the result as stated was true was a long-standing conjecture
settled by Denisov.

Conditions on the spectrum combined with weak conditions on the Jacobi pa-
rameters have strong consequences. For example, the existence of limn→∞ a1 . . . an
clearly has no implication for the b’s, but if combined with σ(J) = [−2, 2] implies,
by Theorems 2.4 and 2.8, that

∑∞
n=1 b

2
n <∞. Similarly, one has

Theorem 2.10. Suppose σess(J) = [−2, 2] and

lim
n→∞

(a1 . . . an)
1/n = 1 (2.24)

Then

lim
N→∞

1

N

N∑

n=1

(an − 1)2 + b2n = 0 (2.25)

Remarks. 1. (2.24) says that the underlying measure is regular in the sense
of Ullman–Stahl–Totik; see the discussion in Section 3.

2. This theorem is a result of Simon [52].

3. The Isospectral Torus

Let e be a finite gap set with ℓ gaps and ℓ + 1 components, ej = [αj , βj ],
j = 1, . . . , ℓ + 1. There is associated to e a natural ℓ-dimensional torus, Te, of
almost periodic Jacobi matrices. If {an, bn}∞n=−∞ are almost periodic sequences,
they are determined by their values for n ≥ 1 so we can view the elements of Te as
either one- or two-sided Jacobi matrices. There are at least three different ways to
think of Te:
(a) As reflectionless two-sided Jacobi matrices, J , with σ(J) = e. This is the

approach of [5, 7, 21, 22, 42, 53, 55, 59].
(b) As one-sided Jacobi matrices whose m-functions are minimal Herglotz func-

tions on the Riemann surface of
[∏ℓ+1

j=1(z−αj)(z−βj)
]1/2

. This is the approach

of [10].
(c) As two-sided almost periodic J which are regular in the sense of Stahl–Totik

[56] with σ(J) = e. This is the approach of [35].
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In understanding these notions, some elementary aspects of potential theory
are relevant, so we begin by discussing them. For discussion of potential theory
ideas in spectral theory, see Stahl–Totik [56] or Simon [51].

On our finite gap set, e, there is a unique probability measure, ρe, called the
equilibrium measure which minimizes

E(ρ) =
∫

log|x− y|−1 dρ(x)dρ(y) (3.1)

among all probability measures supported on e. The corresponding equilibrium
potential is

Φρe
(x) =

∫
log|x− y|−1 dρe(x) (3.2)

The capacity, C(e), is defined by

C(e) = exp(−E(ρe)) (3.3)

A Jacobi matrix with σess(J) = e has

lim sup(a1 . . . an)
1/n ≤ C(e) (3.4)

J is called regular if one has equality in (3.4). We call a two-sided Jacobi matrix
regular if each of the (one-sided) Jacobi matrices

J+ (resp. J−) with parameters {an, bn}∞n=1 (resp. {a−n, b−n+1}∞n=1) (3.5)

is regular. ρe is the density of zeros for any regular J with σess(J) = e.
The ℓ+ 1 numbers ρe([αj , βj ]), j = 1, . . . , ℓ+ 1, which sum to 1 are called the

harmonic measures of the bands. We also recall that a bounded function, ψ, on Z

is called almost periodic if {Skψ}k∈Z, where (Skψ)n = ψn−k, has compact closure
in ℓ∞ (see the appendix to Section 5.13 in [53] for more on this class). Such ψ’s
are associated to a continuous function, Ψ, on a torus of finite or countably infinite
dimension so that

ψn = Ψ(e2πinω1 , e2πinω2 , . . . ) (3.6)

The set of {n0 +
∑K

k=1 nkωk : n0, nk ∈ Z,
∑K

k=1 |nk| < ∞} is called the frequency
module of ψ when there is no proper submodule (over Z) that includes all the
nonvanishing Bohr–Fourier coefficients. This set for arbitrary {ωk}Kk=1 is called the
frequency module generated by {ωk}Kk=1.

With J± given by (3.5), we define m±(z) for z ∈ C \ R by

m±(z) = 〈δ1, (J± − z)−1δ1〉 (3.7)

One has for a two-sided Jacobi matrix that

〈δ0, (J − z)−1δ0〉 = −(a20m+(z)−m−(z)
−1)−1 (3.8)

An important fact is that J± are determined by m±, essentially because m± deter-
mine the spectral measures µ± via their Herglotz representations,

m±(z) =

∫
dµ±(x)

x− z
(3.9)

and µ± determine the a’s and b’s via recursion coefficients for OPRL. Alternatively,
the Jacobi parameters can be read off a continued fraction expansion of m±(z) at
z = ∞.
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It is sometimes useful to let J̃− have parameters {a−n−1, b−n}∞n=1, in which
case

〈δ0, (J − z)−1δ0〉 = −(z − b0 + a20m+(z) + a2−1m̃−(z))
−1 (3.10)

We can now turn to the descriptions of the isospectral torus. A two-sided
Jacobi matrix, J , is called reflectionless on e if for a.e. λ ∈ e and all n,

Re〈δn, (J − (λ+ i0))−1δn〉 = 0 (3.11)

(g(λ+ i0) means limε↓0 g(λ+ iε)). It is known that this is equivalent to

a20m+(λ+ i0)m−(λ+ i0) = 1 for a.e. λ ∈ e (3.12)

First Definition of the Isospectral Torus. A two-sided Jacobi matrix, J ,
is said to lie in the isospectral torus, Te, for e if σ(J) = e and J is reflectionless on
e.

G00(z) = 〈δ0, (J − z)−1δ0〉 is determined by Im log(G00(x + i0)) via an expo-
nential Herglotz representation. This argument is π/2 on e, 0 on (−∞, α1), and π
on (βℓ+1,∞). G00 is real in each gap and monotone, so G00 has at most one zero
and that zero determines Im log(G00(x+ i0)) on that gap. If G00 > 0 on (βj , αj+1)
we’ll say the zero is at βj and if G00 < 0 on (βj , αj+1) the zero is at αj+1. Thus,
the zeros of G00 determine G00 and so ImG00(λ+ i0) on e.

By (3.10), G00 has a zero at λ0 if and only if m+ or m̃− has a pole at λ0,
and one can show that m+ and m̃− have no common poles. The residue of the
pole is determined by the derivative of G00 at λ = λ0. The reflectionless condition
determines Imm+ and Im m̃− on e, so a0, a−1, b0,m+, m̃−, and thus J , are uniquely
determined by knowing the position of the zero and if they are in the gaps (as
opposed to the edges) whether the poles are in m+ or m̃−. Hence, for each gap, we
have the two copies of (βj , αj+1) glued at the ends, that is, a circle. Thus, given
that one can show each possibility occurs, Te is a product of ℓ circles, that is, a
torus. It is not hard to show that the Jacobi parameters depend continuously on
the positions of the zeros of G00 and m+/m̃− data.

We turn to the second approach. Any G00 as above is purely imaginary on the
bands which implies, by the reflection principle, that it can be meromorphically
continued to a matching copy of S+ ≡ C ∪ {∞} \ e. This suggests meromorphic
functions on S, two copies of S+ glued together along e, will be important. S is

precisely the compactified Riemann surface of
√
R(z), where

R(z) =
ℓ+1∏

j=1

(z − αj)(z − βj) (3.13)

S is a Riemann surface of genus ℓ. Meromorphic functions on the surface that are
not functions symmetric under interchange of the sheets (i.e., meromorphic on C)
have degree at least ℓ+ 1.

By a minimal meromorphic Herglotz function, we mean a meromorphic function
of degree ℓ+ 1 on S that obeys
(i) Im f > 0 on S+ ∩ C+ (C+ = {z : Im z > 0})
(ii) f has a zero at ∞ on S+ and a pole at ∞ on S−.

Such functions must have their ℓ other poles on R in the gaps on one sheet or
the other and are uniquely, up to a constant, determined by these ℓ poles, one per
gap. Each “gap,” when you include the two sheets and branch points at the gap
edges, is a circle. So if we normalize by m(z) = −z−1 +O(z−2) near ∞ on S+, the
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set of such minimal normalized Herglotz functions is an ℓ-dimensional torus. Each
such Herglotz function can be written on S+ ∩ C+ as

m(z) =

∫
dµ(x)

x− z
(3.14)

where µ is supported on e plus the poles of m in the gaps on S+. µ then determines
a Jacobi matrix.

Second Definition of the Isospectral Torus. The isospectral torus, Te, is
the set of one-sided J ’s whose m-functions are minimal Herglotz functions on the
compact Riemann surface S of

√
R given by (3.13).

The relation between the two definitions is that the restrictions of the two-sided
J ’s to the one-sided are these J given by minimal Herglotz functions. In the other
direction, each J is almost periodic and so has a unique almost periodic two-sided
extension.

Third Definition of the Isospectral Torus. The isospectral torus is the
almost periodic two-sided J ’s with σ(J) = e and which are regular.

This is equivalent to the reflectionless definition since regularity implies the
Lyapunov exponent is zero and then Kotani theory [33, 48] implies J is reflection-
less.

As noted, the J ’s in the isospectral torus are all almost periodic. Their fre-
quency module is generated by the harmonic measures of the bands. In particular,
the elements of the isospectral torus are periodic if and only if all harmonic mea-
sures are rational. Their spectra are purely a.c. and all solutions of Ju = λu are
bounded for any λ ∈ e

int.
Szegő asymptotics is more complicated than in the ℓ = 0 case. One has for

the OPRL associated to a point in the isospectral torus (thought of as a one-sided
Jacobi matrix) that for all z ∈ C \ σ(J),

pn(z) exp(−nΦρe
(z)) (3.15)

is asymptotically almost periodic as a function of n with magnitude bounded away
from 0 for all n. The frequency module is z-dependent (as written, this is even
true if ℓ = 0 as can bee seen from the free case): the frequencies come from the
harmonic measures of the bands plus one that comes from the conjugate harmonic
function of Φρe

(z) in C+ (which gives the z-dependence of the frequency module).
The limit of (3.15) on e, where Φρe

(x) = 0, yields the boundedness of solutions
of (J − λ)u = 0. There is also a limit at z = ∞: a1 . . . an/C(e)

n which is almost
periodic.

4. Results in the Finite Gap Case

As we’ve seen, if J̃ is in the isospectral torus for e and λ ∈ e
int, then all solutions

of J̃u = λu are bounded. This remains true under ℓ1 perturbations by a variation
of parameters, so Theorem 2.1 is applicable and we have

Theorem 4.1. Let e be a finite gap set and J̃ , with parameters {ãn, b̃n}∞n=1,

an element of Te, the isospectral torus for e. Let J be a Jacobi matrix with

∞∑

n=1

|an − ãn|+ |bn − b̃n| <∞ (4.1)
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Then σess(J) = e and the spectrum on e
int is purely a.c.

Remark. We are not aware of this appearing explicitly in the literature, al-
though it follows easily from results in [42, 10].

As for eigenvalues in R \ e:

Theorem 4.2. There is a constant C depending only on e so that for any Jacobi

matrix, J , obeying (4.1) for some J̃ ∈ Te, we have, with {xn}Nn=1 the eigenvalues

of J ,
N∑

n=1

dist(xn, e)
1/2 ≤ C0 + C

( ∞∑

n=1

|an − ãn|+ |bn − b̃n|
)

(4.2)

where

C0 =

ℓ∑

j=1

∣∣∣∣
αj+1 − βj

2

∣∣∣∣
1/2

(4.3)

Remarks. 1. This result is essentially in Frank–Simon [18]. They are only

explicit about perturbations of two-sided Jacobi matrices where J̃ has no eigenval-
ues. They mention that one can use interlacing to then get results for the one-sided
case—this makes that idea explicit.

2. Prior to [18], Frank–Simon–Weidl [19] proved such a bound on the xn in
R \ [α1, βℓ+1] and Hundertmark–Simon [27] if 1/2 in the power of dist(. . .)1/2 is

replaced by p > 1/2 and 1 in the power of |an − ãn| and |bn − b̃n| by p+ 1/2, that
is, noncritical Lieb–Thirring bounds.

Theorem 4.3. Let J be a Jacobi matrix with σess(J) = e and Jacobi parameters

{an, bn}∞n=1. Suppose its spectral measure has the form

dµ = f(x) dx + dµs (4.4)

where dµs is singular with respect to dx. Suppose {xn}Nn=1 are the pure points of

dµ outside e. Consider the three conditions:

(a)

N∑

n=1

dist(xn, e)
1/2 <∞ (4.5)

(b)

∫

e

dist(x,R \ e)−1/2 log[f(x)] dx > −∞ (4.6)

(c) For some constant R > 1, R−1 ≤ a1 . . . an
C(e)n

≤ R (4.7)

Then any two imply the third, and if they hold, there exists J̃ ∈ Te so that

lim
n→∞

|an − ãn|+ |bn − b̃n| = 0 (4.8)

Moreover,

(d) lim
n→∞

a1 . . . an
ã1 . . . ãn

exists in (0,∞) (4.9)

(e) lim
K→∞

K∑

n=1

(bn − b̃n) exists in R (4.10)
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Remarks. 1. Depending on which implications one looks at, only part of (c)
is needed. For example, if (a) holds,

(b) ⇔ lim sup
n→∞

a1 . . . an
C(e)n

> 0 (4.11)

(that is, indeed, lim sup and not lim inf).

2. As stated, this theorem (except for (e); see below) is due to Christiansen–
Simon–Zinchenko [11], but parts of it were known. While [11] focus on Szegő
asymptotics (see below), the work of Widom [64] and Aptekarev [4] implied if
there are no or finitely many xn’s, then (b) ⇒ (c), and Peherstorfer–Yuditskii [42]
proved (a) + (b) ⇒ (c) (and as noted to us privately by Peherstorfer, combining
their results and an idea of Garnett [20] yields (4.11)).

3. That (e) holds does not seem to have been noted before, although it follows
easily from the results in [11]. For gn(z) ≡ pn(z)/p̃n(z) has a limit as n → ∞ on
C \ [α1, βℓ+1] and that limit also exists and is analytic and nonzero at infinity (see
Theorem 4.5 below). Since

z−npn(z) = (a1 . . . an)
−1

(
1−

( n∑

j=1

bj

)
z−1 +O(z−2)

)
(4.12)

near z = ∞,

log(gn(z)) = − log

(
a1 . . . an
ã1 . . . ãn

)
−

[ n∑

j=1

(bj − b̃j)

]
z−1 +O(z−2) (4.13)

so convergence of the analytic functions uniformly near ∞ implies convergence of
the O(z−1) term.

Theorems 4.2 and 4.3 immediately imply:

Corollary 4.4. If (4.1) holds, so does (4.6).

Proof. Since ã1 . . . ãn/C(e)
n is almost periodic bounded away from 0 and ∞,

and
∑∞

n=1|an − ãn| < ∞ and ãn, ã
−1
n bounded imply

∑∞
n=1|1 − an/ãn| < ∞, we

have (4.9), which implies (4.7). By Theorem 4.2, (4.1) ⇒ (4.5), so Theorem 4.3
implies (4.6). �

Remark. This is a result of [18], although [11] conjectured Theorem 4.2 and
noted it would imply this corollary.

Theorem 4.5. If the conditions (a)–(c) of Theorem 4.3 hold, then for all z ∈
C∪{∞}\ [α1, βℓ+1], limn→∞ pn(z)/p̃n(z) exists and the limit is analytic with zeros

only at the xn in R \ [α1, βℓ+1].

Remarks. 1. In this form, this result is from [11], although earlier it appeared
implicitly in Peherstorfer–Yuditskii [42, 43], and special cases (with stronger as-
sumptions on the xn’s) are in [64, 4]. See also [53].

2. There is also an asymptotic result on e not pointwise but in L2(dµ) sense;
see [11].

3. Asymptotics results for orthogonal polynomials on finite gap sets have been
pioneered by Akhiezer and Tomčuk [1, 2].

We do not know an analog of the “if and only if” statement of Theorem 2.7,
but there is one direction:
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Theorem 4.6. Let {ãn, b̃n}∞n=1 be an element of the isospectral torus, Te, of a
finite gap set, e. Let {an, bn}∞n=1 be another set of Jacobi parameters and δan, δbn
given by

δan = an − ãn, δbn = bn − b̃n

Suppose that

(a)
∞∑

n=1

|δan|2 + |δbn|2 <∞ (4.14)

(b) For any k ∈ Zℓ,

N∑

n=1

e2πi(k·ωωω)nδan and

N∑

n=1

e2πi(k·ωωω)nδbn (4.15)

have (finite) limits as N → ∞.

(c) For every ε > 0,

sup
N

{∣∣∣∣
N∑

n=1

e2πi(k·ωωω)nδan

∣∣∣∣+
∣∣∣∣

N∑

n=1

e2πi(k·ωωω)nδbn

∣∣∣∣
}

≤ Cε exp(ε|k|) (4.16)

Let pn(z) (resp. p̃n(z)) be the orthonormal polynomials for {an, bn}∞n=1 (resp.

{ãn, b̃n}∞n=1). Then for any z ∈ C \ R,

lim
n→∞

pn(z)

p̃n(z)
(4.17)

exists and is finite and nonzero.

Remarks. 1. Here ωωω = (ω1, . . . , ωℓ) is the ℓ-tuple of harmonic measures (i.e.,

ωj = ρe([αj , βj ])) and k · ωωω =
∑ℓ

j=1 kjωj. We thus require infinitely many condi-
tions.

2. This result is from [12].

3. If the torus consists of period p elements (i.e., each ρe([αj , βj ]) is kj/p, where
there is no common factor for p, k1, . . . , kℓ), then the infinity of conditions (4.15)

reduces to the finitely many conditions that for j = 1, 2, . . . , p,
∑N

n=0 δanp+j and∑N
n=0 δbnp+j have finite limits and (4.16) becomes automatic.

4. [12] uses this theorem to construct examples where Szegő asymptotics holds,
but both (4.5) and (4.6) fail to hold.

An analog of Theorem 2.8 is not known for general e but is known in one special
case. We say e is p-periodic with all gaps open if ℓ = p − 1, and for j = 1, . . . , p,
ρe([αj , βj ]) = 1/p.

We also need a notion of approach to the isospectral torus rather than a single
element. Given two Jacobi matrices, we define

dm(J, J ′) =

∞∑

k=0

e−|k|(|am+k − a′m+k|+ |bm+k − b′m+k|) (4.18)

and

dm(J, Te) = inf
J′∈Te

dm(J, J ′) (4.19)
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Theorem 4.7. Let e be p-periodic with all gaps open. Let J be a Jacobi matrix

with spectral measure obeying (4.4) and eigenvalues {xn}Nn=1 outside e. Then

∞∑

m=1

dm(J, Te)2 <∞ (4.20)

if and only if

(a) σess(J) = e (4.21)

(b)

N∑

n=1

dist(xn, e)
3/2 <∞ (4.22)

(c)

∫

e

dist(x,R \ e)+1/2 log[f(x)] dx > −∞ (4.23)

Remark. This theorem is due to Damanik–Killip–Simon [13]. Their method
is specialized to the periodic case, and in that case, proves some of the earlier results
of this section, such as Theorem 4.2.

Theorem 4.8. Suppose J is a Jacobi matrix with σess(J) = e and so that the

f of (4.4) is a.e. strictly positive on e. Then

lim
m→∞

dm(J, Te) = 0 (4.24)

Remarks. 1. This is a result of Remling [46]. For the periodic case, it was
proven earlier by [13], who conjecture the result for general e.

2. Remling replaces (4.24) by the assertion that every right limit of J (i.e.,
limit point of {an+r, bn+r}∞n=1 as r → ∞) is in Te. By a compactness argument, it
is easy to see that this is equivalent to (4.24).

Theorem 4.9. Let e be a finite gap set and J a Jacobi matrix so that

(a) σess(J) = e (4.25)

(b) J is regular, i.e., lim
n→∞

(a1 . . . an)
1/n = C(e) (4.26)

Then

lim
M→∞

1

M

M∑

m=1

dm(J, Te)2 = 0 (4.27)

Remarks. 1. This result was proven in case all harmonic measures are rational
by Simon [52], who conjectured the result in general. It was proven by Krüger [34].

2. By the Schwarz inequality, (4.27) is equivalent to

lim
M→∞

1

M

M∑

m=1

dm(J, Te) = 0 (4.28)

We close this section on results with a list of some open questions:

(1) Do (a)–(c) of Theorem 4.3 imply that
∞∑

n=1

(an − ãn)
2 + (bn − b̃n)

2 <∞ (4.29)

as is true in the case e = [−2, 2]?
(2) Is there an extension of Theorem 4.7 to the general e case?
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(3) Is there a converse to Theorem 4.6? This would be interesting even in the
periodic case.

5. Methods

The theory of regular Jacobi matrices says one expects the leading growth of
Pn(z) as n → ∞ to be exp(nΦρe

(z)). Φρe
is harmonic on C ∪ {∞} \ e so we can

locally define a harmonic conjugate and so Φ̃ρe
(z) analytic with Re Φ̃ρe

= Φρe
. If

you circle around x, log(z−x) changes by 2πi, so circling around the band [αj , βj ],

we expect
∫
log(z−x) dρe(x) to change by 2πiρe([αj , βj ]) and exp(−Φ̃ρe

(z)) to have
a change of phase by exp(−2πiρe([αj , βj ])). Thus, we are led to consider analytic
functions on C+ which we can continue along any curve in C ∪ {∞} \ e.

To get a single-valued function, we need to lift to the universal covering space

of C ∪ {∞} \ e and exp(−Φ̃ρe
(z)) will transform under the homotopy group via a

character of this group.
So long as ℓ 6= 0, this cover, as a Riemann surface, is the disk, D, and the deck

transformations act as a family of fractional linear transformations on the disk,
that is, a Fuchsian group. The use of these Fuchsian groups is thus critical to the
theory and used to prove several of the theorems of Section 4 (Theorems 4.7, 4.8,
and 4.9 are exceptions).

For more on Fuchsian groups, see Beardon [6], Ford [17], Katok [31], Simon
[53], and Tsuji [61]. The pioneers in this approach were Sodin–Yuditskii [55]. See
[42, 10, 11, 12, 53] for applications of these techniques.
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necessary and sufficient condition for Szegő asymptotics, Invent. Math. 165 (2006), 1–50.
[15] S.A. Denisov, On Rakhmanov’s theorem for Jacobi matrices, Proc. Amer. Math. Soc. 132

(2004), 847–852.
[16] A. Eremenko and P. Yuditskii, Comb functions, submitted.
[17] L.R. Ford, Automorphic Functions, 2nd ed., Chelsea, New York, 1951.
[18] R. Frank and B. Simon, Critical Lieb–Thirring bounds in gaps and the generalized Nevai

conjecture for finite gap Jacobi matrices, Duke Math. J. 157 (2011), 461–493.
[19] R. Frank, B. Simon, and T. Weidl, Eigenvalue bounds for perturbations of Schrödinger op-

erators and Jacobi matrices with regular ground states, Comm. Math. Phys. 282 (2008),
199–208.

[20] J.B. Garnett, Bounded Analytic Functions, Pure and Applied Math., 96, Academic Press,
New York, 1981.

[21] F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions. Vol.

I: (1+1)-Dimensional Continuous Models, Cambridge Studies in Advanced Mathematics, 79,
Cambridge University Press, Cambridge, 2003.

[22] F. Gesztesy, H. Holden, J. Michor, and G. Teschl, Soliton Equations and Their Algebro-

Geometric Solutions. Vol. II: (1 + 1)-Dimensional Discrete Models, Cambridge Studies in
Advanced Mathematics, 114, Cambridge University Press, Cambridge, 2008.

[23] D.J. Gilbert, On subordinacy and analysis of the spectrum of Schrödinger operators with two

singular endpoints, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 213–229.
[24] D.J. Gilbert and D.B. Pearson, On subordinacy and analysis of the spectrum of one-

dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), 30–56.
[25] D. Hundertmark, E.H. Lieb, and L.E. Thomas, A sharp bound for an eigenvalue moment of

the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2 (1998), 719–731.
[26] D. Hundertmark and B. Simon, Lieb–Thirring inequalities for Jacobi matrices, J. Approx.

Theory 118 (2002), 106–130.
[27] D. Hundertmark and B. Simon, Eigenvalue bounds in the gaps of Schrödinger operators and

Jacobi matrices, J. Math. Anal. Appl. 340 (2008), 892–900.
[28] S. Jitomirskaya and Y. Last, Power-law subordinacy and singular spectra, I. Half-line oper-

ators, Acta Math. 183 (1999), 171–189.
[29] S. Jitomirskaya and Y. Last, Power law subordinacy and singular spectra, II. Line operators,

Comm. Math. Phys. 211 (2000), 643–658.
[30] S. Kahn and D.B. Pearson, Subordinacy and spectral theory for infinite matrices, Helv. Phys.

Acta 65 (1992), 505–527.
[31] S. Katok, Fuchsian Groups, University of Chicago Press, Chicago, 1992.
[32] R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral

theory, Annals of Math. (2) 158 (2003), 253–321.
[33] S. Kotani, Ljapunov indices determine absolutely continuous spectra of stationary random

one-dimensional Schrödinger operators, Stochastic Analysis (Katata/Kyoto, 1982), pp. 225–
247, North–Holland Math. Library, 32, North–Holland, Amsterdam, 1984.
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