
ANALOGS OF THE M-FUNCTION IN THE THEORY OF
ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE

BARRY SIMON∗

To Norrie Everitt, on his 80th birthday,
a bouquet to the master of the m-function

Abstract. We show that the multitude of applications of the Weyl-
Titchmarsh m-function leads to a multitude of different functions in the
theory of orthogonal polynomials on the unit circle that serve as analogs
of the m-function.

1. Introduction

Use of the Weyl-Titchmarsh m-function has been a constant theme in
Norrie Everitt’s opus, so I decided a discussion of the analogs of these ideas
in the theory of orthogonal polynomials on the unit circle (OPUC) was ap-
propriate. Interestingly enough, the uses of the m-functions are so numerous
that OPUC has multiple analogs of the m-function!

m-functions are associated to solutions of

−u′′ + qu = zu (1.1)

with q a real function on [0,∞) and z a parameter in C+ = {z | Im z > 0}.
The most fundamental aspect of the m-function is its relation to the spectral
measure, ρ, for (1.1) by

m(z) = c +
∫

dρ(x)
[

1
x − z

− x

1 + x2

]
(1.2)

where c is determined by (see Atkinson [3], Gesztesy-Simon [13]):

m(z) =
√−z + o(1) as z → i∞ (1.3)

(1.2) plus (1.3) allow you to compute m given dρ, and dρ is determined
by m via

lim
e↓0

1
π

∫ b

a
m(x + iε) dx = 1

2 [ρ((a, b)) + ρ([a, b])] (1.4)

Of course, I haven’t told you what m or ρ is. This is done by defining m,
in which case ρ is defined by (1.4). Under weak conditions on q at ∞, for
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z ∈ C+, (1.1) has a solution u(x, z) which is L2 at infinity, and it is unique
up to a constant multiple. Then, m is defined by

m(z) =
u′(0, z)
u(0, z)

(1.5)

With this definition, dρ is a spectral measure for u �→ −u′′ + qu = Hu in
the sense that H is unitarily equivalent to multiplication by λ on L2(R, dρ).
(1.5) is often written in the equivalent form,

ψ(x, z) + m(z)ϕ(x, z) ∈ L2

where ϕ, ψ solve (1.1) with initial conditions ϕ(0) = 0, ϕ′(0) = 1, ψ(0) = 1,
ψ′(0) = 0.

Note that if one defines

m(x; z) =
u′(x, z)
u(x, z)

(1.6)

the m-function for qx(·) = q( · + x), then m obeys the Riccati equation

m′ = q − z − m2 (1.7)

It could be said that this is backwards: the definition (1.5) should come
first, before (1.2). I put it in this order because it is (1.2) that makes m
such an important object both in classical results [2, 5, 7, 8, 9, 16, 23, 33]
and very recent work [27, 10, 21, 31, 25, 4].

To describe the third role of the m-function, it will pay to switch to the
case of Jacobi matrices. We now have, instead of q, two sequences {an}∞n=1,
{bn}∞n=1 with an > 0, bn ∈ R which we will suppose uniformly bounded.
Define an infinite matrix

J =




b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .


 (1.8)

which is a bounded selfadjoint operator. One defines

m(z) = 〈δ1, (J − z)−1δ1〉 (1.9)

In terms of the spectral measure, µ, for δ1 for J ,

m(z) =
∫

dµ(x)
x − z

(1.10)

If un is the �2 solution of an−1un−1 +(bn−z)un +anun+1 = 0 with Im z > 0,
one has the analog of (1.5)

m(z) =
u1(z)
u0(z)

(1.11)

This process of going from a and b to m and then to µ can be reversed.
One way is by iterating (1.15) below, which lets one go from µ to m (by
(1.10)) and then gets the a’s and b’s as coefficients in a continued fraction
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expansion of m. From our point of view, an even more important way
of going backwards uses orthogonal polynomials on the real line (OPRL).
Given µ (of bounded support), one forms the monic orthogonal polynomials
Pn(x) for dµ and shows they obey a recursion relation

Pn+1(x) = (x − bn+1)Pn(x) − a2
nPn−1(x) (1.12)

which yields the Jacobi parameters a and b. The orthonormal polynomials,
pn(x), are related to Pn by

pn(x) = (a1 . . . an)−1Pn(x) (1.13)

and obey
an+1pn+1(x) = (x − bn+1)pn(x) − anpn−1(x) (1.14)

(1.7) has the analog

m(z; J) = (b1 − z − a2
1m(z; J (1)))−1 (1.15)

where J (1) is the Jacobi matrix with parameters ãm = am+1b̃m = bm+1 (i.e.,
the top row and left column are removed).

If m(x + iε; J) has a limit as ε ↓ 0, (1.15) says that m(x + iε; J (1)) has a
limit, and by (1.15),

Im m(x; J)
Im m(x; J (1))

= |a1m(x; J)|2 (1.16)

Im m is important because if µ is given by (1.10) then

dµac =
1
π

Imm(x + i0) dx (1.17)

This property of m, that its energy is the ratio of Im’s, is a critical element
of recent work on sum rules for spectral theory [29, 19, 30, 28, 6].

The interesting point is that, for OPUC, the analogs of the functions
obeying (1.2), (1.5), and (1.16) are different! In Section 2, we will give a
quick summary of OPUC. In Section 3, we discuss (1.2); in Section 4, we
discuss (1.16); and finally, in Section 5, the analog of (1.5).

Happy 80th, Norrie. I hope you enjoy this bouquet.

2. Overview of OPUC

We want to discuss here the basics of OPUC, although we will only scratch
the surface of a rich and beautiful subject [29]. The theory reverses the
usual passage from differential/difference equations to measures, and instead
follows the discussion of OPRL in Section 1. µ is now a probability measure
on ∂D = {z | |z| = 1}. We suppose µ is nontrivial, that is, not supported on
a finite set. One can then form, by the Gram-Schmidt procedure, the monic
orthogonal polynomials Φn(z) and the orthonormal polynomials, ϕn(z) =
Φn(z)/‖Φn‖ where ‖ · ‖ is the L2(∂D, dµ) norm.
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Given fixed n ∈ {0, 1, 2, . . . }, we define an anti-unitary operator on
L2(∂D, dµ) by

f∗(z) = zn f(z) (2.1)
The use of a symbol without “n” is terrible notation, but it is standard! If
Qn is a polynomial of degree n, Q∗

n is also a polynomial of degree n. Indeed,

Q∗
n(z) = zn Qn(1/z̄)

so if Qn(z) = anzn+an−1z
n−1+· · ·+a0, then Q∗

n(z) = ā0z
n+ā1z

n−1+· · ·+ān.
Since Φn is monic, Φ∗

n(0) = 1, and thus, N(z) ≡ (Φ∗
n+1(z) − Φ∗

n(z))/z is
a polynomial of degree n. Since ∗ is anti-unitary,

〈zm, N(z)〉 = 〈zm+1, Φ∗
n+1 − Φ∗

n〉
= 〈Φn+1, z

n+1−(m+1)〉 − 〈Φn, zn−m−1〉
= 0

for m = 0, 1, . . . , n− 1. Thus N(z) must be a multiple of Φn(z), that is, for
some αn ∈ C,

Φ∗
n+1(z) = Φ∗

n(z) − αnzΦn(z) (2.2)
and its ∗ ,

Φn+1(z) = zΦn(z) − ᾱnΦ∗
n(z) (2.3)

(2.2)/(2.3) are the Szegő recursion formulae ([32]); the αn’s are the Verblun-
sky coefficients (after [34]). The derivation I’ve just given is that of Atkinson
[2].

Since Φ∗
n ⊥ Φn+1, (2.3) implies

‖Φn+1‖2 + |αn|2‖Φ∗
n‖2 = ‖zΦn‖2

Since ‖Φ∗
n‖ = ‖zΦn‖ = ‖Φn‖, we have

‖Φn+1‖ = (1 − |αn|2)1/2‖Φn‖ (2.4)

This implies first of all that
|αn| < 1 (2.5)

and if
ρn ≡ (1 − |αn|2)1/2 (2.6)

then
‖Φ‖n = ρ0ρ1 . . . ρn−1 (2.7)

so
ϕn = (ρ0 . . . ρn−1)−1Φn (2.8)

and (2.2), (2.3) becomes

zϕn = ρnϕn+1 + ᾱnϕ∗
n (2.9)

ϕ∗
n = ρnϕ∗

n+1 + αnzϕn (2.10)

The αn’s not only lie in D, but it is a theorem of Verblunsky [34] that
as µ runs through all nontrivial measures, the set of α’s runs through all of
×∞

n=0 D. The α’s are the analogs of the a’s and b’s in the Jacobi case or of
V in the Schrödinger case.
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We will later have reason to consider Szegő’s theorem in Verblunsky’s
form [35]:

Theorem 2.1. Let

dµ = w
dθ

2π
+ dµs (2.11)

Then ∞∏
j=0

(1 − |αj |2) = exp
(∫

log(w(θ))
dθ

2π

)
(2.12)

Remark. The log integral can diverge to −∞. The theorem says the
integral is −∞ if and only if the product on the left is 0, that is, if and only
if

∑|αj |2 = ∞.
If ∞∑

j=0

|αj |2 < ∞ (2.13)

we say the Szegő condition holds. This happens if and only if∫
|log(w(θ))| dθ

2π
< ∞ (2.14)

In that case, we define the Szegő function on D by

D(z) = exp
(∫

eiθ + z

eiθ − z
log(w(θ))

dθ

4π

)
(2.15)

3. The Carathéodory and Schur Functions

Given (1.10) (and (1.2)), the natural “m-function” for OPUC is the
Carathéodory function, F (z),

F (z) =
∫

eiθ + z

eiθ − z
dµ(θ) (3.1)

The Cauchy kernel (eiθ + z)/(eiθ − z) has the Poisson kernel

Re
(

eiθ + z

eiθ − z

)∣∣∣∣
z=reiϕ

=
1 − r2

1 + r2 − 2 cos(θ − ϕ)
(3.2)

as its real part, and this is positive, so

Re F (z) > 0 for z ∈ D F (0) = 1 (3.3)

This replaces Im m > 0 if Im z > 0.
One might think the “correct” analog of m is

R(z) =
∫

1
eiθ − z

dµ(θ) (3.4)

R and F are related by

R(z) = (2z)−1(F (z) − 1) (3.5)
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If one rotates dµ and z (i.e., dµ(θ) → dµ(θ−ϕ), z → eiϕz), F is unchanged
but R is multiplied by e−iϕ, so the set of values R can take are essentially
arbitrary — which shows F , which obeys Re F (z) > 0, is a nicer object to
take. That said, we will see R again in Section 5.

F has some important analogs of m:
(1) limr↑1 F (reiθ) exists for a.e. θ, and if (2.11) defines w, then

w(θ) = Re F (eiθ) (3.6)

(2) θ0 is a pure point of µ if and only if limr↑1(1 − r) Re F (reiθ0) �= 0 and,
in general,

lim
r↑1

(1 − r) Re F (reiθ0) = µ({θ0})

(3) dµs is supported on {θ | limr↑1 F (reiθ) = ∞}.
In fact, the proof of the analogs of these facts for m proceeds by mapping
C+ to D and using these facts for F !

These properties provide a strong analogy, but one can note a loss of
“symmetry” relative to the ODE case. The m-function maps C+ to C+. F
though maps D to −iC+. One might prefer a map of D to D. In fact, one
defines the Schur function, f , of µ via

F (z) =
1 + zf(z)
1 − zf(z)

(3.7)

then f maps D to D and (3.7) sets up a one-one correspondence between
F ’s with Re F > 0 on D and F (0) = 1 and f mapping D to D (this fact
relies on the Schwarz lemma that f maps D to D with f(0) = 0 if and only
if f = zg where g maps D to D).

For at least some purposes, f is a “better” analog of m than F , for
example, in regard to its analog of the recursion (1.15). If f is the Schur
function associated to Verblunsky coefficients {α0, α1, . . . } and fn is the
Schur function associated to {αn, αn+1, . . . }, then

f =
α0 + zf1

1 + ᾱ0zf1
(3.8)

a result of Geronimus (see [29] for lots of proofs of this fact).
Interestingly enough, Schur, not knowing of the connection to OPUC,

discussed (3.8) for α0 = f(0) as a map of f → (α0, f1) and, by iteration,
to a parametrization of functions of D to D by parameters α0, . . . , αn, . . . .
There is, of course, a formula relating F to F1 that can be obtained from
(3.7) and (3.8) or directly [22], but it is more complicated than (3.8).

Finally, in discussing f , we note that there is a natural family {dµλ}λ∈∂D

of measures related to dµ (with dµλ=1 = dµ) that corresponds to “varying
boundary conditions.” We will discuss those more fully in Section 5, but we
note

f(z; dµλ) = λf(z; dµ) (3.9)

while the formula for F (dµλ) is more involved.
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The Schur function and Schur iterates, fn, have been used by Khrushchev
[17, 18, 14] as a powerful tool in the analysis of OPUC.

4. The Relative Szegő Function

As explained in the introduction, a critical property of m is (1.16), which
is the basis of step-by-step sum rules (see [28]). The left side of (1.16) enters
as the ratio of a.c. weights of dµJ and dµJ(1) . Thus, we are interested in
Im F (eiθ; {αj}∞j=0) divided by ImF (eiθ; {αj+1}∞j=0), that is, ImF/ Im F1 in
the language of the last section. Neither |F | nor |f | is directly related to this
ratio, so we need a different object to get an analog of (1.16). The following
was introduced by Simon in [29]:

(δ0D)(z) =
1 − ᾱ0f

ρ0

1 − zf1

1 − zf
(4.1)

It is called the “relative Szegő function” for reasons that will become clear
in a moment.

In (4.1), f1 is the Schur function for Verblunsky coefficients

α
(1)
j = αj+1 (4.2)

Here is the key fact:

Theorem 4.1. Let dµ and dµ(1) be measures on ∂D with Verblunsky coeffi-
cients related by (4.2). Suppose dµ = w(θ) dθ

2π +dµs and dµ(1) = w(1) dθ
2π +dµs.

Then
(1) For a.e. θ, limr↑1(δ0D)(reiθ) ≡ δ0D(eiθ) exists.
(2) If w(θ) �= 0, then (for a.e. θ w.r.t. dθ

2π ), w1(θ) �= 0 and

w(θ)
w1(θ)

= |(δ0D)(eiθ)|2 (4.3)

Sketch of Proof. Each of the functions 1 − ᾱ0f , 1 − zf1, and 1 − zf takes
values in {w | |w − 1| < 1} on D, so their arguments lie in [−π

2 , π
2 ], so their

logs are in all Hp, 1 < p < ∞. That is, they are outer functions, and so δ0D
is an outer function, which means that assertion (1) holds (see Rudin [24]
for a pedagogic discussion of outer functions).

To get (4.3), we note that (3.7) implies

Re F (z) =
1 − |f |2|z|2
|1 − zf |2

so
Re F (z)
Re F1(z)

=
∣∣∣∣1 − zf1

1 − zf

∣∣∣∣
2 1 − |f |2|z|2
1 − |f1|2|z|2 (4.4)

On the other hand, (3.8) implies

zf1 =
f − α0

1 − ᾱ0f
(4.5)
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which implies

1 − |zf1|2 =
ρ2

0(1 − |f |2)
|1 − ᾱ0f |2 (4.6)

so, putting these formulae together,

Re F (z)
Re F1(z)

= |(δ0D)(z)|2
(

1 − |z|2|f |2
1 − |f |2

)
(4.7)

which, as |z| → 1, yields (4.3). �

In particular, one has the nonlocal step-by-step sum rule that if w(θ) �= 0
for a.e. θ, then

(δ0D)(z) = exp
(∫ 2π

0

eiθ + z

eiθ − z
log

(
w(θ)
w1(θ)

)
dθ

4π

)
(4.8)

and, in particular, setting z = 0,

ρ2
0 = exp

(∫ 2π

0
log

(
w(θ)
w1(θ)

)
dθ

2π

)
(4.9)

which is not only consistent with Szegő’s theorem (2.12) but, using semi-
continuity of the entropy, can be used to prove it (see [19, 29]) as follows:
(1) Iterating (4.9) yields

(ρ0 . . . ρn−1)2 = exp
(∫ 2π

0
log

(
w(θ)
wn(θ)

)
dθ

2π

)
(4.10)

(2) Since exp(
∫ 2π
0 log(wn(θ) dθ

2π ) ≤ ∫ 2π
0 wn(θ) dθ

2π ≤ 1, (4.10) implies

(ρ0 . . . ρn−1)2 ≥ exp
(∫ 2π

0
log(w(θ))

dθ

2π

)
(4.11)

(3) If w(n) is the weight associated to the measure with

α
(n)
j =

{
αj j ≤ n − 1
0 j ≥ n

(4.10) proves

(ρ0 . . . ρn−1)2 = exp
∫ 2π

0
log(w(n)(θ))

dθ

2π
(4.12)

(4) dµ → ∫ 2π
0 log(w(θ)) dθ

2π is an entropy, hence, weakly upper semicontinu-
ous. Since w(n) dθ

2π → dµ weakly as n → ∞, this semicontinuity shows

lim
n→∞ (ρn . . . ρn−1)2 ≤ exp

(∫ 2π

0
log(w(θ))

dθ

2π

)
(4.13)

(4.11) and (4.13) is Szegő’s theorem.
Two other properties of δ0D that we should mention are:
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(A) If
∑∞

n=0|αn|2 < ∞, then

(δ0D)(z) =
D(z; α0, α1, α2, . . . )
D(z; α1, α2, α3, . . . )

(4.14)

(B) In general, one has

δ0D(z) = lim
n→∞

ϕ∗
n−1(z; α1, α2, . . . )
ϕ∗

n(z; α0, α1, . . . )
(4.15)

5. Eigenfunction Ratios

Finally, we look at the analogs of m as a function ratio, its initial definition
by Weyl and Titchmarsh. The key papers on this point of view are by
Geronimo-Teplyaev [11] and Golinskii-Nevai [15]. We will see from one point
of view [15] that F (z) plays this role, but from other points of view [11] that
other functions are more natural.

The recursion relations (2.9)/(2.10) can be rewritten as(
ϕn+1

ϕ∗
n+1

)
= A(αn, z)

(
ϕn

ϕ∗
n

)
(5.1)

where

A(α, z) = ρ−1

(
z −ᾱn

−αnz 1

)
(5.2)

(with ρ = (1 − |α|2)1/2). From this point of view, the analog of the funda-
mental differential/difference equation in the real case is

Ξn = Tn(z)Ξ0 (5.3)

with
Tn(z) = A(αn−1, z) . . . A(α0, z) (5.4)

The correct boundary conditions for the usual OPUC are Ξ0 =
(
1
1

)
.

One can ask for what other initial conditions the polynomials associated
with the top component of Tn(z)Ξ0 are OPUC for some measure. Note that(

1
λ

)
= U(λ)

(
1
1

)
(5.5)

with

U(λ) =
(

1 0
0 λ

)
(5.6)

and that

U(λ)−1A(α, z)U(λ) = ρ−1

(
z −ᾱnλ

−αnλ−1z 1

)
(5.7)

We see from this that λ̄ = λ−1, that is, |λ| = 1 will yield
U(λ)−1A(α1, z)U(λ) = A(λ̄α, z). Changing λ to λ̄, we see that
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Proposition 5.1. Let |λ| = 1. If ϕ
(λ)
n (z) are the OPUC for Verblunsky

coefficients α
(λ)
n = λαn, then(

ϕ
(λ)
n (z)

λ̄ϕ
(λ)∗
n (z)

)
= Tn(z; {αj}∞j=1)

(
1
λ̄

)
(5.8)

This suggests that one look at the family dµλ or measures with

αj(dµλ) = λαj(dµ) (5.9)

called the family of Aleksandrov measures associated to {αj}∞j=0 after [1].
The special case λ = −1 goes back to Verblunsky [35] and Geronimus [12],
and are called the second kind polynomials, denoted ψn(z). The following
goes back to Verblunsky [35]:

Theorem 5.2. For z ∈ D, uniformly on compact subsets of D,

lim
n→∞

ψ∗
n(z)

ϕ∗
n(z)

= F (z) (5.10)

Clearly related to this is the following result of Golinskii-Nevai [15]:

Theorem 5.3. Let z ∈ D. Then
∞∑

n=0

∣∣∣∣
(

ψn(z)
−ψ∗

n(z)

)
+ β

(
ϕn(z)
ϕ∗

n(z)

)∣∣∣∣
2

< ∞ (5.11)

if and only if
β = F (z) (5.12)

From this point of view, F is again the “correct” analog of m! Indeed, the
Golinskii-Nevai [15] proof uses Weyl limiting circles to prove the theorem
(one is always in limit point case!).

But this is not the end of the story. Define

uk = ψk + F (z)ϕk u∗
k = −ψ∗

k + F (z)ϕ∗
k (5.13)

so
(
uk
u∗

k

)
is the unique solution of Ξn = Tn(z)Ξ0 which is in �2. In the OPRL

case, the basic vector solution is of the form
(

un

un+1

)
, so we have the analog

of (1.11),

m̃(z) =
u∗

0

u0
=

−1 + F

1 + F
= zf (5.14)

So one analog of the m-function is zf .
In particular, (5.14) implies

|u∗
k| < |uk| (5.15)

for z ∈ D, and thus the rate of exponential decay of |(uk
u∗

k

)| is that of uk. If
there is such exponential decay in the sense that

γ2 = lim
n→∞

[ ∥∥∥∥
(

un

u∗
n

)∥∥∥∥
1/n ]

(5.16)
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exists, then, by (5.15),

γ2 = lim
n→∞

1
n

n−1∑
j=0

log|m+
n | (5.17)

where
m+

n =
un+1

un
(5.18)

For n = 0, u1 = ψ1 + Fϕ1, u0 = 1 + F , ψ1 = ρ−1
0 (z + ᾱ0), ϕ1 = ρ−1

0 (z − ᾱ0),
so by a direct calculation,

m+
0 (z) = ρ−1

0 z(1 − ᾱ0f) (5.19)

yet another reasonable choice for an m-function.
Indeed, if γ(z) = limn→∞ 1

n log ‖Tn(z)‖ exists, the fact that det(Tn) = zn

implies that γ = log|z|−γ2, and one finds in the case of stochastic Verblunsky
coefficients that [11, 29]

E(log|m+
ω (z)|) = log|z| − γ(z) (5.20)

an analog of a fundamental formula of Kotani [20, 26] that in his case uses
m!

Finally, we turn to the connection of m to whole-line Green’s functions.
Given V on (−∞,∞) and z ∈ C+, it is natural to look at the two solutions
of (1.1), u±(x, z), which are �2 on ±(0,∞) and the m-functions,

m±(z) = ± u′±(0, z)
u±(0, z)

(5.21)

m± are the m-functions for V (±x) � [0,∞). Standard Green’s function
formulae show that the integral kernel, G(x, y; z) of (− d2

dx2 + V − z)−1 is

G(x, y; z) =
u−(x<)u+(x>)

(u+(0)u′−(0) − u′
+(0)u−(0))

where x< = min(x, y) and x> = max(x, y). In particular,

G(0, 0; z) = −(m+(z) + m−(z))−1 (5.22)

A complete description of the OPUC analog would require too much
space, so we sketch the ideas, leaving the details to [29]. Just as the differ-
ence equation is associated to a triagonal selfadjoint matrix whose spectral
measure is the one generating the OPRL, any set of α’s is associated to a
five-diagonal unitary matrix, called the CMV matrix, whose spectral mea-
sure is the dµ with αj(dµ) = αj .

The CMV matrix is one-sided, but given {αj}∞j=−∞, one can define a two-
sided CMV matrix, E , in a natural way. If G(z) is the 00 matrix element of
(E − z)−1, then (see [11, 17, 29])

G(z) =
f+(z)f−(z)

1 − zf+(z)f−(z)
(5.23)
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where f+ is the Schur function for (α0, α1, α2, . . . ) and f− the Schur function
for (−ᾱ−1,−ᾱ−2, . . . ). On the basis of the analogy between (5.23) and
(5.22), Geronimo-Teplyaev [11] called f+ and zf− the m+ and m− functions.

6. Summary

We have thus seen that there are many analogs of the m-function in the
theory of OPUC:
(1) The Carathéodory function, F (z), given by (3.1), an analog of (1.2)

and also related to the classic Weyl definition (5.11)/(5.12).
(2) The Schur function, f(z), given by (3.7) with a recursion, (3.8), closer

to the recursion (1.15) for the m-function of OPRL. f also enters via
(5.23).

(3) zf(z), the m̃-function of (5.14).
(4) The relative Szegő function, (4.1), which, via (4.3) and (1.16), is an

analog of a1m(z).
(5) The m+-function, (5.19), which plays the role that m does in Kotani

theory.
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[15] L. Golinskii and P. Nevai, Szegő difference equations, transfer matrices and orthog-
onal polynomials on the unit circle, Comm. Math. Phys. 223 (2001), 223–259.

[16] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
[17] S. Khrushchev, Schur’s algorithm, orthogonal polynomials, and convergence of

Wall’s continued fractions in L2(T), J. Approx. Theory 108 (2001), 161–248.
[18] S. Khrushchev, Classification theorems for general orthogonal polynomials on the

unit circle, J. Approx. Theory 116 (2002), 268–342.
[19] R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to

spectral theory, Ann. of Math. (2) 158 (2003), 253–321.
[20] S. Kotani, Ljapunov indices determine absolutely continuous spectra of stationary

random one-dimensional Schrdinger operators, Stochastic Analysis (Katata/Kyoto,
1982), pp. 225–247, North-Holland Math. Library, 32, North-Holland, Amsterdam,
1984.

[21] B.M. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.
[22] F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including

the associated polynomials, Constr. Approx. 12 (1996), 161–185.
[23] W.T. Reid, Ordinary Differential Equations, Wiley, New York, 1971.
[24] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1987.
[25] B. Simon, Functional Integration and Quantum Physics, Pure and Applied Mathe-

matics, 86. Academic Press, New York, 1979.
[26] B. Simon, Kotani theory for one dimensional stochastic Jacobi matrices, Comm.

Math. Phys. 89 (1983), 227–234.
[27] B. Simon, A new approach to inverse spectral theory, I. Fundamental formalism,

Ann. of Math. (2) 150 (1999), 1029–1057.
[28] B. Simon, A canonical factorization for meromorphic Herglotz functions on the unit

disk and sum rules for Jacobi matrices, preprint.
[29] B. Simon, Orthogonal Polynomials on the Unit Circle, AMS Colloquium Publications

Series, expected 2004.
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