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Abstract. We review recent work on zeros of orthogonal
polynomials.

1. Introduction

Zeros of orthogonal polynomials have had a fascination at
least since Gauss’ discovery that optimal quadrature for the Rie-
mann integral on [−1, 1] involves the zeros of the Legendre poly-
nomials. A special reason for recent interest concerns the fact
that zeros are eigenvalues of cutoff finite difference matrices.

Explicitly, if Pn, pn are the monic orthogonal and orthonormal
polynomials for OPRL (RL = real line) and Φn, ϕn for OPUC
(UC = unit circle), then

Pn(x) = det(x − πnMxπn) (1.1)

Φn(z) = det(z − πnMzπn) (1.2)

where πn is the projection onto the n-dimensional space of poly-
nomials of degree at most (n − 1) and Mx (resp. Mz) is multi-
plication by x (resp. z) on L2(R, dρ) (resp. L2(∂D, dµ)).

By using the {pj}n−1
j=0 basis, πnMxπn can be replaced by a cut-

off Jacobi matrix, and by using a cutoff CMV matrix, πnMzπn

can be replaced by a cutoff CMV basis (see Chapter 4 of [34]).
In general, we follow the conventions of [34, 35] throughout this
article. In particular, {an, bn}∞n=1 are the Jacobi parameters,
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{αn}∞n=0 the Verblunsky coefficients, and Q∗
n(z) = zn Qn(1/z̄)

the Szegő dual.
We can also describe paraorthogonal polynomials (POPUC)

(see [14]) in terms of (1.1)/(1.2). πnMzπn is norm-preserving on
Ranπn−1, the polynomials of degree at most n − 2, a space of
codimension 1 in Ran πn. There is thus a one-parameter family,
{C(β) | β ∈ ∂D}, of unitary modifications of πnMzπn obtained
by taking Ranπn∩[Ran πn−1]

⊥ (i.e., multiples of ϕn−1) to vectors
in Ran πn ∩ Ran(zπn−1). One can show

det(z − C(β)) = Φn−1(z) − βΦ∗
n−1(z) (1.3)

which defines the POPUC.
In the past two years, I (partly jointly with Brian Davies and

Yoram Last) have been looking at the fine structure of the zeros
of orthogonal polynomials [37, 38, 39, 19, 6] as has my student,
Mihai Stoiciu, in his thesis [43, 44]. It is this work that I want
to review here.

Earlier work (see Section 2) established that, in many cases,
the bulk of the zeros of OP’s approach a canonical density, of-
ten uniform density on a circle in the OPUC case and the mea-
sure for (first kind) Chebyshev polynomials in the OPRL case.
When, motivated by earlier pictures of Saff [32], I prepared pic-
tures of zeros for my book [34, pp. 414–423], I was struck by two
kinds of regularity shown in Figures 1 and 2.

Figure 1 (taken from [38]) shows the zeros of Φ22 when

αn =

(

1

2

)n+1(

1 + 2 cos

(

π

2
(n + 1)

))

(1.4)

a somewhat complicated example to show features I will discuss
later. For now, I will focus on the eighteen zeros very near |z| =
1
2
. At first sight, they do seem to be converging to a uniform

distribution. In fact, the approach to uniformity is strikingly
strong — they seem to be equally spaced.
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Figure 2, kindly prepared for me by Mihai Stoiciu, shows zeros
for OPUC/POPUC of degree 70 with α0, . . . , α68 chosen ran-
domly and independently, according to a uniform distribution
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in {z | |z| < 1
2
}. The diagonal crosses show the zeros of OPUC

with α69 also having this distribution. The circles show the ze-
ros for the POPUC where β is chosen uniformly in ∂D. In many
cases, they appear as a cross upon a circle. Of course, a single
choice is made using Mathematica’s random number generator,
so this is a “typical” choice from a random ensemble. Theorems
assert that again the bulk of zeros converge for either OPUC or
POPUC to a uniform density on ∂D. At first sight, this seems
questionable — look at the clumping and gaps! But, in fact, this
distribution is “regular”: 70 points placed at random around the
circle would show similar clumps and gaps!

Thus, the main theme of the work I will describe is clock
(strict equal spacing in the limit) behavior for one set of para-
meters and Poisson distribution for another.

Neither idea is totally new. Sixty-five years ago, Erdös-Turán
[9] discussed O(1/n) upper and lower bounds and even proved
clock behavior under some strong global hypotheses. In the
1990’s, Vértesi [48, 49, 50] proved clock spacing for the zeros of
Jacobi polynomials.

As far as Poisson distributions of zeros, Molchanov [24] first
proved an analog for certain random Schrödinger operators,
and Minami [23] for some discrete models that overlap random
OPRL. There are, however, new technical issues that need to
be addressed to get the random results for POPUC [43, 44] and
OPUC [6].

Before getting into the details, it is worth making a few re-
marks:

1. A well-known idea in quantum physics is that the levels
repel each other as parameters are varied (see, e.g., [1, 31, 33]).
Equal spacing is an extreme form of eigenvalues trying to stay
as far away from each other as possible.

2. The Poisson result can only hold in the random case be-
cause levels do not repel — this is connected to localization in
the random model (see Section 12.6 of [35]).

3. There are still open questions especially for OPUC; see the
discussion of open questions in [19].
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4. Fine structure of the zeros is intimately connected to suit-
able asymptotics for the OP’s.

5. There is a third distribution of eigenvalue spacing that
occurs, but not, so far, for OP’s, namely those for random ma-
trices [21]. It is intermediate to clock and Poisson. Indeed, GUE
and GOE are distinct and both lie between. In fact, there is a
one-parameter family (β-distributions) that all lie between. We
discuss this further in Section 7.

In Section 2, we provide some background on previous work
that is related to the subjects we study here. We are not trying
to be comprehensive in reviewing all aspects of previous work
on zeros which is discussed in Saff [32] and in Sections 1.7 and
Chapter 8 of [34]. In Section 3, we discuss OPUC when the
αn are a sum of competing exponentials and an error exponen-
tially smaller. In Sections 4 and 5, we discuss some OPRL and
POPUC in the Nevai class and perturbed periodic case, respec-
tively. In Section 6, we discuss O(1/n) bounds. In Section 7, we
discuss Stoiciu’s work on random POPUC, and in Section 8, the
linear variational principle of Davies-Simon and the extension of
Stoiciu’s results to OPUC.

It is a pleasure to thank Andreas Ruffing for Herculean efforts
in organizing what was a very successful conference.

2. Prior Work

Here we mention earlier results that set the stage for later sec-
tions. The approximate density of zeros, dνn, is the pure point
probability measure giving weight k/n to a zero of multiplicity
k (for OPRL and POPUC, k = 1). If dνn has a limit, we denote
it dν and call it the density of zeros. It is certainly not auto-
matic that a limit exists. Simon-Totik [41] have given examples
of OPUC where the set of limit points of dνn is all measures on
D! But under mild regularity conditions, dνn does converge:

Theorem 2.1. In the OPRL case, if bn → 0, an → 1, then dνn

converges to

dν(x) = π−1(4 − x2)−1/2χ[−2,2](x) dx (2.1)
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Theorem 2.2. Let {an(ω), bn(ω)}∞n=1 be given by an ergodic

process. Then for a.e. ω, dνω
n converges to a limit dν that is

ω-independent.

Remarks. 1. If bn ≡ 0, an ≡ 1, then Pn = cn sin((n+1)θ)/ sin(θ)
where x = 2 cos θ and dν(x) = dθ/π, “explaining” the form of
(2.1)

2. Results of the form Theorem 2.1 go back to Erdös-Turán
[9]. It was Nevai [25] who realized all that was needed was
bn → 0, an → 1 (called the Nevai class). This OPRL work looks
at an → 1

2
rather than an → 1.

3. Both theorems appear in the physics/Schrödinger operator
literature; see [27, 4, 16].

4. The ideas behind the proofs are quite simple: By (1.1),
∫

xℓ dνn = 1
n
Tr(J ℓ

n;F ) where Jn;F = πnMxπn realized as a cut-
off Jacobi matrix. By uniform boundedness of the support of
{dνn}, it suffices to prove convergence of the moments, and that
is immediate in the case of Theorem 2.1 and follows from the
Birkhoff ergodic theorem in the case of Theorem 2.2.

For OPUC and POPUC, the limit results are

Theorem 2.3. If lim|αn|1/n = R−1 ≤ 1 and if 1
n

∑n−1
j=0 |αj| → 0,

then dνn for OPUC converges to dθ/2π concentrated on the circle

of radius R−1.

Theorem 2.4. If {αn(ω)}∞n=0 is given by an ergodic process and

E(log|αn(ω)|−1) < ∞, then for a.e. ω, dνω
n for OPUC has an ω-

independent limit supported on ∂D.

Theorem 2.5. If 1
n

∑n−1
j=0 |αj| → 0, dνn for POPUC converges

to dθ/2π on ∂D.

Theorem 2.6. If {αn(ω)}∞n=0 is given by an ergodic process,

dνω
n for POPUC converges for a.e. ω to an ω-independent limit

dν. If also E(log|αn(ω)|−1) < ∞, then this limit is the same for

OPUC and POPUC.

Remarks. 1. Theorem 2.3 is due to Mhaskar-Saff [22], with a
partially alternate proof using CMV matrices in Simon [34].
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Theorem 2.4 is Theorem 10.5.19 of [35]. Theorem 2.5 is im-
plicit in Golinskii [11]. Theorem 2.6 is an easy consequence of
the ergodic theorem (see Remark 3 below).

2. Golinskii [11] also discusses the case where 1
n

∑n−1
j=0 |αj −

a| → 0 for some a ∈ D. The density of zeros in this case is
the equilibrium measure for an arc. Indeed, density of zeros are
often equilibrium measures (see Stahl-Totik [42] and Chapter 11
of [35]).

3. As in the OPRL case, positive moments of dνn are given by
traces of powers of cutoff CMV matrices. For POPUC, where
measures live on ∂D and positive moments determine the mea-
sure, this is all that is needed for convergence of dνn. But for
OPUC, one needs a separate argument that shows dνn is asymp-
totically supported on a circle. In the ergodic case, this is easy.
In the case of Theorem 2.3, one uses that the product of the
zeros is ±ᾱn and Theorem 2.7 below.

4. The cutoff CMV matrices for POPUC and OPUC differ in
only two rows, so moments of the dνn for these two cases have
the same limits. If OPUC has a limit supported on ∂D, POPUC
has the same limit.

We mention two earlier results for OPUC that go beyond the
bulk results of Theorems 2.1–2.6:

Theorem 2.7. If lim sup|αn|1/n = R−1 < 1, then the inverse

of the Szegő function D(z)−1 has an analytic continuation to

{z | |z| < R}. A point z0 in {z | R−1 < |z| < 1} is a limit point

of zeros of Φn(z) if and only if D(z̄−1
0 )−1 = 0.

Theorem 2.8. If limn→∞ αn+1/αn = b and limn→∞|αn| = 0,
then for large n, Φn(z) has no zeros in {z | |z| < b− ε} for each

ε > 0.

Remarks. 1. Theorem 2.7 is due to Nevai-Totik [26] and the ze-
ros asymptotically outside |z| = R−1 are the Nevai-Totik zeros.
Figure 1 shows three Nevai-Totik zeros.

2. Theorem 2.8 is due to Barrios-López-Saff [5] who also treat
cases where, for |b| < 1, αnb−n approaches a periodic sequence.
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3. OPUC With Competing Exponential Decay

Here, following [37, 38], we want to discuss zeros of OPUC
where Verblunsky coefficients have the form

αn =

L
∑

ℓ=1

Cℓb
n
ℓ + O((b∆)n) (3.1)

where |bℓ| = b < 1 for ℓ = 1, . . . , L and ∆ < 1. It is known ([5]
for L = 1, [34] for general L; see also [40, 20, 7]) that (3.1) is
equivalent to:

D(z)−1 is meromorphic in {z | |z| < b−1 + ε}
with poles exactly at {b−1

ℓ }L
ℓ=1

(3.2)

We want to describe a complete asymptotic analysis of the
zeros of Φn(z) for n large. Related results were found indepen-
dently by Mart́ınez-Finkelshtein, McLaughlin, and Saff [20]. We
already know the zeros outside |z| = b are the Nevai-Totik zeros
which, by (3.2), are finite in number. Here, from [38], is what
happens near the circle of radius b:

Theorem 3.1. If (3.1) holds, then for some δ > 0, all zeros of

Φn(z) in {z | b − δ < |z| < b + δ} lie in an annulus of width

O(logn/n) about |z| = b, and for n large, they can be ordered

via an increasing argument {z(n)
j }Nn

j=1 where |Nn −n| is bounded.

We have
∣

∣

∣

∣

zj+1

zj

∣

∣

∣

∣

= 1 + O

(

1

n log n

)

(3.3)

Moreover, if {z̃(n)
j }Nn+L

j=1 are z
(n)
j with the {b̄ℓ}L

ℓ=1 inserted, and

if z̃
(n)
Nn+L+1 = z̃

(n)
1 + 2π, then

arg z̃
(n)
k+1 − arg z̃

(n)
k =

2π

n
+ O

(

1

n log n

)

(3.4)

for k = 1, 2, . . . , Nn + L.

Remarks. 1. The errors in Theorem 3.1 are global and can be
strengthened away from those finite number of points on {z |
|z| = b} where D(1/z̄)−1 = 0. If there are no zeros of D(w)−1
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on {w | |w| = b−1}, then the improvements are global. The
improvements replace O(1/n logn) by O(1/n2) and O(logn/n)
by O(1/n).

2. Basically, the zeros are equally spaced except for gaps at
z = b̄ℓ, ℓ = 1, 2, . . . , L. This is clearly seen in Figure 1.

3. The proofs depend on detailed asymptotics near |z| =
b which are obtained in [38] by carefully iterating the Szegő
recursion on the circle of radius |z| = b and |z| = b−1. For
L = 1, [37] has a different argument analyzing second-order
difference equations.

As for zeros inside |z| = b, these are controlled by the degree
L − 1 polynomials (where ωℓ = b̄ℓ/b),

Pn(z) =
L

∑

ℓ=1

C̄ℓω
n
ℓ

∏

k 6=ℓ

(z − bk)

which are almost periodic in n and when the ωℓ’s are roots of
unity, periodic in n.

Theorem 3.2. If (3.1) holds, for any ε > 0, there is any N so

for n > N , the zeros of ϕn(z) in {z | |z| < b − ε} are precisely

within ε of the zeros of Pn(z) in this region, where ϕn(z) has k
zeros within ε of a z0 with Pn(z0) = 0 where k is the multiplicity

of the zero of Pn.

Figure 1 has ω1, ω2, ω3 = 1, i,−i so Pn is periodic mod 4
and the one zero shown for Φ22 with |z| ≪ 1

2
will recur for

Φ26, Φ30, Φ34, . . . . The zero of P22 is at 1
2
(
√

2 − 1) and the zero
shown agrees numerically to 10−9!

Except for the results in Section 8, we will not discuss OPUC
further. We note [39] has results on zeros of periodic OPUC.
Among the open questions for OPUC, we mention:

Conjecture 3.3. If
∑∞

n=0|αn+1 − αn| < ∞ and |αn|1/n → 1,
then the zeros are mainly near ∂D and have clock behavior away
from z = 1.
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Conjecture 3.4. If αn ∼ Cn−γ for γ < 1, then the zeros have
a gap of O(n−γ) near z = 1.

4. Clock Behavior Within the Nevai Class

Anticipated results in the decaying random case (see Sec-
tion 7) show that the Nevai condition bn → 0, an → 1 is not
expected to be sufficient for clock behavior, but a large subclass
does have this behavior. Since the density of zeros is given by
(2.1), clock behavior in this case cannot mean global equal spac-
ing in the x scale but in a scale given by dν/dx (i.e., the dθ of
Remark 1). We have:

Theorem 4.1 ([19]). Suppose that the Jacobi parameters of an

OPRL obey

|an − 1|+ |bn| → 0

∞
∑

n=1

|an+1 − an|+ |bn+1 − bn| < ∞ (4.1)

Then one has clock behavior uniformly on each interval [−2 +
ε, 2 − ε] in the sense that

lim
n→∞

[{

sup

∣

∣

∣

∣

n|x′ − x| −
(

dν

dx

)−1∣
∣

∣

∣

∣

∣

∣

∣

x, x′ are successive zeros of pn in [−2 + ε, 2 − ε]

}]

= 0

(4.2)

Remarks. 1. (4.1) holds if
∞

∑

n=1

|bn| + |an − 1| < ∞

and also if bn = n−α, an = 1 + n−β for any α, β > 0.

2. This result includes results of Vértesi [48, 49, 50] as well
as results from [37].

The proof of this result has two elements. One is what
Schrödinger operator experts would call Jost asymptotics, al-
though in the context of Jacobi polynomials, they go back to
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Laplace, Heine, Darboux, and Stieltjes (see Szegő [45]). This
oscillatory asymptotics guarantees that there are zeros with cor-
rect asymptotic spacing.

The second issue is to ensure that there aren’t additional zeros
such as sin x− 1

n
sin(n2x) has. In [37], this second issue is dealt

with awkwardly. The point of [19] is that one can deal with it
easily by proving a priori O(1/n) lower bounds as discussed in
Section 6.

We note that the control of oscillatory solutions only under
(4.1) is subtle, using ideas of Kooman [17]; see also Golinskii-
Nevai [12] and Section 12.1 of [35].

For POPUC, we have:

Theorem 4.2 ([19]). If the Verblunsky coefficients αn of a

POPUC obey

|αn| → 0

∞
∑

n=0

|αn+1 − αn| < ∞ (4.3)

then for any ε > 0, the POPUC zeros are 2π/n spaced in that

lim
n→∞

sup

[{

n

[

|θ′ − θ| − 2π

n

]
∣

∣

∣

∣

eiθ, eiθ′ successive zeros

of a POPUC of degree n; ε < θ < 2π − ε

}]

= 0

(4.4)

5. Clock Behavior for Periodic OPUC

It is well known (see, e.g., [13, 18, 46, 47]) that if a set of

Jacobi parameters, {a(0)
n , b

(0)
n }∞n=1, is periodic, that is,

a
(0)
n+p = a(0)

n b
(0)
n+p = b(0)

n (5.1)

for some p and all n, then the essential spectrum of the cor-
responding Jacobi matrix, J (0, consists of p bands ∪p

j=1[αj, βj ]
where βj ≤ αj+1. Generically, βj < αj+1 and there are p − 1
gaps, but there can be some closed gaps. There is a polynomial
∆ of degree p so ∆−1[−2, 2] = ∪p

j=1[αj, βj ] and the density of
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zeros is given by

∆(x) = 2 cos(pπ(1 − k(x))) (5.2)

dk = density of zeros (5.3)

Already in 1922, Faber [10] knew that dk is the potential the-
ory equilibrium measure for ∪p

j=1[αj , βj]. There is some overlap
of the results below and work of Peherstorfer [28, 29, 30]. As far
as the strictly periodic case, [39] contains the following elemen-
tary but striking result:

Theorem 5.1. The zeros of Pmp−1 consist of the zeros of Pp−1,

which has exactly one point in each gap, and those points x
(m)
κ,q ,

κ = 1, . . . , p; q = 1, . . . , m − 1, where

k(x(m)
κ,q ) =

κ − 1

p
+

q

mp
(5.4)

Remarks. 1. Thus, we can precisely give the zeros of Pmp−1.
The points in the gaps are related to “Dirichlet data” (see [39]).
Those in (5.4) are (m − 1) points in each band.

2. [39] has two proofs of this result. One can also be based
on results of Peherstorfer [28].

3. [39] has additional results on the strictly periodic case and
on the OPUC situation which is more subtle.

As for perturbations of the periodic case, [19] has

Theorem 5.2. Let a
(0)
n , b

(0)
n obey (5.1) and suppose that

lim
n→∞

|an − a(0)
n | + |bn − b(0)

n | = 0 (5.5)

∞
∑

n=1

|an+p − an| + |bn+p − bn| < ∞ (5.6)
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Then for any compact subset, S, of ∪p
j=1(α,βj) (compact in the

interior of the bands), we have

lim
n→∞

[{

sup

∣

∣

∣

∣

n|x′ − x| −
(

dk

dx

)−1∣
∣

∣

∣

∣

∣

∣

∣

x′, x are successive zeros of pn in S

}]

= 0

(5.7)

6. 1/n Bounds

As noted in Section 4, one part of proving of Theorem 4.1
(and also Theorem 5.2) is proving a priori O(1/n) lower bounds
on eigenvalue spacing. Such upper and lower bounds are weaker
than clock behavior but are known to hold in much greater gen-
erality and are of much greater antiquity, with techniques due
to Erdös-Turán [9], Szegő [45], Nevai [25], and Golinskii [11].
[19] has a compendium of new techniques and refinements of
old techniques on this problem. We will discuss one result here
and refer the reader to [19] for others. The following is interest-
ing because it only requires information at a single value of x.
Let Tn(x) be the transfer matrix for solutions of the difference
equation built out of the Jacobi parameters. Then

Theorem 6.1. [19] Let z±n (x) be the zeros in [x,∞) and (−∞, x)
closest to x. Then

z+
n (x) − z−n (x) ≥

( n−1
∑

j=0

‖Tj(x)‖2

)−1

(6.1)

Remarks. 1. If supn ‖Tn(x)‖ < ∞, we get an O(1/n) bound.

2. [19] has an interesting application of this bound which
shows that in ergodic cases, Poisson statistics for zeros implies
zero Lyapunov exponents.

7. Zeros of Random POPUC

In this section, we will discuss Stoiciu’s results on zeros of
random POPUC. Fix r ∈ (0, 1) once and for all. Our random
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space, Ω, will have a sequence α0(ω), . . . , αn(ω), . . . of num-
bers in D, independent identically distributed random variables
(iidrv) with uniform density in {z | |z| ≤ r} and a sequence in
∂D, β0(ω), β1(ω), . . . of iidrv with density uniform on ∂D. The
α’s and β’s are independent.

{z(n)
j (ω)}n

j=1 is some listing of the zeros of the OPUC with

Verblunsky coefficients {αj(ω)}∞j=0 and {z̃(n)
j (ω)}n

j=1 of the zeros

of the POPUC with {αj(ω)}n−1
j=0 and βn−1(ω). We use

#{j | z
(n)
j (ω) ∈ S} (7.1)

to denote the number of zeros in a set (counting multiplicity)
and P(·) to denote the probability of some event which we will
list as a series of conditions. A final notation:

S(θ0; a, b) = {z ∈ D | z 6= 0, arg z ∈ (θ0 + a, θ0 + b)} (7.2)

We can now state Stoiciu’s main result [43, 44]:

Theorem 7.1. For any r ∈ (0, 1), any θ0 ∈ [0, 2π), any a1 <
b1 ≤ a2 < · · · < bℓ, and any k1, . . . , kℓ ∈ {0, 1, . . .}, we have that

Prob

(

#

(

j

∣

∣

∣

∣

z̃
(n)
j (ω) ∈ S

(

θ0;
2πap

n
,
2πbp

n

))

= kp for p = 1, . . . , ℓ

)

→
ℓ

∏

p=1

(bp − ap)
kp

kp!
e−(bp−ap)

(7.3)

This says the zeros are asymptotically Poisson distributed
with the same asymptotic distribution as n uniformly randomly
distributed points! It is the opposite of clock spacing.

The proof uses the strategy of Minami [23] (and earlier,
Molchanov [24]) with rather different tactics. One part is an
a priori bound of the form

Prob(#(j | z
(n)
j (ω) ∈ S(θ0; a, b)) ≥ 2) ≤ C[n(b − a)]2 (7.4)

Minami gets this from a mysterious determinant cancellation, re-
lying on rank one perturbations. Because the analogous POPUC
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perturbations are rank two, it is not clear how to extend his
proof, so Stoiciu instead uses a Prüfer angle argument.

It is important to understand the other part of his argument
since overcoming its limitations is key to handling the OPUC
case. Using ideas of Aizenman-Molchanov [3], Aizenman [2],
and del Rio et al. [8] and their partial extension to OPUC by
Simon [36], Stoiciu proves that the eigenfunctions of the unitary
CMV matrices associated to POPUC are exponentially localized
near centers.

He then considers the unitary matrix obtained from an N×N
CMV matrix by replacing the log N Verblunsky coefficients at
spacing N/ log N by β’s. Such a matrix breaks into log N blocks
of size N/ log N . A trial function argument and the exponential
localizational result shows that for all but O((log N)2) zeros of
the Nth order POPUC, there are eigenvalues of the decoupled
matrix very close to the zeros.

Since (N−1N/ log N)2 · log N → 0, for N large, the eigen-

values in the S(θ0;
2πap

n
, 2πbp

n
) come from different blocks which

are independent, so one gets the classical situation where the
Poisson distribution arises.

The starting point of the next section will be the key step
above, where a trial function argument is used.

That completes what I have to say about Stoiciu’s work [43,
44]. I want to complete this section with brief mention of some
work in preparation by Killip-Stoiciu [15]. As background, we
recall the results of [35]. Let γ ∈ (0, 1), C > 0, and

α̃j(ω) = Cγ(n + C)−γαj(ω) (7.5)

be random decaying Verblunsky coefficients. Then the spectral
properties have a transition at γ = 1

2
with dependence on C at

γ = 1
2
:

(a) (Theorem 12.7.1 of [35]) If γ > 1
2
, the corresponding mea-

sures are purely a.c. for a.e. ω.
(b) (Theorem 12.7.5 of [35]) If γ < 1

2
, the corresponding mea-

sure are pure point for a.e. ω.
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(c) (Theorem 12.7.7 of [35]) If γ = 1
2
, then there is pure point

spectrum if 1
2
Cr2 > 1, and otherwise purely singular spec-

trum with Hausdorff dimension 1 − 1
2
Cr2.

Killip-Stoiciu [15] have tentatively shown results on zeros with
a similar structure: If γ > 1

2
, there is clock behavior; if γ < 1

2
,

there is Poisson behavior; and at γ = 1
2
, depending on C, there

are β-distributions intermediate between clock and Poisson.

8. Zeros of Random OPUC

As we noted, the control of random POPUC depends on trial
functions, that is, a linear variational principle of the form

dist(z, spec(A)) ≤ ‖(A − z)ϕ‖ (8.1)

if ‖ϕ‖ = 1. This bound holds for normal operators, as can be
seen by the spectral theorem. Zeros of POPUC are eigenval-
ues of a unitary matrix, so (8.1) applies. Since πnMzπn is not
normal, (8.1) does not apply to OPUC.

Linear variational principles — even with a constant on the
right side — do not hold for general normal matrices and z.

Example 8.1. Let A = ( 0 1
0 0 ) and ϕε = (1, ε)t/(1+ε2)1/2. Then

dist(ε, spec(A)) = ε but ‖(A − ε)ϕ‖ ≤ ε2. In general, for n × n
matrices, one can only hope for bounds if ‖(A−z)ϕ‖ is replaced
by ‖(A − z)ϕ‖1/n which gains no smallness from exponential
decay. �

It was this lack that led Stoiciu to focus on POPUC. Davies-
Simon [6] realized that by adding an additional condition valid
in the case of OPUC, one can get a linear variational principle:

Theorem 8.2 ([6]). If |z| ≥ ‖A‖, A is an n × n matrix, and

‖ϕ‖ = 1, then

dist(z, spec(A)) ≤ 4n

π
‖(A − z)ϕ‖ (8.2)

Remarks. 1. [6] proves (8.2) where 4n/π is replaced by
cot(π/4n), which is shown to be the optimal constant. Using
cot(x) ≤ 1/x, one gets (8.2).
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2. The proof of (8.2) is not hard. By shifting to a Schur basis,
one can suppose A is upper triangular, and by scaling, that z = 1
and ‖A‖ ≤ 1. Since inf{‖Bϕ‖ | ‖ϕ‖ = 1} = ‖B−1‖−1, (8.2) is
equivalent to

‖(1 − A)−1‖ ≤ 4n

π
dist(1, spec(A))−1 (8.3)

Letting C = (1−A)−1 + (1−A∗)−1 − 1, and noting C ≥ 0, one
has |Cij| ≤ |Cii|1/2|Cjj|1/2. But for i < j, Cij = [(1 − A)−1]ij
since A is upper triangular. It follows that

dist(1, spec(A))|[(1 − A)−1]ij| ≤











2 i < j

1 i = j

0 i > j

This easily implies (8.3) with 2n rather than 4n/π, and with
some more work, cot(π/4n).

Once one has (8.2), one uses the localized states for eigen-
functions to get zeros of OPUC very close to POPUC and uses
(7.4) to prove that with probability 1, for large n, the POPUC
zeros are far enough apart that these zeros are distinct. The net
result are the following three theorems of Davies-Simon [6]:

Theorem 8.3. For any r ∈ (0, 1) with probability 1,

lim sup
n→∞

(log n)−2#(j | |z(n)
j (ω)| < 1 − n−k) < ∞

for any k.

Theorem 8.4. For any r ∈ (0, 1), any θ0, and any ε > 0, a, b,

with probability 1, for large n, all z
(n)
j (ω) in S(θ0;

2πa
n

, 2πb
n

) have

|z(n)
j (ω)| > 1 − exp(−n(1−ε)).
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Theorem 8.5. For any r ∈ (0, 1), any θ0 ∈ [0, 2π), any a1 <
b1 ≤ a2 ≤ · · · < bℓ, and any k1, . . . , kℓ ∈ {0, 1, . . .}, we have that

Prob

(

#

(

j

∣

∣

∣

∣

z̃
(n)
j (ω) ∈ S

(

θ0;
2πap

n
,
2πbp

n

))

= kp for p = 1, . . . , ℓ

)

→
ℓ

∏

p=1

(bp − ap)
kp

kp!
e−(bp−ap)

Note that Theorems 8.5 and 7.1 are almost the same, but

in Theorem 7.1, |z̃(n)
j | = 1, while in Theorem 8.5, 1 −

exp(−n(1−ε)) ≤ |z(n)
j | < 1.

The zeros of orthogonal polynomials continue to provide beau-
tiful mathematics.
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