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Introduction

These notes are intended to review some results on the singularities of harmonic
measure in the complex plane.

Recall that the harmonic measure of a domain Ω is a family {ωa}a∈Ω of proba-
bility Borel measures on ∂Ω such that for a fixed set e, the function a �→ ωa(e) is
harmonic.

If the domain is simply connected, the measures ωa can be described in terms of
the Riemann map

φ : D ≡ {|z| < 1} → Ω, φ(0) = a.

Namely, we extend φ to ∂D in the sense of the angular limits, which exist a.e. with
respect to the Lebesgue measure m, and define

ωa = φ∗m.

This definition extends to arbitrary plane domains if one considers the universal
cover map instead of φ. However, the universal cover is quite difficult to deal with,
and it is more common to define harmonic measure in terms of potential theory –
as an equilibrium distribution or as a solution to the Dirichlet problem:

ωa(e) = u(a),

where u denotes the harmonic function in Ω with ”boundary values” 1 on e and 0
on the complement of e.

There are some other approaches to harmonic measure, in particular it is some-
times helpful to think of it probabilistically. Let z(t) be a Brownian particle starting
at a. Then

ωa = Prob{z(τ ) ∈ e},
where τ is the first time the partical leaves Ω: τ = inf{t : z(t) /∈ Ω}.

We would like to know how harmonic measure is distributed over the the bound-
ary. Typically, the concentration of harmonic measure varies widely — it is higher
on the more ”exposed” parts of the boundary and smaller on the ”screened” parts.
It has become usual (see, e.g., [H]) to consider the dimension spectrum of a measure
— a continuum of parameters characterising the size of the sets where the mass
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concentration has a given power law singularity, say ωaB(z, δ) ≈ δα for small δ.
Actually we will distinguish between the box counting and the Hausdorff dimension
spectra, see Section 1 for precise definitions. Since ωa1 	 ωa2 for any two points
a1, a2 ∈ Ω, the dimension spectrum does not depend on the choice of the pole, and
when appropriate we suppress the notation to ω.

The study of the dimension spectrum involves a general form of the large devia-
tions theory. In particular, one considers the entropy functions defined in terms of
some covers and packings of the boundary satisfying certain conditions. For sim-
ply connected domains, these functions are closely related to the behavior of the
derivative of the Riemann map, in particular to the integral means spectrum

β(t) = lim
r→1

log
∫
∂D

|φ′(rζ)|t|dζ|
log 1

1−r

.

The study of the dimension spectrum becomes more interesting if there is some
additional structure such as a certain type of selfsimilarity of the boundary. Then
the harmonic measure also exhibits some selfsimilarity features. For example, the
harmonic measure on a Cantor set J is almost multiplicative in the sense that if X
and Y are two cylinder sets of J , then

ω(XY ) 	 ω(X)ω(Y ),

where XY denotes the image of Y if we rescale J to X. (This fact is intuitively
obvious if we think of harmonic measure in terms of the Brownian motion.) One can
expect strong ergodic properties of harmonic measure on such fractal boundaries.

Conformal dynamics is a rich source of interesting fractals. In some cases, the
values of the entropy functions can be expressed in terms of the topological pressure
of certain functions related to the dynamical system, and one can apply the powerful
machinery of the Perron–Frobenius operator. As usual, the better studied case is
that of the hyperbolic dynamics. If, for instance, ∂Ω is a mixing repeller (in the
sense of Ruelle [R2]), then the dimension spectrum and the entropy functions have
various nice properties such as real analyticity, the existence of ”thermodynamical”
limits, the coincidence of the Hausdorff and the box-counting versions.

The non-hyperbolic case is more difficult. There are very few general results but
it is possible to analyze some special cases. It turns out that some of the properties
of the hyperbolic case are no longer true. According to the physical meaning of the
pressure, we will use the term ”phase transition” to describe the points at which the
entropy function is not smooth or real analytic. Sometimes we will use this concept
in the non-dynamical situation, in particular when considering the universal bounds
of the dimension spectrum.

One of the possible reasons for the phase transition is the following. Let us
consider a conformal map φ. The growth of the integral means is usually determined
by the pole type singularities of |φ′|t at some isolated points, and by the complexity
of the boundary as a whole. The behavior of the β(t)-spectrum depends on which
of these two factors is predominant.
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The paper is organized as follows. The first two sections concern generalities: we
discuss the multifractal formalism of the dimension spectrum and study the proper-
ties of harmonic measure on regular fractals (”hyperbolic case”).
In Section 3 we consider simply connected domains and following [CJ] establish
a relation between the box dimension spectrum and the integral means spectrum.
In Section 4 some general estimates of harmonic measure are provided. We intro-
duce the notion of the universal dimension spectrum and show in Section 5 that
the universal bounds can be approximated by the bounds for regular fractals. The
method of ”fractal approximation” is then applied to some problems concerning the
coefficients and integral means of univalent functions. The material of Sections 3-5
is partially based on a joint work with Peter Jones [JM2]. In the last section of the
paper we consider two classes of non-regular fractals.

We conclude this introduction with a remark concerning estimates of harmonic
measure, cf. [C2].

In many cases, the estimates are based on some general properties of harmonic
functions such as the maximum principle or Harnack’s inequality. Recall that the
latter states that if u is a positive harmonic function in Ω, then for every compact
set K ⊂ Ω, we have

z1, z2 ∈ K =⇒ u(z1) 	 u(z2)

with constants depending only on the pair (Ω, K). Succesive application of Har-
nack’s inequality provides the following statement which we will use in the study
of harmonic measure on Cantor sets.

0.1. Lemma. Suppose ω contains the annuli Rj = Bj \Aj , 1 ≤ j ≤ n, where Aj

and Bj are Jordan domains such that

A1 ⊂ B1 ⊂ · · · ⊂ An ⊂ Bn,

and suppose that the moduli of Rj’s are bounded from below by ρ > 0. If u and
v are two positive harmonic functions in Ω vanishing on ∂Ω \ A1, then for any
z1, z2 ∈ Ω \Bn we have ∣∣∣∣log

[
u(z1)
v(z1)

:
u(z2)
v(z2)

]∣∣∣∣ ≤ Cqn,

where the constants C <∞ and q ∈ (0, 1) depend only on ρ.

Another type of estimates comes from the relation with logarithmic capacity.
Let, for example, E be a compact set inside the disc λD ≡ {|z| < λ}, λ < 1, and
let ω denote the harmonic measure of the domain D \ E. Then

ωz(E) ≥ const | log capE|−1, ∀z ∈ λD.
The inequality is reversable if dist(z, E) ≥ δ > 0. (The constants depend on λ
and δ.)

More delicate considerations show that we can replace a sufficiently separated
part of the boundary by a disc of comparable capacity without greatly affecting
harmonic measure. The following is the ”Main Lemma” in [JW].
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0.2. Lemma. For any ε > 0 there is a number M = M(ε) < ∞ such that if
Ω � ∞, and

∂Ω ∩ (MD \ D) = ∅,
then the harmonic measure ω̃ of the new domain

Ω̃ = (Ω ∪ D) \ rD, r
def= [cap(∂Ω ∩ D)]1+ε,

satisfies the estimates

ω̃∞(e) ≥ ω∞(e), ∀e ⊂ ∂Ω \ D,
ω̃∞(D) ≥ 1

2
ω∞(D).

Sometimes it is possible to estimate Green’s function. Recall that if ∞ ∈ Ω, and
g(z) = g(z,∞) is Green’s function of Ω with pole at ∞, then

g(z) = γ −
∫

log
1

|z − ζ| dω∞(ζ),

exp{−γ} = cap ∂Ω,

and
dω∞(ζ) =

1
2π

‖∇g(ζ)‖ |dζ|, ζ ∈ ∂Ω,

if the boundary is piecewise smooth.

Let now Ω be a simply connected domain, and φ : D → Ω, φ(0) = ∞, be the
Riemann map. In this case,

g(z) = log
1

|φ−1(z)| , z ∈ Ω.

We refer to the monographs [P1], [P2] for properties and estimates of conformal
maps. It is a traditional problem of geometric function theory to understand how
analytic properties of a conformal map are related to the geometric properties of
the boundary.

An example of such relation is provided by the Koebe lemma:

(1 − |z|)|φ′(z)| 	 δ(φ(z)), z ∈ D,
where δ(·) = dist(·, ∂Ω). For an arc I ⊂ ∂D with center ζI ∈ ∂D, we denote
zI = (1 − |I|)ζI . Then

δ(φ(zI )) ≤ const diamφ(σ)

for every crosscut σ of D joining the endpoints of I. In the opposite direction, we
have the inequality

ω∞B(φ(zI ), Cδ(φ(zI))) ≥ const |I|
with an absolute constant C.

One of the most efficient tools in estimating harmonic measure of a simply con-
nected domain is the method of extremal lengths, see [AB], [O]. We will write
λΩ(A,B) for the extremal distance between the sets A and B. The following state-
ment is due to Beurling.
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0.3. Lemma. Let Ω be a simply connected domain and K ⊂ Ω a fixed continuum.
Then

capφ−1(e) 	 exp{−π λΩ(e,K)}, e ⊂ ∂Ω,

where the constants depend on (Ω, K).

Since ω∞(e) ≤ capφ−1(e), this gives a upper bound for harmonic measure, and
we have a two-sided estimate if φ−1(e) is an arc. Suppose e = ∂Ω∩∆ for some disc
∆. Though the set φ−1(e) can be quite complicated, the following lemma (cf. [C1],
[M2]) is sometimes useful. We denote by ∆′ the concentric disc of radius twice the
radius of ∆.

0.4. Lemma. Let Ω and K be as in the previous lemma, and let α′ > α > 0.
Then there is δ0 > 0 such that if ∆ is a disc of radius δ ≤ δ0, and

ω∞∆ ≥ δα,

then there is a crosscut l ⊂ ∂∆′ of Ω such that

λΩ(l, K) ≤ α′

π
log

1
δ
.

1. Multifractal formalism

We recall here some general concepts of the multifractal analysis that will be used
in the paper (cf.,e.g.,[F]). Throughout this section, µ is a fixed atom-free probability
measure with compact support J = supp µ.

Box dimension spectrum.
For α ∈ R and δ > 0, let N+(δ;α) and N−(δ;α) denote the maximal number of

disjoint discs B = B(z, δ), z ∈ J , satisfying

µB ≥ δα and µB ≤ δα respectively.

We define

f±(α) = lim
η→0+

lim
δ→0

logN±(δ;α± η)
| log δ| .

These functions are monotone and upper semicontinuous: f±(α) = f±(α±).
Clearly, f+(0−) = −∞ and f−(0) = M(J), where M(J) is the upper Minkowski
dimension of J :

M(J) = lim
δ→0

logN(δ)
| log δ| ,

N(δ) def= max{N : ∃N disjoint discs B(z, δ) with z ∈ J}.
pagebreak
For every α we have

(1.1) f+(α) ≤ α,
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(1.2) max{f+(α), f−(α)} = M(J).

Denote
αmin = inf{α : f+(α) ≥ 0},
αmax = sup{α : f−(α) ≥ 0}.

The inequality αmin > α, (αmax < α, resp.), implies that

µB(z, δ) ≤ δα, (≥, resp.),

for any z ∈ J and δ ≤ δ0. In fact, we can define αmin, (αmax , resp.), as the
supremum (infimum, resp.) of such α’s.

We also need the following parameter related to the function f+:

t∗
def= f+(∞).

Observe that 0 ≤ t∗ ≤M(J), and by (1.2) we have

(1.3) (αmax <∞) ⇒ t∗ = M(J).

Figure 1
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A typical gragh of f± is shown in Figure 1. The box dimension spectrum f(α)
of µ is, roughly speaking, the minimum of these two functions. More precisely, we
define

f(α) = lim
η→0+

lim
δ→0

logN(δ;α, η)
| log δ| ,

where N(δ;α, η) is

max{N : ∃N disjoint discs B = B(z, δ) satisfying δα+η ≤ µB ≤ δα−η and z ∈ J}.

It is clear that
f(α) ≤ min{f+(α), f−(α)},

and that f(α) = f+(α) if α is a growth point of f+ (i.e. f+(α− η) �= f+(α+ η),
∀η > 0). Similarly, we have f(α) = f−(α) at the growth points of f−. In particular,

t∗ = sup
α
f(α),

and since µ has no atoms, αmin, and αmax can be defined as the inf and sup of
the set {f ≥ 0}.

Hausdorff dimension spectrum.
We will write ”dim” for the Hausdorff dimension. By definition, dim ∅ = −∞.

For p > 0, Λp denotes the corresponding Hausdorff measure.
The Hausdorff dimension spectrum is defined in terms of the Hausdorff dimension

of the sets where the local dimension of µ has a given bound. Since we only need
an analogue of f+(α), we consider the lower pointwise dimension:

(1.4) α(z) = lim
δ→0

logµB(z, δ)
log δ

.

We define
f̃+(α) = lim

η→0+
dim{α(z) ≤ α+ η}.

It is easy to see that

(1.5) f̃+(α) ≤ f+(α).

Together with (1.1) and (1.4), this gives the following equation:

(1.6) sup{µE : dimE ≤ α} = µ{α(z) ≤ α}.

Let dimµ denote the (Hausdorff) dimension of the measure:

dim µ = inf {dimE : µE = 1}
= inf {p : µ ⊥ Λp},
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(”⊥” means ”singular”). We also define

dim µ = inf{dimE : µE > 0}
= inf{p : µ� Λp}

(”�” means ”absolutely continuous”: Λp(e) = 0 =⇒ µ(e) = 0). From (1.6) it
follows that

dim µ = essµ inf α, dim µ = essµ supα,

and we have

f̃+(α) = α for α = dimµ and α = dim µ.

By (1.1) and (1.5), we also have f(α) = α at these points. Hence

(1.7) α− ≤ dim µ ≤ dimµ ≤ α+,

where
α±

def= max or min {f(α) = α},
see Figure 1.

Packing spectrum.
It is standard to use some kind of an entropy function to study the box dimension

spectrum. The function we will use is based on partitions of J into sets of equal
measure. Our definition is a natural extension of the notion of the conformal
dimension introduced in [CJ]. It is different from a more usual definition that is
based on partitions into sets of equal diameter, see Remark 2 below.

We define the packing spectrum, our entropy function, π(t), t ∈ R, as follows:

π(t) = sup{q : ∀δ > 0 ∃ a δ-packing {B} such that
∑

δ(B)tµ(B)q ≥ 1}.

(A collection of discs Bj = B(zj , δj) is a δ-packing if these discs are pairwise
disjoint, zj ∈ J , and δj ≤ δ.) We always use δ(B) to denote the diameter of B.

Remarks.

1) There are several other ways to define π(t). For instance, it is not difficult to
show that

(1.8) π(t) = lim
ε→0

logL(t; ε)
|logε| ,

where

L(t; ε) = sup{
∑

δ(B)t : {B} is a packing satisfying µB = ε},

or (for t �= 0) we can replace the last condition µB = ε with the condition

(1.9) µB ≤ ε, µB∗ ≥ ε, (B∗(z, δ) ≡ B(z, 2δ)).
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For t ≥ 0, we can also define π(t) in terms of the covers of J with discs of equal
measure:

(1.10) π(t) = lim
ε→0

logL1(t; ε)
| logε| ,

where

(1.11) L1(t; ε) = inf{
∑

δtj : J ⊂
⋃
Bj , Bj = B(zj , δj), zj ∈ J, µBj = ε}.

The same is true for the version of (1.10) with (1.9) instead of the condition µBj = ε
in (1.11). In the special case t = 1, the latter version is exactly the definition of
the confornal dimension in [CJ].

An example with µ equal to the sum of the area measure of the unit disc and
the arclength measure of the boundary shows that (1.10) can be false for t < 0.

2) The usual choice of the entropy function is the following. For each δ > 0, let
G(δ) denote the grid of squares of δ-coordinate mesh. Consider the sums

S(q; δ) =
∑

Q∈G(δ),Q∩J 
=∅
(µQ∗)q,

and denote the function τ (q), q ∈ R, by the formula

τ (q) = lim
δ→0

logS(q; δ)
| log δ| .

If we interpret f(α) as the scaling exponent for the numberN of squares Q satisfying
µQ ≈ δα and assume that N obeys a power law as δ → 0:

N ≈ δ−f(α),

then a crude estimate

S(δ; q) ≈
∫
δαq−f(α)dα

≈ δ− supα[f(α)−αq]

suggests that the function −τ (q) is the Legendre transform of f(α):

(1.12) −τ (q) = Lf(q) def= inf
α

[αq− f(α)],

so that in the case when f is concave we have f = L(−τ ). In fact, it can be shown
that (1.12) is valid for q �= 0. (For q = 0, we have τ (0) = M(J) which can be not
equal to t∗ = f(∞). By (1.3), the relation (1.12) holds for all q ∈ R if αmax <∞.)

The packing spectrum π(t) is essentially the inverse function of τ and it has a
similar Legendre type relation with the box dimension spectrum.

9



1.1. Proposition. 1) If 0 < t ≤ t∗, then

π(t) = sup
α>0

f+(α) − t
α

.

If αmin > 0, this is true for all t ≤ t∗. 2) If t ≥M(J), then

π(t) = sup
α>0

f−(α) − t
α

.

Since f(α) coincides with f+(α) or f−(α) at the growth points of these functions,
we have

Corollary. If t �= 0, then

(1.13) π(t) = sup
α>0

f(α) − t
α

.

If αmin > 0, (1.13) holds for all t ∈ R. If αmin = 0, the both sides of (1.13) are
equal to +∞ for t < 0. However, it can happen that

π(0) = 1 > sup
α>0

f(α)
α

,

but only if dimµ = 0. Observe also that αmax = ∞ implies π(t) = 0 for t ≥ t∗.
The packing spectrum is a decreasing convex function satisfying π(0) = 1. If

αmax > 0, the only case we will be considering, π(t) is finite, continuous on (0,+∞).
If αmin > 0, this is so for the whole real line.

The inverse (Legendre type) transform of (1.13) gives the concave envelope f̂(α)
of f(α):

f̂(α) = inf
t

(t+ απ(t)), α > 0.

As usual, one can determine the values of f̂(α) from the graph Γ of π(t): f̂(α) is
the coordinate of the point where the tangent Tα with slope −1/α intersects the
t-axis. Similarly, we can determine the values of π(t) from the graph of f̂(α), see
Figure 2.

The formula

(1.14)

{
α �→ {t : (t, π(t)) ∈ Γ ∩ Tα},
t �→ {α : (α, f̂(α)) ∈ Γ ∩ T t},

sets a one-to-one correspondence between the sets where π(t) and f̂(α) are differ-
entiable and not locally linear. On such sets we have

{
α �→ t(α) = f(α) − αf ′(α),

t �→ α(t) = −1/π′(t).
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Figure 2

The points where π(t) is not smooth correspond to the intervals where f̂(α) is linear
and visa versa. In particular, π(t) is smooth if and only if f̂(α) is strictly convex,
and then f = f̂ so we can recover the box dimension spectrum from π(t).

We can use the correspondence (1.14) to describe the parameters of µ in terms
of π(t):

t∗ = the first zero of π(t),

αmin = 1/|π′(−∞)|, αmax = 1/|π′(+∞)|,
α± = 1/|π′(0±)|.

If π is differentiable at 0, then the latter implies (see (1.7)):

(1.15) dimµ = dim µ = 1/|π′(0)|.

Of course, we can not determine the value of M(J) from the π(t) spectrum.

Covering spectrum.
Similarly to the definition of the packing spectrum, we can define the function

c(t) = inf{q : ∀δ > 0 ∃ a δ-cover {B} such that
∑

δ(B)tµ(B)q ≤ 1}.
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(A δ-cover is a collection of balls Bj = B(zj , δj) such that J ⊂ ⋃Bj , zj ∈ J, δj ≤
δ.)

The function c(t) is somehow related to the Hausdorff dimension spectrum
though this relation is not as nice as between π(t) and f(α). Instead of (1.13),
we only have the inequalities

(1.16) c(t) ≤ max

{
0, sup

α

f̃+(α) − t
α

}
,

and

(1.17) max{c(t), 0} ≥ sup
α

f̃
+

(α) − t
α

,

where
f̃
+

(α) def= dim {α(z) ≤ α},

and α(z) is the upper pointwise dimension (replace lim with lim in (1.4)).
We will see in Section 4 that the function c(t), in contract to the packing spec-

trum, has nontrivial bounds for harmonic measure. In fact, this will be established
for a larger function π̃(t) which is defined by the equation

(1.18) π̃(t) = lim
ε→0

log L̃(ε; t)
| logε| ,

where
L̃(ε; t) = inf{

∑
δ(B)t : J ⊂

⋃
B, µB ≤ ε}.

It is clear that
c(t) ≤ max{0, π̃(t)},

and
π̃(t) ≤ π(t).

It is perhaps interesting to mention that if J is connected (e.g., µ is the harmonic
measure of a simply connected domain), then the parameter t = 1 (the case of
”conformal dimension”) plays a special role:

(1.19) J is connected =⇒ π(1) = π̃(1),

Since
π̃(d−) ≥ 0, π̃(d+) ≤ 0, (d def= dim J),

it is possible that π(t) �= π̃(t) for t > 1. It is also easy to give an example such that
π(t) �= π̃(t) for t ∈ (0, 1).
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2. Harmonic measure on regular fractals

Conformal Cantor sets.
We first consider the following class of fractals, see Figure 3. Suppose we have

m topological discs Dj inside a simply connected domain D. We assume that the
closures Dj of these discs are pairwise disjoint and Dj ⊂ D. We fix m conformal
maps Fj → D and define

F :
⋃
Dj → C

be setting F = Fj on Dj . Then F determines the Cantor set

J =
⋂
F−nD.

In the special case when the map F is piecewise linear, we get the standard self-
similar Cantor sets.

Figure 3

The pair (J, F ) is an example of an analytic dynamical system. In general it
is required that J ⊂ C is a compact set and F is an analytic map defined in a
neighborhood of J such that it leaves J invariant: FJ ⊂ J . The following theorem
states that the harmonic measure on a Cantor set is a nice multifractal measure.
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Later in this section we will indicate some other classes of (piecewise) analytic
dynamical systems with similar properties.

2.1. Theorem. Let ω denote the harmonic measure on a conformal Cantor set.
Then ω has the following properties.

(1) The Hausdorff and the box dimension spectra of ω coincide. In fact,

f(α) = dim{z ∈ J : lim
δ→0

ωB(z, δ)
log δ

= α}.

We also have

αmin > 0, αmax <∞, and t∗ = M(J) = dimJ.

(2) The packing and the covering spectra of ω coincide and exist as the following
limits (cf. (1.8), (1.10), (1.18)):

π(t) = π̃(t) = lim
ε→0

logL(t; ε)
| log ε| = lim

ε→0

logL1(t; ε)
| log ε| = lim

ε→0

log L̃(t; ε)
| log ε| .

(3) The spectrum π(t) is a real analytic function on R, and f(α) is the Legendre
type transform of π(t):

f(α) = inf
t

(t+ απ(t)).

(4) Either π′′(t) > 0 for all t ∈ R, or π(t) is a linear function. In the first case,
we have

dimω < dimJ,

and in the second case, we have ω 	 Λt∗ .

( It is conjectured that the second case never happens for conformal Cantor sets,
see below.)

The proof depends on the following fact, see [C3],[MV].

2.2. Lemma. The Jacobian of F with respect to ω is a nonvanishing Hölder
continuous function.

We will use the standard symbolic dynamics associated with the Cantor set, see
Figure 3. Let Σ = Σm denote the space of infitite unilateral sequences

x = (x1, x2, . . . )

of the symbols 1, 2, . . . , m, and let T be the shift map on Σ:

T : x �→ (x2, x3, . . .).
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Every finite sequence determines a cylinder set in Σ:

(x1, . . . , xn) = {y ∈ Σ : y1 = x1, . . . , yn = xn},
(we call n the rank of the cylinder), and a domain

D(x1,...,xn) = F−1
x1
. . . F−n

xn
D ⊂ C.

The map
x �→

⋂
n

D(x1,...,xn)

establishes a one-to-one correspondence between the sets Σ and J and congugates
T and F |J . This map is a bi-Hölder continuous homeomorphism if we consider Σ
with the metric

ρ(x, y) = 2−ν, ν = min{i : xi �= yi}.
Thus we can identify the dynamical systems (J, F ) and (Σ, T ). In particular, we
can think of harmonic measure ω = ω∞ as a measure on the symbolic space Σ.

If µ is a measure on Σ satisfying

µ(A) = 0 ⇒ µ(TA) = 0,

then the Jacobian Jµ is an L1(µ)-function such that

(2.1) µ(TA) =
∫
A

Jµdµ

for every set A on which T is injective. In the symbolic terms, we have

J(x) = lim
n→∞

µ(x2, . . . , xn)
µ(x1, . . . , xn)

for µ-a.e. x ∈ Σ.
To prove that the latter limit is a nonvanishing Hölder continuous function for

µ = ω, we use the following fact which states that the harmonic measure on a
Cantor set is exponentially multiplicative:

There is a constant q ∈ (0, 1) such that for any cylinder sets X, Y, Z, we have

(2.2)
∣∣∣∣log

[
ω(XY Z)
ω(XZ)

:
ω(Y Z)
ω(Y )

]∣∣∣∣ ≤ const qrankY .

(We write XY = (x1, . . . , xn, y1, . . . , yk) for X = (x1, . . . , xn) and
Y = (y1, . . . , yk), etc.) The estimate (2.2) is a consequence of Lemma 0.1.

Lemma 2.2 gives everything we need to know about harmonic measure to derive
the theorem. It turns out that every measure µ on a Cantor set such that the
function

Θµ = − log Jµ
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is Hölder continuous has the properties stated in Theorem 2.1. This follows from
some standard facts of ergodic theory which we want to recall now. For details
concerning the next subsection we refer to the monographs [Bo1],[R1].

We will use the notation SnΘ for the ergodic sums:

SnΘ =
n−1∑
j=0

Θ ◦ T j.

By (2.1),

µ(TnA) =
∫
A

e−SnΘµdµ, (Tn|A is injective),

and by the Hölder condition we have

(2.3) µ(X) 	 exp{SnΘµ(x)}, ∀x ∈ X, n = rankX.

Elementary ergodic theory for symbolic dynamics.
Let Θ be a continuous function on the symbolic space Σ = Σm. The topological

pressure of Θ is the number

P (Θ) = lim
n→∞

1
n

log
∑

rankX=n

eSnΘ(x),

where x is an arbitrary point in X. The limit exists and is independent of the
choice of the points x.

The Perron–Frobenius operator L = LΘ acts on C(Σ), the space of continuous
functions, by the formula

Lf(x) =
∑

y∈T−1x

f(y)eΘ(y) .

We have
Lnf(x) =

∑
y∈T−1x

f(y)eSnΘ(y),

and since
‖Ln‖ = ‖Ln1‖∞,

the number

λ(Θ) def= logP (Θ)

is the spectral radius of LΘ .

Now we assume that Θ is a Hölder continuous function, namely that Θ ∈ Hα

for some α > 0, where

Hα = {f ∈ C(Σ) : ‖f‖α def= ‖f‖∞ + sup
x,y

|f(x) − f(y)|
ρ(x, y)α

<∞}.
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Then LΘ acts on the Banach space Hα, and has the following important property:

The number λ(Θ) is the spectral radius and a simple, isolated eigenvalue of the
operator LΘ : Hα → Hα.

The spectral radius λ(Θ) can also be identified as a unique positive eigenvalue of
the congugate operator L∗ acting on M(J), the space of Borel complex measures.
The existence of such an eigenvalue follows from the Schauder theorem and the
uniqueness from the formula

(2.4) Jν = λe−Θ

for the Jacobian of any measure ν satisfying L∗ν = λν . (From (2.3) and (2.4), we
have ν(X) 	 λ−neSnΘ(x), x ∈ X, and hence λ = λ(Θ).)

One can choose the eigenvectors ν , L∗ν = λν , and h, Lh = λ(Θ)h, such that

ν ≥ 0, h > 0,
∫
h dν = 1.

Then the probability measure µ,

(2.5) dµ
def= h dν,

is T -invariant. On can also prove that µ is ergodic and therefore µ can be charac-
terized as a unique measure satisfying

(2.6) µ(X) 	 e−P(Θ)neSNΘ(x), x ∈ X, n = rankX.

We denote µ = µΘ and call µΘ the Gibbs measure with potential Θ.

The entropy of an invariant probability measure µ is

hµ =
∫

log Jµ dµ.

If µ is ergodic, then

(2.7)
1
n

log
1

µ(x1, . . . , xn)
→ hµ, for µ-a.e. x ∈ Σ,

(This is a version of the ergodic theorem.) If µ = µΘ for some Hölder continuous
function Θ, then by (2.4) and (2.5), we have

(2.8) logJµ = P (Θ) −Θ + γ ◦ T − γ, γ = logh,

(2.9) P (Θ) = hµ +
∫
Θ dµ.
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In fact, the variational principle states that for Θ ∈ C(Σ), the pressure P (Θ) is the
supremum of the functional µ �→ hµ +

∫
Θ dµ on the class of invariant probability

measures, and in the case of a Hölder continuous Θ, µ = µΘ is the only measure
satisfying (2.9).

Returning to the proof of theorem 2.1, we consider two Hölder continuous func-
tions

Θ = − log Jω,

Ψ = − log |F ′|.

Observe that for a cylinder set X of rank n, we have

(2.10) eSnΘ(x) 	 ω(X), x ∈ X,

and

(2.11) eSnΘ(x) = |(F n)′(x)|−1 	 δ(X) ≡ diamDX

(apply the distortion theorem to the conformal map F n : DX → D).
Define the pressure function

P (s, t) = P (sΘ + tΨ), (s, t) ∈ R2.

By the perturbation theory, this function is real analytic on R2. It is also clear that
P (s, t) is convex and strictly decreasing (from +∞ to −∞) in t and in s. Therefore,
the equation

(2.12) P (s, t) = 0

uniquely determines a convex, real analytic function

s = s(t), t ∈ R.

By (2.10), (2.11), the identity P (s(t), t) = 0 means that for any n, we have
∑

rankX=n

ω(X)s(t)δ(X)t 	 1,

which implies
π(t) ≤ s(t),

and
f(α) ≤ l(α) def= inf

t
[t+ αs(t)].

We will now show that

(2.13) dim
{
z : lim

δ→0

logωB(z, δ)
log δ

= α

}
≥ l(α).
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Since s(t) is a convex function, taking the inverse Legendre transform in (2.13), we
then obtain

π̃(t) ≥ s(t),

cf. (1.16), (1.17). This completes the proof of the first three statements of
Theorem 2.1.

To check (2.13), let µs,t denote the Gibbs measure with potential sΘ+tΨ. Apply-
ing the analytic perturbation theory to the isolated eigenvalue
(= spectral radius) of the Perron–Frobenius operator, one can justify the following
(intuitively ”obvious”) formulae for the partial derivatives of the pressure function:

(2.14)
∂P

∂s
=
∫
Θ dµs,t,

∂P

∂t
=
∫

Ψ dµs,t.

Next we fix t ∈ R and define µ(t) = µs(t),t, α = −1/s′(t). Since

(2.15) hµ(t)

(2.9)
= −

∫
(s(t)Θ + tΨ) dµ(t),

we have

l(α) = t+ αs(t) = t− s(t)
s′(t)

(2.14)
= t +

s(t)
∫
Θ dµ(t)∫

Ψ dµ(t)

(2.15)
=

hµ(t)∫
log |F ′|dµ(t) = dimµ(t).

The latter equality follows from (2.7) and the ergodic theorem applied to the se-
quence

Sn(log |F ′(x)|) = − log δ(x1, . . . , xn) +O(1).

This formula for the dimension of a measure is in fact quite general. For instance,
in the case of an analytic dynamics, it holds for every ergodic measure with positive
entropy, see [Man].

On the other hand, for µ(t)-a.e. z, we have

lim
δ→0

logωB(z, δ)
log δ

=

∫
Θ dµ(t)∫
Ψ dµ(t)

(2.14)
= −1/s′(t) = α,

and (2.13) is proved.

To explain the last statement of the theorem, let us assume that s′′(t0) = 0 for
some t0 ∈ R. Define the function

P (τ ) = P (A+ τB), τ ∈ R,

where A and B denote the Hölder continuous functions s(t0)Θ+t0Ψ and s′(t0)Θ+Ψ
respectively. By the definition of s(t), we have P ′′(0) = 0.
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Consider the stationary process {B ◦ Tn}n≥0 in L2(µA). It turns out that this
process has exponentially decreasing correlations and therefore the asymptotic vari-
ance

σ2 ≡ σ2µA
(B) def= lim

n→∞

∫ [
SnB −

∫
B dµA

]2
dµA

exists and is finite. On the other hand, it can be shown that

σ2 = P ′′(0).

The variance σ2 is zero if and only if the sequence {SnB} is bounded in L2(µA),
and in this case we have

(2.16) B = u ◦ T − u.

It is a nontrivial fact of the theory of Gibbs measures that we can then find a Hölder
continuous function u satisfying the homological relation (2.16), and therefore s(t)
is a linear function.

Regular fractals.
The properties of harmonic measure that we established for conformal Cantor

sets are also valid for some other classes of fractals.

Let Ω be a domain such that the boundary J = ∂Ω is a mixing repeller (see [R2])
with respect to an analytic dynamics F . By definition, this means that

(1) we can choose U , the domain of F , so that

J = {z ∈ U : F nz ∈ U for all n > 0},

in particular, J is completely invariant: F−1J = J ;
(2) F is expanding on J :

∃Q > 1 ∀z ∈ J : |(F n)′(z)| ≥ const Qn;

(3) F is topological mixing on J , i.e. for every non-empty open set O intersecting
J , there is an n > 0 such that J ⊂ F nO.

A crucial property of a mixing repeller is the existence of an appropriate Markov
partition such that we can apply the methods of the symbolic dynamics in essen-
tially the same way as we did for Cantor sets. (One has to consider a slightly more
general form of the symbolic space Σ, namely the Markov shift space. The coding
map Σ → J is Hölder continuous but in general it is no longer one-to-one. However,
this map establishes a one-to-one correspondence between ergodic measures on Σ
and those on J nonvanishing on open sets.) The key issue is again the fact that
the harmonic measure of Ω is equivalent to some Gibbs measure. This allows us to
extend Theorem 2.1 to the case of general mixing repellers.
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Conformal Cantor sets are examples of mixing repellers. Another important
class of examples comes from the iteration theory. We refer to the books [CG] and
[Mil] for general information on this subject.

Let F be a complex polynomial of degree d ≥ 2. Consider the domain

Ω = {z : F n → ∞},

the basin of attraction to ∞. The Julia set J = JF is defined as the boundary of Ω.
The components of C \ J are called Fatou components. The Julia set is completely
invariant and F is a topological mixing on J . Thus J is a mixing repeller if and
only if the dynamics F is expanding on J . Polynomials with the latter property
are called hyperbolic. One can show that F is hyperbolic iff the trajectory {F nc} of
every critical point (= zero of the derivative of F ) c tends to ∞ or to some periodic
cycle {a, Fa, . . ., F pa = a} with |(F p)′(a)| < 1. If all critical point tend to ∞, the
Julia set is a conformal Cantor set.

Let us consider the harmonic measure ω on JF evaluated at ∞. It turns out
that ω is already invariant with respect to F : if u(z), z ∈ Ω, is the solution to
the Dirichlet problem with boundary values the characteristic function of e ⊂ J ,
then u ◦F is the solution with boundary values the characteristic function of F−1e.
In a similar way one can show that Green’s function g(·) ≡ g(·,∞) satisfies the
functional equation

(2.17) g ◦ F (z) = d g(z), z ∈ Ω,

and therefore the Jacobian of ω is a constant function: Jω = d. We see that in
the hyperbolic case, ω is a Gibbs measure. By variational principle, ω can be
characterized as a unique measure of maximal entropy (hω = logd). In fact, this
characterization remains valid for arbitrary polynomial Julia sets (see [Br]).

The Julia set JF is connected (and Ω is simply connected) if and only if the
trajectories of all critical points are bounded. The Mandelbrot set M is the set
of the parameters c ∈ C such that the Julia set Jc of the quadratic polinomial
Fc = z2 + c is connected. Thus if c /∈ M, Fc is hyperbolic and Jc is a Cantor set.
The set H = {c ∈ M : Fc is hyperbolic} consists of infinitely many components
corresponding to different periodic cycles. The ”main cardioid” is the component
corresponding to the fixedpoint case:

H♥
def= {c : Fc has a finite attracting fixedpoint} = {λ/2 − λ2/4 : |λ| < 1}.

For c ∈ H♥, Jc is a Jordan curve, e.g., Jc = ∂D for c = 0, but if c ∈ H \ H♥,
then there are infinitely many Fatou components. Let D be a bounded periodic
Fatou component. Though ∂D is not a mixing repeller (we don’t have complete
invariance), one can modify the argument to show that the harmonic measure of D
is equivalent to some Gibbs measure and extend Theorem 2.1 to this case.

One can also extend the theorem to the case of piecewise analytic repellers. We
will consider the following class of fractals.
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Let P be a polygon with sides σ1, . . . , σk built on the unit interval [0, 1] in the
following sense. The sides σ1 and σk are the intervals [0, a] and [b, 1] respectively,
where 0 < a < b < 1. The remaining sides σ2, . . . , σk−1 join σ1 and σk. We now
repeat the construction on each side σj, 1 ≤ j ≤ k, by replacing σj with a rescaled
copy of P . We obtain a second generation curve P 2. This process continues is a
obvious fashion producing polygons P n which we assume nonintersecting. In the
limit we obtain a snowflake curve P∞.

If we now join the endpoints of P∞ by some smooth arc l nonintersecting P∞,
we get two domains with harmonic measures ω+, ω−. Let I be an arc on P∞

separated from the endpoints. One can show (cf. [PUZ], [M3]) that the statements
of Theorem 2.1 are true for the restriction of ω+ or ω− to I. The main difficulty is
the constuction of a piecewise conformal dynamics that respects the structure of the
domain in some neighborhood of every (closed) arc in the corresponding Markov
partition. (Then we can apply an argument with moduli similar to Lemma 0.1.)
Observe also that one can choose the arc l so that the measure ω+ (or ω−) has the
same multifractal parameters (f(α), π(t) etc.) as its restriction to I.

Dimension of harmonic measure.
We will now show how ergodic properties of harmonic measure can be used, in

the case of regular fractals, to estimate the size of the support. The first result of
this type was established by Carleson [C3]:

2.3. Theorem. Suppose the boundary of Ω is a regular fractal, and Ω is not
simply connected. Then

dim ω < 1.

We will explain this theorem for polynomial Julia sets (cf. [Pr]). The general
case is only slightly more difficult.

Let Ω be the basin of ∞ for some polynomial F (z) = zd + . . . As we mentioned,
the harmonic measure ω = ω∞ is an invariant, ergodic measure with entropy

hω = log d.

Let c1, . . . , cd−1 be the critical points of F counting with multiplicities. By assump-
tion, at least one of cj ’s lies in Ω. We have

∫
log |F ′| dω = logd+

d−1∑
j=0

∫
log |z − cj| dω(z)

= logd+
∑
cj∈Ω

g(cj),

where g(·) is Green’s function with pole at ∞. In the last equality we used the fact
that cap J = 1 which is a consequence of the functional equation (2.17). It follows
that

dim ω =
hω∫

log |F ′| dω < 1.
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Remarks.

1) The above argument also shows that dimω = 1 in the simply connected case,
and therefore we have dimω ≤ 1 for all regular fractals. These both facts extend
to arbitrary plane domains ([M1], [JW], respectively), see Section 4.

2) One can obtain further information on the size of the sets supporting harmonic
measure by comparing ω with general Hausdorff measures Λϕ(t). Assuming that
dimω �= dimJ , i.e. π′′(0) > 0 in Theorem 2.1, we can apply the standard limit
theorems to the sequence of exponentially weakly dependent variables Φ ◦ F n,
where

(2.18) Φ = log Jω + κ log |F ′|, κ
def= dim ω.

For instance, the application of Kolmogorov’s test shows that ω is absolutely con-
tinuous or singular with respect to Λϕ(t),

ϕ(t) = tκ exp{h(log
1
t
)},

according as the following integral converges or diverges:∫ ∞
t−3/2h(t) exp{−ct−1h2(t)} dt,

where

(2.19) c =
1
2
π′′(0)

∫
log |F ′| dµ,

and µ is the Gibbs measure equivalent to ω. In the simply connected case, there is
a universal bound for the transition parameter (2.19).

A different type of estimates for regular fractals is the following inequality:

(2.20) dim ω < dim J

This inequality is certainly true if dimJ > 1. If Ω is simply connected,then
by Theorem 2.1, we have (2.20) unless J is rectifiable. The latter happens if and
only if J is a piecewise real analytic curve ([B2]).

It is conjectured that (2.20) is valid for all disconnected regular fractals. This
has been verified in the following cases:

(1) Julia sets, [Z];
(2) J ⊂ R, [V1];
(3) Cantor sets with piecewise linear dynamics, [V2].

By Theorem 2.1, one has to rule out the possibility of the homological relation

(2.21) Φ = γ − γ ◦ F,
for the function Φ defined by (2.18) and some Hölder continuous function γ on J .
We will outline the proof in the case of a piecewise linear dynamics but first we
mention that there are several special cases where the proof is quite elementary
(cf.[MV]).
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Example 1. Let J be the Julia set of a quadratic polynomial F . Then Φ =
const + const log |F ′|, and (2.21) implies that there is K > 1 such that for all
n ∈ N and z ∈ FixF n, we have

|(F n)′(z)| = Kn.

Comparing the multipliers of the fixedpoints (n = 1) and the cycle of period n = 2,
we already arrive to a contradiction.

Example 2. Let J be the linear Cantor set of constant ratio a, 0 < a < 1/2.
We will use the natural coding of J with symbols 1 and 2. Consider the cylinders
Xn = (1, . . . , 1, 1) and Yn = (1, . . . , 1, 2) of rank n. We want to show that ω is
not equivalent to a Hausdorff measure, and it is enough to check that ω(Xn) ≥
(1 + δ)ω(Yn) with δ > 0 independent of n. We have

ω(Xn) − ω(Yn) =
∫

(v − u) dω,

where u and v denote the harmonic measures of Xn and Yn with respect to Ĉ\Xn−1.
Clearly, v ≥ u on J \Xn, and hence

ω(Xn) − ω(Yn) ≥ ω(Yn) min
Yn−1

(v − u) ≥ const ω(Yn−1)

because the minimum is scale invariant.

Now we will explain the proof of the following theorem due to Volberg:

2.3. Theorem. Let J be the conformal Cantor set determined by the dynamics

F :
m⋃
j=1

Dj → D

such that at least two of the maps Fj = F |Dj are linear. Then

dim ω < dim J.

The idea is to extend the homological relation (2.21) from J to the whole complex
plane. To this end, Volberg considers the following representation of the potential
Θω = − log Jω in terms of Green’s function g(·) of Ω = Ĉ \ J with pole at ∞:

Θω(ζ) = lim
z→ζ,z∈Ω

log
g(z)
g(Fz)

, ζ ∈ J.

This formula follows from the relation

(2.22)
∣∣∣∣log

[
g(z)
g(Fz)

:
ω(X)
ω(TX)

]∣∣∣∣ ≤ const qrankX , ∀z ∈ ∂DX ,
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with some q ∈ (0, 1). The inequality (2.22) is a consequence of Lemma 0.1.
Suppose F1 and F2 are linear, and denote λj = |F ′

j|. Let aj ∈ Dj be the
fixedpoints of Fj : aj = (j, j, . . . ) in the symbolic representation. For z ∈ D and an
integer n we will write z−n

j = F−n
j z. For j = 1, 2, define

(2.23) γj(z) = γ(aj) +
∑
n≥0

log
g(Fz−n

j )

λκj g(z
−n
j )

, z ∈ D.

¿From (2.21) and (2.22), we have

log
g(Fz−n

j )

g(z−n
j )

≈
(exp)

−Θω(aj) = κ logλj,

which implies that the limit in (2.23) exists and extends to a Hölder continuous
function in D. Replacing λj in (2.23) by |F ′(z−n

j )| and applying (2.21), we see that
γ1 = γ2 = γ on J . It follows that the functions

τj(z) = g(z)e−γj (z),

are harmonic in D \ J , subharmonic and Hölder continuous in D. They vanish
exactly on J , and satisfy the functional equation

τj(F (z)) = λκj τj(z), z ∈ Dj .

The main part of the proof is to show that τ1 = τ2. To see this, we use subhar-
monicity and represent τj as the difference of a harmonic function and the logarith-
mic potential of some finite positive measure µj on J . Then for G = ∂(τ1 − τ2), we
have

G(z) = analytic function +
∫
d(µ1 − µ2)(ζ)

z − ζ .

If we fix z ∈ D, then for large n we have

(2.24) G(z) =
1

2πi

∫
∂D

G(ζ)
ζ − z dζ +

1
2πi

∑
rankX=n

∫
∂DX

G(ζ)
ζ − z dζ.

Since τj(z) = o(g(z)) as z → J , we have |G(z)| = o(δ(z)−1g(z)), where δ(z) =
dist(z, J), and so the absolute value of the sum in (2.24) does not exceed

o(1)
∑

rankX=n

∫
∂DX

g(ζ)|dζ|
δ(ζ)

	 o(1)
∑

rankX=n

ω(X) = o(1).

This shows that G is an analytic and τ1−τ2 is a harmonic function inD. Considering
the zero set, we have τ1 = τ2 inD if J is not a subset of an analytic curve. Otherwise,
we can assume that J ⊂ R and using reflection conclude that ∂(τ1 − τ2) = 0 on J .

Finally we extend the function τ = τ1 = τ2 to a continuous function on C
satisfying τ (Az) = |A′|κτ (z) for every affine conformal map A in the group G
generated by F1 and F2. Then we have τ = 0 on ∪{AJ : A ∈ G}. It is easy to
see that the latter set has an everywhere dense projection in at least one direction.
Thus we have dimJ ≥ 1 and the application of Theorem 2.1 completes the proof.
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3. Conformal maps

Let Ω be a simply connected domain with compact boundary and φ : D → Ω
be the Riemann map. Our aim is to describe the structure of harmonic measure in
terms of φ. We will compare the integral means spectrum β(t) of φ, see Introduction,
and the packing spectrum π(t) of harmonic measure. The parameter t∗ has the same
meaning as in Section 1.

3.1. Theorem. If t ≤ t∗, then

(3.1) β(t) = π(t) + t− 1.

Remarks and Examples.

1) The relation (3.1), for all t ∈ R, is almost obvious for quasidiscs. Consider the
partition of ∂D into arcs I of equal length ε. The corresponding partition {φ(I)}
of ∂D satisfies ∑

δ(φ(I))t 	
∑
(I)

εt|φ′(zI)|t 	 εt−1

∫
|z|=1−ε

|φ′|t.

The geometry of quasidiscs allows then to construct a cover and a packing of the
boundary with discs B satisfying ω(B) 	 ε such that the same estimate holds for∑
δ(B)t.
Even for John domains, it is possible that β(t) �= π(t) + t − 1. Consider, for

instance, a domain with a V-shaped boundary. One can easily modify this example
to obtain a Jordan domain. The idea is to ”screen” the sets X ⊂ ∂Ω where the
concentration of harmonic measure is small with the sets Y of large concentration,
see Figure 4. One should in fact repeat the construction indicated in the picture
on an infinite sequence of scales tending to zero.

2) By (3.1), we have t∗ = β(t∗) + 1 ≥ 1, and therefore

β(1) = π(1).

This special case of Theorem 3.1 was established in [CJ]. The argument in [CJ] is
based on the representation of the integral means of order one as a length of the
corresponding level set. In fact, their proof implies

(3.2) β(t) = π̃(t) + t− 1, for t = 1,

see (1.18). This statement also follows from the combination of Theorem 3.1 and
(1.19). In general, (3.2) is not true for t �= 1.

3) One can combine Theorem 3.1 with estimates of the integral means to ob-
tain certain estimates of harmonic measure. For instance, the inequality |φ′(z)| ≥
const(1 − |z|) implies that β′(−∞) ≥ −1 or π′(−∞) ≥ −2, and hence

αmin ≥ .
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Figure 4

A less trivial example is the following (see [P1, Section 5.1]). The identity

d

dr

(
r
d

dr
It

)
= t2r

∫
|z|=r

|φ′|t
( |φ”|
|φ′|

)2

for the integral means It of order t, together with the bound
|φ”|/|φ′| ≤ const(1 − |z|)−1 imply that

d2

dr2
I ≤ const t2

1
(1 − r2)

I,

and

I ≤
(

1
1 − r

)Ct2

.

Hence
β(t) ≤ Ct2

for some universal constant C ≥ 0, and by Proposition 1.1 we have

f(α) ≤ inf
t

[απ(t) + t]

≤ inf
t

[α(1 − t+Ct2) + t] = α− (α− 1)2

4C
.
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This proves, in particular, that dim ω = dim ω = 1, see (1.15), and moreover that
there is a universal upper bound for the transition parameter (2.19), cf. [M1].

4) The inequality
β(t) ≥ π(t) + t− 1

holds for all t ∈ R. By definition, Ω is a Hölder domain if the Riemann map is
Hölder continuous. In this case, we have β′(+∞) < 1 and αmax < ∞. By (1.3), it
follows that

(3.3) t∗ = M(J) for every Hölder domain.

This fact seems to have been known only for John domains, cf. [P2, Sect. 10.5].

We outline now the proof of Theorem 3.1. It is somehow easier to relate β(t)
directly to f(α) rather than to π(t) and then apply the Legendre transform. We
will need the following auxiliary function d(a) defined in terms of the distribution
function:

d(a) = lim
a1→a

lim
r→1

log λa1
1−r

log 1
1−r

, a ∈ R,

where

λa =

{
m{ζ ∈ ∂D : |φ′(rζ)| > (1 − r)−a}, a > 0,

m{ζ ∈ ∂D : |φ′(rζ)| < (1 − r)|a|}, a < 0.

By the distortion theorem and a simple large deviations argument, we have

(3.4) β(t) − t+ 1 = sup
a

[d(a) − (1 − a)t].

It follows that the spectrum d(a) has a maximum point at a = 0, d(0) = 1, and
satisfies the concavity condition at this point:

d(ηa) ≥ ηd(a) + 1 − η, ∀a ∈ R, ∀η ∈ (0, 1).

Therefore, d(a) is strictly increasing on [a−, 1], and strictly decreasing on [1, a+],
where a− is the minimum and a+ is the maximum of the set {d(a) �= −∞}. Thus
we can find an r arbitrarily close to 1 such that there are ≈ (1 − r)−d(a) arcs Ij of
the circle {|z| = r} satisfying |Ij| = 1 − r and

|φ′| ≈
(

1
1 − r

)a±0

on Ij .

If we consider the discs
Bj = B(φ(zj ), Cδj),

where zj denotes the center of Ij , δj = (1 − r)|φ′(zj)|, and C is a large absolute
constant, then we have

ωBj ≥ const (1 − r),
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and therefore

(3.5) d(a) ≤ f+(α)
α

,

(
α ≡ 1

1 − a
)
.

By (3.4) and Proposition 1.1, this implies the inequality ”≤” in (3.1) for t ≤ t∗.
The opposite inequality (for all t ∈ R) is a consequence of the following state-

ment. If α is a growth point of f+(α), or f−(α), then

d(a) ≥ f±(α)
α

, respectively,

where a is such that α = (1 − r)−1. The proof of the latter statement is based on
Lemma 0.4.

Dynamical Interpretation. In the case of regular fractals one can interpret the
relation

d(a) =
f(α)
α

,

(
α ≡ 1

1 − a
)
,

which was used in the proof of Theorem 3.1, as a statement about the radial be-
haviour of the derivative of the conformal map. For a univalent function φ, we
consider the following ”Hausdorff” version of the spectrum d(a):

(3.6) d̃(a) =




dim
{
ζ ∈ ∂D : lim

r→1

log |φ′(rζ)|
| log(1 − r)| ≥ a

}
, a ≥ 0,

dim
{
ζ ∈ ∂D : lim

r→1

log |φ′(rζ)|
| log(1 − r)| ≤ a

}
, a ≤ 0.

3.2. Proposition. If φ is a conformal map onto a domain with a regular fractal
boundary, then

d(a) = d̃(a) =
f(α)
α

=

dim
{
ζ ∈ ∂D : lim

r→1

log |φ′(rζ)|
| log(1 − r)| = a

}
,

where α = (1 − a)−1.

We will explain this result in the case of a Jordan domain Ω. Let φ : D → Ω
be the Riemann map. If we transplant the dynamics F from a neighborhood of
∂Ω in Ω to a neighborhood of ∂D in D, and symmetrize it with respect to ∂D,
then we obtain an expanding conformal dynamics B on ∂D such that φ conjugates
the systems (∂D, B) and (∂Ω, F ). With respect to (∂D, B), the Gibbs measure
corresponding to the function
Θ = − log |B′| is equivalent to the Lebesgue measure on ∂D. Since harmonic
measure is the image of the latter, we have the following equation for the packing
spectrum π(t), (see (2.12):

P (πΘ + tΨ) = 0, (Ψ = − log |F ′ ◦ φ|).
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Let σ(t) denote the Gibbs measure on ∂D with potential π(t)Θ + tΨ, and
µ(t) = φ∗σ(t). By an argument in the proof of Theorem 2.1, we have

dimµ(t) =
hσ(t)∫
Ψ dσ(t)

= f(α),

where

α = − 1
π′(t)

(2.14)
=

∫
Θ dσ(t)∫
Ψ dσ(t)

,

and therefore

dimσ(t) = − hσ(t)∫
Θ dσ(t)

=
f(α)
α

.

By the ergodic theorem, we have

lim
r→1

log |φ′(rζ)|
| log(1 − r)| =

∫
(Ψ − Θ) dσ(t)
− ∫ Θ dσ(t)

= 1 − 1
α

= a

for σ(t)-a.e. ζ ∈ ∂D. In particular, this holds on a set of dimension f(α)/α.
Combining this fact with (3.5), we complete the proof.

The formulae

(3.7) dimσ(t) =
f(α)
α

, dimµ(t) = f(α)

provide the following characterization of the boundary distortion.
Consider the graph Γ of the packing spectrum π(t). By (1.14) and (3.7), the

tangent to Γ corresponding to t intersects the axes at the points (0, dimσ(t)) and
(dimµ(t), 0). We see that the coordinates of the intersection points describe the di-
mensions of the sets on ∂D and ∂Ω corresponding to each other under the conformal
map. This motivates the following definition. Let Γ− denote the part of the graph Γ
lying in the halfplane {t < 0}. For 0 ≤ p ≤ 1, we consider the tangent to Γ− passing
through the point (0, p), and define q−(p) as the coordinate of the point at which the
tangent intersects the
t-axis. If there is no such tangent we consider, instead of it, the straight line
parallel to the asymptote of Γ at −∞ passing through (0, p).

For p ∈ [0, p∗], where p∗ = t∗|π′(t∗)|, we define the function q+(p) in a similar
fashion by considering the part Γ+ = Γ∩ {t > t∗}, and the asymptote at = ∞. For
p ∈ [p∗, 1], we set q+(p) = t∗. Finally, for p ∈ [p∗, 1], we define the function σ(p) by
considering
Γ ∩ {0 ≤ t ≤ t∗}, and define σ(p) = t∗ for p ∈ [0, p∗].

3.3. Proposition. If φ is a conformal map onto a domain with a regular fractal
boundary, then

q−(p) = inf{dimφE : E ⊂ ∂D, dimE = p};

q+(p) = sup{dimφE : E ⊂ ∂D, dimE = p};

σ(p) = inf{dimφE : E ⊂ ∂D, dim(∂D \ E) = p}.
We sketch the graphs of these three functions in Figure 5. In general we have a

loop which consists of a real analytic arc and two tangent straight line segments.
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Figure 5

4. Universal spectra

We define the universal spectra F (α) and Π(t) by the formulae

(4.1) F (α) = sup
Ω

f̃+(α), α ≥ 0,

and

(4.2) Π(t) = sup
Ω

π̃(t), t ∈ R,

where the suprema are taken over all plane domains Ω with compact boundaries.
(See Section 1 for the definitions of f̃+ and π̃(t).) In this section and in the next
one we provide some estimates and discuss some properties of the universal spectra.

Let us first mention that the universal bounds for the box dimension spectrum
f(α) and the packing spectrum π(t) are trivial — they are the same as the bounds
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for arbitrary measures in the complex plane:

sup
Ω
f(α) =

{
α, 0 ≤ α ≤ 2,
2, α ≥ 2,

sup
Ω
π(t) =




+∞, t < 0,
1 − t

2
, 0 ≤ t ≤ 2,

0, t ≥ 2.

Indeed, consider the collection of N very small closed discs B which are
distributed almost uniformly inside the unit disc (the distances between the discs
are ≥ constN−1/2). We can choose the diameters of the discs so that the har-
monic measure of the domain Ĉ \ ∪B is also almost equidistributed: ω∞B 	 N−1.
Then we iterate this construction and obtain a domain such that similar estimates
hold on a sequence of scales tending to zero. This example does not work for the
Hausdorff spectrum: the Hausdorff dimension of the boundary is very small. We
still have

F (α) = α, α ∈ [0, 1],

and

Π(t) =
{+∞, t < 0,

0, t ≥ 2,

but the bounds are nontrivial for α > 1 and t ∈ (0, 2).

The following theorem shows that the universal spectra have some features
similar to those in the regular fractal case. We discuss this relation in the next
section.

4.1. Theorem. 1) The universal spectra F (α) and Π(t) satisfy the following
Legendre type relations:

F (α) = inf
0≤t≤2

[αΠ(t) + t], α ≥ 1,

Π(t) = sup
α≥1

[
F (α)− t

α

]
, t ∈ [0, 2].

2) We have the same universal bounds F (α) if we consider lim instead of lim in the
definition (1.4) of the Hausdorff dimension spectrum, and the same bounds Π(t) if
we consider lim instead of lim in the definition (1.18) of π̃(t).

Let us now turn to the simply connected case and define the universal spectra
Fsc(α) and Πsc(t) by the same formulae (4.1), (4.2) but with suprema now being
taken over the class (SC) of all simply connected domains with compact bound-
aries. In contrast to the general case, the universal bounds for the box counting
and the Hausdorff spectra coincide for simply connected domains. The interval of
parameters α such that Fsc(α) is nontrivial is now (1/2,+∞). Of course,

Πsc(t) = 0 for t ≥ 2.
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The universal covering (or packing) spectrum can be expressed in terms of the
universal integral means spectrum

B(t) = sup
Ω∈(SC)

β(t).

4.2. Theorem. 1) We have

Fsc(α) = sup
Ω∈(SC)

f(α),

Πsc(t) = sup
Ω∈(SC)

π(t) = B(t) − t+ 1.

2) The spectra Fsc(α) and Πsc(t) satisfy the Legendre type relations. 3) The uviver-
sal bounds do not change if we take lim or lim in the definitions of the corresponding
spectra.

In Figure 6 we sketch the graphs of the universal spectra, see estimates below.

Figure 6

Estimates. We first describe the behavior of the universal dimension spectrum as
α→ ∞. The following result was obtained in [JM].
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4.3. Theorem.

2 − F (α) 	 1
α
, 2 − Fsc(α) 	 1

α
as α→ ∞.

Taking the Legendre transform, we have

Π(t), Πsc(t) 	 (2 − t)2 as t→ 2 − .

Thus we have a ”smooth” phase transition in the universal packing spectrum at
t = 2.

To see that 2 − Fsc(α) ≤ constα−1, it is enough to consider, for instance, the
snowflake of dimension 2 − α−1 constructed from a polygon P0 with 4 equal sides,
see Section 2.

In the opposite direction, we will give a simple argument which proves a weaker
estimate

(4.3) 2 − f+(α) ≥ const
1

α logα

in the simply connected case.
Let Ω be a bounded simply connected domain and a ∈ Ω. Suppose

|ζ − a| ≥ 1, r ≤ 1/2. The following estimate of harmonic measure is a consequence
of Lemma 0.3:

ωaB(ζ, r) ≤ exp
{
−c1

∫ 1

r

dt

d(ζ, t)

}
,

where
d(ζ, t) = max{δ(z) : z ∈ Ω, |ζ − z| = t}, δ(z) ≡ dist(z, ∂Ω),

and c1 > 0 is an absolute constant. The idea, suggested in [CJ], is to compare the
function

ζ �→
∫ 1

r

dt

d(ζ, t)

with the Marcinkiewicz integrals Iκ, κ ∈ (0, 1),

Iκ(ζ) def=
∫
Ω

δ(z)κ

|z − ζ|2+κ dm2(z), ζ ∈ C \ Ω.

It is well known that Iκ satisfy the BMO-type inequalities

(4.4) m2{Iκ > λ} ≤ m2(Ω)e−c2κλ, λ > 1,

with an absolute constant c2 > 0. The integral Iκ(ζ) has a trivial lower bound in
terms of the function
d(t) ≡ d(ζ, t):

Iκ(ζ) ≥ const
∫ ∞

0

d1+κ(t) dt
t2+κ

.
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We have

log r| =
∫ 1

r

dt

t
≤
(∫ 1

r

d1+κ(t) dt
t2+κ

) 1
2+κ

(∫ 1

r

dt

d(t)

) 1+κ
2+κ

≤ const Iκ(ζ)
1

2+κ

(∫ 1

r

dt

d(t)

) 1+κ
2+κ

,

and therefore,

ωaB(ζ, r) ≤ exp{−c3I−
1

1+κ
κ | log r| 2+κ

1+κ }.
It follows that if

(4.5) ωaB(ζ0 , r) ≥ rα,

then
Iκ(ζ) ≥ constα−1−α| log r|, η ∈ B(ζ0, r).

Combining this estimate with (4.4), we obtain the following inequality for the num-
ber N of discs satisfying (4.5):

Nr2 ≤ const rc4κα
−1−κ

.

The choice κ 	 (logα)−1 gives (4.3).

An interesting property of the universal spectrum Πsc(t) is the existence of a
negative phase transition point. The following result was established in [CM].

4.4. Theorem. There is an absolute constant K ≥ 4 such that

(4.6) Fsc

(
1
2

+ ε

)
∼ Kε as ε→ 0.

Applying the Legendre transform, we have{
Πsc(t) = −2t, t ≤ t0

def= −K/2,
Πsc(t) > −2t, t > t0.

In terms of the universal integral means spectrum B(t), we have

B(t) = |t| − 1 for t ≤ t0.

Let us describe the idea of the proof. Since the function Fsc(α) is concave
(this is a part of Theorem 4.2), to prove (4.6) for some K, it is sufficient to check
that

(4.7) f+
(

1
2

+ ε

)
≤ (abs. const) ε
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for every simply connected domain Ω. Suppose ∞ ∈ Ω, diam∂Ω = 1, and let

ω∞B(z, δ) ≥ δ1/2+ε.

By Lemma 0.4, there is an arc l ⊂ ∂Ω ∩ ∂B(z, δ) such that the extremal distance
λΩ(l, L) in Ω between l and, say, L = {|z|} satisfies the inequality

(4.8) λΩ(l, L) ≤
(

1
2

+ 2ε
)

log
1
δ
.

Let δ = e−nA for some A$ 1. We consider the annuli

Rν(z) = {ζ :
1
2
e−νA < |ζ − z| < 2e(1−ν)A}, 1 ≤ ν ≤ n.

They all have the same extremal distance λ 	 A between the inner and the outer
boundaries ∂±. We define Xν(z), the ”excess” of extremal length in Ω ∩Rν(z), by
the equations

Xν(z) = λν(z) − λ,
λν = inf{λΩ(l+, l−) : l± arcs on ∂± ∩ Ω}.

Thus Xν(z) ≥ 0 and Xν(z) is zero if and only if the part of ∂Ω in Rν(z) lies on a
straight line segment with endpoint z. It follows from (4.8) and the subadditivity
of the extremal length that

(4.9)
n−1∑
ν=1

Xν(z) ≤ εn.

In other words, Xν(z) is small on the average. The smallness of Xν(z) means that
the boundary ∂Ω passes though a very thin sector in Rν(z). More precisely, if

(4.10) Xν(z) ≤ e−σkA

(σ is an absolute constant), then the angle of the sector is � e−kA, and we have

(4.11) Xν+1(z′), . . . , Xν+k(z′) ≥ constA

for every point z′ ∈ ∂Ω ∩Rν(z). By a combinatorial argument, one can show that
the maximal number of points z ∈ ∂Ω separated by δ = e−nA, satisfying (4.9) and
also satisfying (4.11) every time we have (4.10), does not exceed const ecεn, which
proves (4.7).

Determining the value of the constant K in Theorem 4.4 is an interesting and
perhaps difficult problem. It is conjectured (J.Brennan) that K = 2, and con-
sequently, t0 = −2. In fact, it is not ruled out that the universal integral means
spectrum B(t) is an even function. (Recall that B(t) has a positive phase transition
point at t = 2.)
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The estimate K ≥ 4 is obtained by considering the following class of fractal sets
(”dandelions”). We start with a simply connected domain Ω0 such that ∞ ∈ Ω
and the boundary Γ0 = ∂Ω0 consists of a finite number of straight line segments.
Let b, a1, . . . , am be the extreme points of Γ0, i.e. the points at which Ω0 makes
a full angle. We assume that b = 0, {x : x < 0} ⊂ Ω0, and that the segment
L of Γ0 with endpoint b lies on a real axis. For a fixed small number κ > 0 we
denote lj the segment of length κ lying on Γ0 and having aj as an endpoint. We
define the polygon Γ1 by replacing each lj with a rescaled copy of Γ0 so that under
rescaling the segment L corresponds to lj . The polygon Γ1 has m2 extreme points
other than b. To obtain Γ2 we repeat the above procedure with scale κ2. Proceeding
with this construction we define polygons Γ3,Γ4, . . . which converge to some fractal
set Γ = Γ(κ). (Observe that if κ is small enough, then no intersections occur at
any step of the construction.)

We estimate the dimension spectrum of the harmonic measure on Γ in terms of
the following conformal invariant (”reduced extremal length”). Let Ω be a simply
commected domain and a, b ∈ C. For ε > 0 let λε denote the extemal length of
the family of all curves joining the ε-neighborhoods of a and b in Ω, and λ̃ε the
extremal length of the corresponding family in C. Define

β(Ω; a, b) = lim
ε→0

exp{2π(λ̃ε − λε)};

the existence of the limit is a standard property of the extremal length. Suppose
now we have m+ 1 distinct points b, a1, . . . , an ∈ ∂Ω. Denote

βj = β(Ω; aj, b).

For any p > 2 we can choose the initial polygon Γ0 (actually we take a union of
two perpendicular segments) in the dandelions construction such that∑

βpj > 1, (with respect to Ω0).

Then for a fixed small ε > 0 and the dandelion Γ(κ) with κ� 1, we have

f+
(

1
2

+ ε

)
≥ 2pε

which shows that K ≥ 4.
In fact it can be shown that K is exactly twice the minimal value of p such that

m∑
j=1

βpj ≤ 1

for any m and every configuration (Ω; {aj}, b). In particular, Brennan’s conjecture
is equivalent to the statement

(4.12)
m∑
j=1

β2j ≤ 1
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In [CM] it is shown that (4.12) is always true for m = 2.

Another notable parameter in the universal dimension spectrum is α = 1. As
we explained in Section 3, we have

(4.13) α− Fsc(α) 	 (α− 1)2 as α→ 1,

which is one order stronger than the statement dimω = 1 (for every simply
connected domain). We conjecture that in the non-simply connected case we also
have

α− F (α) 	 (α− 1)2 as α→ 1 + .

The corresponding statement concerning the dimension of harmonic measure,

dim ω ≤ 1,

is a theorem of Jones and Wolff [JW].

We conclude this section with two open questions:
(1) Is it true that F (α) = Fsc(α) for α ≥ 1?
(2) Is it true that the functions Fsc(α) and F (α) are smooth or even real analytic

on the intervals (1/2,∞) and (1,∞) respectively?

5. Fractal approximation. Applications

We define
F fr(α) = sup

Ω∈(Cantor)
f(α),

where the supremum is taken over domains such that the boundary is a Cantor set.
Similarly, we define Πfr(t).

5.1. Theorem.
F (α) = F fr(α), Π(t) = Πfr(t).

The same is true for simply connected domains. For instance,

(5.1) Πsc(t) = sup
Ω∈(snowflakes)

π(t).

These results imply, in particular, Theorems 5.1 and 5.2 in the previous section.

In the simply connected case, the relation (5.1) is stated in [CJ] for t = 1. We
will outline the proof for the non-simply connected case, and the argument will
be based on an idea from [JW]. In fact, the main result of [JW], the inequality
dimω ≤ 1, can be thought of as a statement in fractal approximation:

sup
Ω

dim ω = sup
Ω∈(Cantor)

dim ω ≤
(Thm.2.3)

1.
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Let Nα(δ) denote the maximal number of disjoint closed discs ∆j ⊂ D of radius
δ such that

ω∞(∆j, Ĉ \ ∪∆j) ≥ δα.

We define
Φ(α) = lim

η→0
lim
δ→0

logNα+η(δ)
| log δ| .

The first formula of Theorem 5.1 is a consequence of the following two inequalities:

(5.2) F (α) ≤ Φ(α),

(5.3) Φ(α) ≤ F fr(α).

To prove (5.2), we fix α > 0 and η > 0, and consider some domain Ω such that
∞ ∈ Ω, ∂Ω ⊂ D. Let α(z) denote the lower pointwise dimension (see (1.4)) of the
harmonic measure ω = ω∞ of Ω, and

A = {z ∈ ∂Ω : α(z) ≤ α}.
Fix ε > 0. By the covering lemma, there is a finite multiplicity cover of the set A
with discs Bj of radii δj ≤ δ(ε), δ(ε) → 0 as ε→ 0, such that

(5.4) ωBj ≥ δα+ηj .

Given integer numbers m, k, let us estimate the number N(m, k) of Bj ’s satisfying

(5.5)

{
δj 	 δ ≡ 2−n,

κj ≡ cap(∂Ω ∩Bj) 	 κ ≡ 2−(m+k).

Let M = M(ε) denote the constant in Lemma 0.2. We can select N 	M−2N(m, k)
discs ∆ from the collection {Bj} satisfying (5.4), (5.5) such that the centers of ∆’s
are separated by Mδ.

For each ∆, let ∆̃ be the closed disc concentric with ∆ of radius

δ̃ = δ
(κ
δ

)ε
= 2−(m+kε).

By Lemma 0.2, the harmonic measure of ∆̃ with respect to the domain C̃ \ ∪∆̃ is
≥ const δ̃α+η, and therefore, by the choice of δ(ε), we have

N ≤ const
(

1
δ̃

)Φ(α+η)+ε

.

We can now estimate the Hausdorff dimension of the set A. For p > Φ + ε,
Φ ≡ Φ(α+ η), we have∑

δpj ≤ const
∑

κpj

	
∑

m≥| log δ(ε)|

∑
k≥0

2−(m+k)pN(m, k)

≤ const
∑
(m)

2−m(p−Φ−ε)
∑
(k)

2−k(p−εΦ−ε2)

= o(1) as ε→ 0,
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and dimA ≤ Φ(α+ η) + ε. Since ε and η are arbitrary, we have

f̃+(α) ≤ Φ(α),

and hence (5.2).

To prove (5.3), we first fix positive numbers η � 1 and κ � η, and take an
arbitrarily small δ such that there are δ−Φ(α)+0 closed δ-discs B ⊂ D satisfying

ω∞(B, Ĉ \ ∩B) ≥ δα

and such that the centers are separated by 4δ. Next we take 	 δ−κ discs of radius
δη such that the centers are equidistributed on the circle {|z| = 1/2}. We replace
each of the latter discs with a rescaled copy of the configuration (D, {B}). Then
we have

N 	
(

1
δ

)κ+Φ(α)−0

≥ const
(

1
δ̃

)Φ(α)
1+η

closed discs ∆j of radius δ̃ = δ1+η. By Harnack’s inequality,

ωj ≡ ω∞(∆j , Ĉ \ ∪N
j=1∆j) ≥ const δα+κ 	 δ̃

α+κ
1+η .

Let J be the selfsimilar Cantor set corresponding to the initial configuration (D, {∆j}).
We have

cap J ≥ c1 > 0,

where the constant c1 depends only on κ. The analysis of the Cantor construction
shows that for every cylinder set X ⊂ J, X = (x1, . . . , xn) ∈ {1, . . . , N}n, we have

ω∞(X, Ĉ \ J) ≥ cn2

n∏
ν=1

ωxν ,

where c2 depends only on c1. Since δ is arbitrarily small, we have

F fr(α) ≥ Φ(α)
1 + η

,

and since η is arbitrary, we obtain (5.3).

Finally, we observe that the argument used in the proof of (5.2) also gives the
estimate

Π(t) ≤ sup
α

Φ(α) − t
α

,

and that the latter implies the second formula of Theorem 5.1:

Φ(t) ≤ sup
α

Φ(α) − t
α

≤
(5.3)

sup
α

F fr(α) − t
α

=
(Thm.2.1)

Πfr(t) ≤ Π(t).
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Description of integral means spectra. The methods of fractal approximation
can be used to describe all posible dimension and packing spectra of harmonic
measures in the complex plane in terms of the universal spectra. We will state the
corresponding result for the packing spectrum in the simply connected case.

5.2. Theorem. Let π(t), t ∈ R, be a convex function. Then there exists a simply
connected domainΩ such that π(t) is the packing spectrum of the harmonic measure
of Ω if and only if π(t) satisfies the following two conditions:

(1) 1 − t ≤ π(t) ≤ Πsc(t);
(2) the asymptotes of the graph y = π(t) intersect the y-axis

in the segment [0, 1].

It is clear that the conditions are necessary. To prove the sufficiency, consider
the Legendre transform of π(t):

f̂(α) = inf
t

[απ(t) + t].

Then (1) and (2) imply that f̂(α) ≤ Fsc(α), f̂(1) = 1, and f̂(α) is either ≥ 0 or
= −∞. We want to construct a domain such that f̂(α) is the concave envelope
of the dimension spectrum. Clearly, it is sufficient to do this for the functions
f̂ = f̂α0,q0 such that 


f̂(1) = 1, f̂(α0) = q0,

f̂ is linear on [1, α0],

f̂ = −∞ on R \ [1, α0],

where α0 ≥ 1/2 and q0 ∈ [0, Fsc(α0)] are fixed parameters. The idea is to use
the following version of the dandelion construction. We start with a snowflake
domain such that the dimension spectrum satisfies f(α) ≥ q0. Let φ denote the
corresponding Riemann map. Then we construct a certain ”selfsimilar” Cantor
type set E ⊂ ∂D of dimension q0/α0 such that

|φ′(rζ)| ≈
(

1
1 − r

)1−1/α0

, ζ ∈ E,

cf. Proposition 3.2. We will get a domain with the desired properties if we take the
φ-image of the saw-like domain

{z ∈ D : dist(z, E) < ρ(1 − |z|)},

where ρ = ρ(x) is a function slowly tending to zero as x→ 0.

We can restate Theorem 5.2 in terms of the integral means spectrum as follows.

Let β(t), t ∈ R, be a convex function such that
(1) 0 ≤ β(t) ≤ B(t),
(2) |β′(t ± 0)| ≤ |t|−1(1 + β(t)).
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Figure 7

Then there exists a bounded univalent function φ such that β(t) is the integral means
spectrum of φ′.

We will indicate now some applications.

Suppose there are certain conditions on one or several parameters in the integral
means spectrum β(t) of a univalent function φ. Theorem 5.2 can be used to describe
the whole set of restrictions we have for the integral means spectrum.

Example 1. Let Hölder(η) denote the class of Hölder continuous univalent func-
tions φ with Hölder exponent η, 0 < η ≤ 1. Denote

Bη(t) = sup{β(t) : φ ∈ Hölder(η)}.

Observe that we have the restriction β′(+∞) ≤ 1−η. Let y = τη(t) be the equation
of the tangent to the graph y = B(t) with slope 1 − η. Then

Bη(t) =
{
B(t), t ≤ tη ,

τη(t), t ≥ tη,

where tη corresponds to the tangent point, see Figure 7a.
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Similarly, we can characterize the influence of the boundary size, namely the
Minkowski dimension, on the behavior of the integral means.

Example 2. For M ∈ [1, 2], denote

BM (t) = sup{β : M(∂Ω) ≤M}.
Let y = τM(t) be the equation of the tangent to the graph y = B(t) such that
τM (M) = M − 1. Then

BM (t) =



B(t), t ≤ tM ,

τM(t), tM ≤ t ≤M,

t− 1, t ≥M,

where tM corresponds to the tangent point, see Figure 7b.

For a Hölder domain, the dimension M(∂Ω) is the solution to the equation
β(t) = t − 1, see (3.3). Therefore, we have

(5.6) Bη(t) = BM (t) for t ≤M,

where M = Fsc(1/η). The equation (5.6) implies the following characterization of
the universal dimension spectrum.

Corollary.

Fsc(α) = sup{M(∂Ω) : Ω ∈ Hölder(1/α)}, α ≥ 1.

In particular, by Theorem 4.3 we have

Ω ∈ Hölder(η) =⇒ dim∂Ω ≤M(∂Ω) ≤ 2 −Cη,
where C > 0 is an absolute constant.

The growth of the integral means of order one is closely related to the growth of
the coefficients {an} of a univalent

φ(z) =
∑
n≥0

anz
n.

Denote

γ(φ) = lim
n→∞

log |an|
logn

.

It was shown in [CJ] that

γ
def= sup{γ(φ) : φ is a bounded univalent function} = B(1) − 1.

Applying the argument in the proof of this theorem and the relation (5.6) for t = 1,
one can describe the dependence of the growth of coefficients on the size of the
boundary. The following result was obtained in [MP]. Denote

γM = sup{γ(φ) : M(∂Ω) ≤M}.
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5.3. Theorem. There is a number Mc ∈ (1, 2) such that{
γM = γ, for M ≥Mc,

γM < γ, for 1 ≤M < Mc.

More precisely,

Mc = 1 +
B(1)

1 − B′(1+)
,

and for 1 ≤M <Mc, we have

γM =
M − 1
F−1
sc (M)

− 1.

In particular, by (4.13),

γM = −1 + (M − 1) − (M − 1)2 + O((M − 1)3) as M → 1 + .

The universal spectra Bη(t) and BM (t) have some phase transition points. Here
is another example.

Example 3. For a fixed parameter β1 ∈ (0, B(1)) consider the graph of the func-
tion

sup{β(t) : φ satisfies β(1) ≤ β1},
see Figure 8. Then there are five phase transition points: t0, t−, 1, t+, 2, where
t0 = −K/2 (see Theorem 4.4), and t± correspond to the tangets to the graph of
B(t) passing though the point (1, β1).

We will now discuss some other applications of the concept of the universal
integral means spectrum.

Unbounded unvalent functions. First we consider arbitrary univalent func-
tions. Denote

B̌(t) = sup β(t),

where the supremum is taken over all univalent functions in the unit disc.

5.4. Theorem. B̌(t) = max{B(t), 3t− 1}.
Of course, the term 3t − 1 comes from the Koebe function φ(z) = z(1 − z)−2.

The phase transition point ť (see Figure 9) is the solution to the equation

β(t) = 3t− 1.

It is clear that 1/3 < ť < 2/5, cf. [FM].
To prove Theorem 5.4 we can assume that φ = 1/ψ, where ψ is a bounded

univalent function. Then

(5.7)
∫
|z|=r

|φ′|t =
∫
|z|=r

∣∣∣∣ ψ′

ψ2

∣∣∣∣
t

,
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Figure 8 Figure 9

and we must take into consideration the sets where |ψ′| is large and the sets where
|ψ| is small. For b ∈ [0, 2] and a ∈ [−1, 1], we define

m(a, b) = − lim
r→1

log |{z : |z| = r, |ψ(z)| 	 (1 − r)b, ψ′(z)| 	 (1 − r)−a}|
| log(1 − r)| .

If we use a trivial estimate

(5.8) ωψ(0)∆ ≤ const (1 − r)b/2

for the harmonic measure of the disc ∆ = B(0, (1− r)b) with respect to the domain
Ω = ψD, and rescale ∂Ω ∩ ∆ to the unit disc, then we obtain the inequality

(5.9) m(a, b) ≥ 1 − (1 − a− b)Fsc
(

1 − b/2
1 − a− b

)
.

Then it follows from (5.7) that

β(t) ≤ sup
(a,b)

[(a+ 2b)t−m(a, b)].
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The computation of the two-dimensional Legendre transform completes the proof
of the theorem: for l ∈ [0, 2], we have

(5.10) sup
[
(a+ 2b)t− 1 + (1 − a− b)F

(
1 − b/l

1 − a− b
)]

= max{B(t), (1 + l)t− 1},

where the supermum is over the set {−1 ≤ a ≤ 1, 0 ≤ b ≤ l}.

Similar considerations can be used to characterize the integral means spectrum
of univalent functions with restricted growth. For l ∈ [0, 2], let (Sl) denote the class
of univalent functions φ satisfying

φ(z) = O

(
1

(1 − |z|)l
)
.

The function

(5.11) φ(z) = (1 − z)−l

with
β(t) = max{0, (1 + l)t − 1}

is now a natural candidate for the extremal growth.
If we use the estimate

ω∆ ≤ const (1 − r)b/l −0

instead of (5.8), then we get (5.9) with b/l instead of b/2. Applying (5.10), we have

sup
φ∈(Sl)

β(t) = max{B(t), (1 + l)t− 1}.

The special case t = 1 implies the corresponding result for the coefficients. The
function (5.11) satisfies

γ(φ) ≡ lim
n→∞

log |an|
logn

= l− 1.

Littlewood and Paley [LP] observed that

sup
φ∈(Sl)

γ(φ) = l− 1

for l ∈ [1/2, 2]. This was improved to l ≥ .497 in [Ba].
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5.5. Theorem.

sup
φ∈(Sl)

γ(φ) =
{
l − 1 , l ≥ B(1),
γ = B(1) − 1, l ≤ B(1).

Finally, we consider the coefficients problem for symmetric univalent functions.
For m ∈ N, let S[m] denote the class of m-fold symmetric univalent functions φ:

φ(e
2πi
m z) = φ(z), φ(0) = 0.

Every such function can be represented in the form

φ(z) = [ψ(zm)]1/m,

where ψ is univalent. Reasoning as in the proof of Theorem 5.4, we show that

sup
φ∈S[m]

β(t) = max{B(t), (1 +
2
m

)t − 1}.

Combining this fact for t = 1 with the argument in [CJ], we obtain the following
result.

5.6. Theorem.

sup
φ∈S[m]

γ(φ) =

{ 2
m

− 1 m < 2
B(1)

,

γ = B(1) − 1, m > 2
B(1) .

Known estimates of B(1) show that we have the first case for m = 1, 2, 3, 4, and
the second case for m ≥ 12. The exponent 2/m−1 corresponds to the symmetrized
Koebe function.
Littlewood and Paley [LP] observed that the coefficients of this function have the
maximal order of growth for m ≤ 3, but later Littlewood [L] proved that this is not
true for some very large m.

Exceptional sets.
We will also state some results concerning exceptional sets for the radial behavior

of φ′ and for the boundary distortion, cf. [M2]. The point is that, by fractal
approximation, we have the same relations between the universal bounds as in the
case of regular fractals, see Propositions 3.2 and 3.3.

For a univalent function φ, we consider the spectrum d̃(a) defined in (3.6) in
terms of the Hausdorff dimension of the sets where |φ′| or |φ′|−1 has the radial
growth greater than (1− r)−|a|. Taking the supremum over all univalent functions,
we define

D(a) = sup
φ
d̃(a).
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Figure 10

5.7. Proposition. For a ∈ [−1, 1] and α = (1 − a)−1, we have

D(a) =
Fsc(α)
α

.

We also note that the spectrum D(a) does not depend on whether we take lim or
lim in the definition (3.5) if d̃(a). The estimates of the dimension spectrum Fsc(α)
established in Section 4 imply the corresponding properties of D(a), for instance:
D′(1−) = −2, D′(−1+) = K/2, where K is the constant in Theorem 4.4.

Finally we consider the functions

Q(p) = sup
φ
q−(p), Σ(p) = sup

φ
σ(p), (0 ≤ p ≤ 1),

where

q−(p) = inf{dim e : e ⊂ ∂Ω, dimφ−1e = p},
σ(p) = inf{dim e : e ⊂ ∂Ω, dim(∂Ω \ φ−1e) = p},

and
φ−1e ≡ {ζ ∈ ∂D : lim

r→1
φ(rζ) exists and ∈ e},
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Figure 11

cf. Proposition 3.3.

5.8. Proposition. The spectra Q(p) and Σ(p) can be obtained from the graph of
Πsc(t) by the procedure indicated in Figure 11.

6. Two examples

In this final section of the paper we return to the multifractal analysis of
particular harmonic measures and consider two examples of (non-regular) fractal
sets.

Polynomial Julia sets. Let F be an arbitrary polynomial of degree d and ω = ω∞
be the harmonic measure of the basin Ω at ∞. We will characterize the negative part
of the
packing spectrum π(t), t < 0, and the corresponding parts of the dimension spectra
f(α), f̃(α) for α < α− ≡ |π′(0−)|−1, see Section 1 for definitions. It turns out that
the Hausdorff dimension spectrum f̃(α) behaves exactly as in the hyperbolic case
but π(t) and f(α) can have phase transitions. The simplest example is provided
by Chebychev’s polynomials ±Pd, where Pd is defined by the functional equation

Pd(z + z−1) = zd + z−d,
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e.g., P2(z) = z2 − 2, P3(z) = z3 − 3z, etc. The Julia set of ±Pd is the segment
[−2, 2], (because the map z �→ z + z−1 conjugates zd and Pd), and the integral
means spectrum

β(t) = max{−t− 1, 0}
has a phase transition at tc = −1. The polynomials ±Pd and zd are known to be
the only polynomials (up to
conjugation) satisfying dim ω = dimJ , see [Z]. The following results were obtained
in [MS2], see also [MS1].

6.1. Theorem. Let F be a polynomial such that dim ω < dimJ . Then either

(1) π(t) is a strictly convex, real analytic function on (−∞, 0), or
(2) there is a point tc < 0 such that

π′(tc−) < π′(tc+).

In the latter case, π(t) is strictly convex, real analytic on [tc, 0), and linear
(= π′(tc−)t)) on (−∞, tc].
6.2. Theorem. 1) In the first case of Theorem 6.1, we have

f(α) = f̃(α) = inf
t<0

[απ(t) + t], 0 < α < α−.

2) In the second case, the function π|(tc, 0) extends to a strictly convex, real analytic
function π̃(t) on (−∞, 0), and

f(α) = inf
t<0

[απ(t) + t],

f̃(α) = inf
t<0

[απ̃(t) + t],

for α ∈ (0, α−). If we denote α̃min = |π̃′(−∞)|−1, αc = |π′(tc+)|−1, then

0 < αmin = |π′(tc−)|−1 < α̃min < αc < α−,

the function f̃ is strictly concave and real analytic on (α̃min, α−), f = f̃ on [αc, α−],
and f is linear on [αmin, αc], f(αmin) = 0, see Figure 12.

In the simply connected case we have tc < −1 because |π′(−∞)| ≤ 2.

The phase transition phenomenon for the negative part of the packing spectrum
has the following dynamical interpretation. For a periodic point b, F pb = b, let us
denote

µ(b) = |(F p)′(b)|1/p.
The multipliers µ(b) characterize the behavior of harmonic measure near the peri-
odic points — the concentration of ω is greater near points with larger multiplies.
We will see that a necessary condition for the phase transition case in Theorem 6.1
is the existence of a fixedpoint a and δ > 0 such that

b ∈ PerF, b �= a =⇒ µ(b) ≤ µ(a) − δ.
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Figure 12

For t < tc, the distinguished point a provides a predominant contribution to the
quantities L(t; ε) in the definition (1.8) of π(t). Observe that we must have

(6.1) F−1a \ {a} ⊂ Crit F def= {c : F ′ = 0},

because otherwise the structure of the Julia set at the preimage points would be
the same as at a.

It is easy to see that no quadratic polynomial satisfies (6.1), and so z2 − 2 is the
only example with a phase transition. For degree d = 3, we have a one-parameter
family of polynomials

Fc(z) = z3 − 3c2z + 2(c3 − c), c ∈ C,

satisfying (6.1). (In fact, every F satisfying (6.1) is conjugate one of Fc’s.) In
Figure 13 we show the ”Mandelbrot set” {c : Jc is connected} for this family, and
also the region

G = {c : |F ′
c(a)| > |F ′

c(b)| for every fixedpoint b �= a}

(the fixedpoints of Fc are a = −2c and b = c±1). G is the exterior domain bounded
by the outer curve in the picture. It follows that for every cubic polynomial with
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Figure 13

connected Julia set, except for ±P3, the negative packing spectrum is real analytic.
On the other hand, there are many cubic polynomials with disconnected Julia set
for which we have the phase transition case.

The critically finite degree 4 polynomial

F (z) = (z − c)3(z + 3c) − 3c, c =
1 + i

√
2

3
,

belongs to the phase transition case and has connected Julia set, see Figure 14a.
One can see that the point a = −3c responsible for the phase transition is more
”exposed” than any other tip point s in the picture. The Julia set has the same
structure at all tips except a. Figure 14b is the blow up at point a.

It is helpful to compare Figure 14 with the Julia sets of the polynomials

F (z) = z2 + i, (Figure 15a),

F (z) = (z − c)2(z + 2c) − 2c, c =

√
3 + i

√
7

8
, (Figure 15b).

These polynomials are also critically finite but have real analytic spectrum. The
Julia set of z2+i has tip points all similar to each other. The Julia set in Figure 15b
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Figure 14

does have a distinquished point a = −2c but the corresponding tip is less exposed
than the other tips.

We describe now some ideas in the proof of Theorems 6.1, 6.2.
Let Ω be a large disc containing JF such that F−1Ω ⊂ Ω. For t < 0 we consider

the Perron-Frobenius operator Lt acting on the space C ≡ C(Ω̄) of continuous
functions:

Ltf(z) =
∑

w∈F−1z

f(w)|F ′(w)|−t

(the preimages are counted with multiplicities). Using the subharmonicity of the
function z �→ Lnt 1(z), we express the packing spectrum π(t) in terms of the spectral
radius r(Lt, C) of Lt:

r(Lt, C) = dπ(t).

Following [R3], we also consider the action of the Perron-Frobenius operator in the
Sobolev spaces

W 1,p ≡W 1,p(Ω) = {f : ‖f‖1,p def= ‖f‖p + ‖∇f‖p <∞}.
Recall that W 1,p(Ω) ⊂ C(Ω̄) for p > 2. Straightforward computation shows that

t < −2(1 − 2/p) =⇒ LtW
1,p ⊂W 1,p.
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Figure 15

Thus for any t < 0, we can find p > 2 such that Lt acts on W 1,p. In this case, the
operator Lt : W 1,p → W 1,p has the following important property (quasicompact-
ness):

(6.2) ress(Lt,W 1,p) < r(Lt,W 1,p),

where ress denotes the essential radius. The inequality (6.2) means that for some
r < r(Lt,W 1,p) the part of the spectrum of Lt lying outside of the disc
{|z| ≤ r} consists of a finite number of eigenvalues and all these eigenvalues have
finite multiplicity. We also have

(6.3) r(Lt,W 1,p) = r(Lt, C).

Both (6.2) and (6.3) follow from the estimate (cf. [IM])

‖Lnt f‖1,p ≤ dnw(p,t)+o(n)‖f‖1,p +Cn‖f‖∞,
where

w(p, t) def=
1
p′
π(p′(1 + t − 2/p)) < π(t), p′ ≡ p

p− 1
.

Further analysis shows that the number λt = r(Lt, C) is the eigenvalue of the
operator Lt : W 1,p → W 1,p. It can be verified that this eigenvalue is simple (and
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hence the packing spectrum is real analytic) if there is a positive measure ν such
that

(6.4) L∗
t ν = λtν,

where L∗
t is the dual operator of Lt : C(Ω̄) → C(Ω̄), and such that

supp ν = J.

There always exists a measure satisfying (6.4), (”conformal measure”),but to make
sure that supp ν = J , we need to require that F is not conjugate to ±Pd and does
not have a fixpoint a satisfying (6.1). If such a point a exists, we continue our
analysis by introducing a function G satisfying the homological equation

(6.5) |F ′|−t = G
H ◦ F
F

withH = |z−a|−αt for some α > 0. We can choose α such that the above argument
applies to the Perron-Frobenius operator LG,

LGf(z) =
∑

w∈F−1z

f(w)G(w),

and gives the real analyticity of the spectral radius λ̃(t) = r(LG) as a function
of t. It then follows from (6.5) that

π(t) = max{π̃(t),−t logd µ(a)},

where
π̃(t) = logd λ̃(t),

and we have a phase transition case if and only if

|π̃′(−∞)| < logd µ(a).

Remarks.

1)It is an interesting question whether Theorem 6.1 can be extended to some
part of the positive spectrum. Namely, is it true that π(t) is always real analytic
on the interval [0, t1] for some positive t1 depending on F ? Can one take t1 = t∗?
There is a partial result concerning the point t = 0. In [PUZ], it is shown that
for an arbitrary polynomial F (z) = zn + . . . with connected, non-smooth Julia
set, the second derivative π”(0) exists and is positive. Moreover, one has the same
limit theorems for harmonic measure as in the regular fractal case (see Remark 2
following Theorem 2.3). One can also derive these facts from the lacunary series
representation

log |φ′(z)| = −
∞∑
k=0

g(zd
k

)
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for the derivative of the Riemann map φ : {|z| > 1} → Ω, where

g(z) = log
∣∣∣∣F ′(φ(z))
dzd−1

∣∣∣∣ ,
and from the estimate

∞∑
k=1

[ ∑
I∈Gk

‖g − g(zI)‖2L2(I)

]1/2
<∞,

where Gk denotes the collection of all d-adic intervals of ∂D, cf. [IL]. The latter
estimate is a consequence of some general properties of univalent functions.

2)One can also try to describe the behavior of the positive part of the packing
spectrum in certain special cases. For instance, it is shown in [MS1] that the positive
spectrum is real analytic in the critically finite case, and this should also be true for
general subhyperbolic polynomials, see [CJY]. In the parabolic case, one can show
that π(t) is real analytic for t < t∗ = dimJ and is ≡ 0 for t ≥ t∗, cf. [DU], [ADU].

Random snowflakes. We will consider the following class of random fractals. Fix
an unbounded simply connected domain G ⊂ C+ ≡ {Rez > 0} such that ∂G ∩ C+
is a polygon of diameter 	 1 and ∂G ∩ C+ ⊂ D. For δ > 0, denote

Gδ = τ (δG), τ (z) =
i+ z

i− z ,

and let
ψδ : D− ≡ {|z| > 1} → Gδ

be the Riemann map such that ψδ(∞) = ∞, ψ′
δ(∞) > 0. Observe that

(6.6) ψ′
δ(∞) − 1 	 δ2.

Let {δn} be a given sequence of positive numbers such that

(6.7)
∑

δ2n <∞,

and {ζn} be a sequence of independent random variables uniformly distributed on
∂D. We define

φn(z) = ζnψδn (ζ̄nz),

and
Φn = Φn−1 ◦ φn = φ1 ◦ · · · ◦ φn,

see Figure 16. By (6.6) and (6.7), there is a limit univalent function

Φ(z) = lim
n→∞ Φn(z), z ∈ D−.
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Figure 16

We will study the integral means spectrum of Φ, and the properties of the harmonic
measure ω = ω∞ on the ”random snowflake” ∂(ΦD−).

Let β0(t) denote the integral means spectrum of the functions ψδ:

β(t) =




t
t− − 1, t ≤ t−,

0 , t− ≤ t ≤ t+,
t
t+

− 1, t ≥ t+,

where t+ = (1 − θmin)−1, t− = −(θmax − 1)−1, and θmin and θmax are the minimal
and the maximal angles of the domain G.

6.3. Theorem. The conformal map Φ almost surely satisfies the following.

(1) If δn = 1/n, then there is a constant c > 0 (depending on G) such that

β(t) ≥ ct2, |t| ≤ 1.

Moreover, ω is singular with respect to the Hausdorff measure Λh,
h(t) = t exp{c√( log 1/t log log log 1/t)}, cf. [M1].

(2) If
∑
δn <∞, then β(t) ≡ β0(t).
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(3) If
∑
δn = ∞ but

∑
δ−2
n n−3 <∞, then β(t) ≡ 0 for t ≤ 1.

(4) ω is singular with respect to Λ1 if and only if∑
δn = ∞, and

∑
δ−2
n n−3 = ∞.

In the last two statements we assume that the sequence {δn} is sufficiently
regular. If, for example, δn = n−1 logα n, α ∈ R, then ω ⊥ Λ1 iff −1 ≤ α ≤ 1/2.

The case δn 	 1/n is essentially the only one when Φ has a non-trivial integral
means spectrum. Figure 17 corresponds to the choice of G such that ∂G ∩ D̄ is a
semicircle.

Figure 17

The sequence of conformal maps Φn represents a descrete time Loëwner chain.
The proof of the theorem depends on the estimates for the inverse Loëwner chain

Ψk ≡ Ψk,n
def= Φ−1

k ◦ Φn = φk ◦ · · · ◦ φn,
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where n$ 1 is a fixed number. We will give some examples of such estimates.

Let us first consider the case
∑
δn <∞. To prove that β(t) ≤ β0(t) it is enough

to show that the expectation E
∫
∂D

|Φ′|t is finite for t ∈ (t−, t+). Denote

Xk = E

∫
∂D

|Ψ′
k|t.

Thus we have Xn = 1, and we must prove X0 = O(1) as n→ ∞. We have

Xk−1 −Xk = E

∫
∂D

|Ψ′
k|tVk(|Ψk|),

where
Vk(s) =

∫
|z|=s

(|ψ′
δk
|t − 1) ≤ const δk.

Therefore,
Xk−1 ≤ (1 +Cδk)Xk

and we are done.

To prove the opposite inequality β(t) ≥ β0(t) we need to estimate the integral
means from below. We will show how to get such estimates in the case δn = 1/n.
Actually, we will condider the integrals

Xk = E

∫
|z|=r

log2 |Ψ′
k|

and show that
X0 ≥ const log

1
r − 1

.

Since ∫
|z|=s

log2
∣∣∣∣∣ ψ′

δk

ψ′
δk

(∞)

∣∣∣∣∣ 	 δ4k
(δk + s− 1)3

, (1 ≤ s ≤ 2),

reasoning as above we have

X0 	
n∑

k=1

δ4kAk,

where

Ak = E

∫
|z|=r

(δk + |Ψk| − 1)−3

≥
[
δk + E

(∫
|z|=r

(|Ψk(z)| − 1)

)]−3

≥ const

[
δk + (r − 1) +

∞∑
ν=k

δ2ν

]−3

.
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The latter inequality can be justified as follows. Denote

aν = E

∫
|z|=r

(|Ψν | − 1).

Then
aν−1 = E

∫
|z|=r

ην(|Ψν |),

where
ην(s) =

∫
|z|=s

(|ψδν | − 1) ≤ (s− 1) + const δ2ν ,

and therefore,
aν−1 − aν ≤ const δ2ν .

It follows that

X0 ≥ const
n∑

k=1

1
k4

1
[(r − 1) + k−1]3

≥ const
1/(r−1)∑
k=1

1
k
	 log

1
r − 1

.

Let us finally show how to estimate the intergal means in the case∑
δ−2
k k−3 <∞. Reasoning as above we have

E

∫
∂D

log2 |Ψ′
k| 	

n∑
1

δ4kAk,

where
Ak = E

∫
∂D

(δk + |Ψk| − 1)−3.

Denote also

Bk = E

∫
∂D

(δk + |Ψk| − 1)−2,

Dk = E

∫
∂D

(δk + |Ψk| − 1)−1,

Gk = E

∫
∂D

log
1

δk + |Ψk| − 1
.

Since for ψ = ψδ and s ∈ (1, 2),

log
1

δ + s− 1
−
∫
|z|=s

log
1

δ + |ψ| − 1
≥ const

δ2

δ + s− 1
,

1
(δ + s− 1)m

−
∫
|z|=s

1
(δ + |ψ| − 1)m

≥ const
δ2

(δ + s− 1)1+m
, (m ≥ 2),
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we have

∆Bk 	 δ2kAk,

∆Dk 	 δ2kBk,

∆Gk 	 δ2kDk.

Observe that Gk ≤ const logk. If we assume that the sequence {δn} is sufficiently
regular, then we obtain the following:

n∑
1

δ4kAk 	
n∑
1

δ2k∆Bk

	 O(1) +
n∑
1

∆Gk

δ2kk
2
≤ O(1) + const

∞∑
1

1
δ2kk

3
<∞.

61



References

[AB] L. Ahlfors, A. Beurling, Conformal invariants and function theoretic null sets, Acta

Math. 83 (1950), 101–129.

[ADU] J. Aaronson, M. Denker, M. Urbanski, Ergodic theory for Markov fibred systems and

parabolic rational maps, Transactions A.M.S. 337 (1993), 495–548.

[Ba1] A. Baernstein, Coefficients of univalent functions with restricted maximum modulus,

Complex Variables 5 (1986), 225–236.

[Ba2] A. Baernstein, A counterexample concerning integrability of derivatives of conformal

mapping, J. Analyse Math. 53 (1989), 253–268.

[Bo1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lec-
ture Nores in Math. 470 (1975), Springer-Verlag.

[Bo2] R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES 50 (1979), 11–26.

[Br] H. Brolin, Invariant sets under iterations of rational functions, Ark. Mat. 6 (1965),

103–144.

[C1] L. Carleson, On the distortion of sets on a Jordan curve under conformal mapping, Duke

Math. J. 40 (1973), 547–559.

[C2] L. Carleson, Estimates of harmonic measure, Ann. Acad. Sci. Fenn. 7 (1982), 25–32.

[C3] L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad.

Sci. Fenn. 10 (1985), 113–123.

[CG] L. Carleson, T. Gamelin, Complex Dynamics, Springer-Verlag, 1993.

[CJ] L. Carleson, P. Jones, On coefficient problems for univalent functions and conformal
dimension, Duke Math. J. 66 (1992), 169–206.

[CJY] L. Carleson, P. Jones, J.-Ch. Yoccoz, John and Julia (preprint).

[CM] L. Carleson, N. Makarov, Some results connected with Brennan’s conjecture, Ark. Mat.
32 (1994), 33–62.

[DU] M. Denker, M. Urbanski, Hausdorff and conformal measures on Julia sets with a ratio-
nally indifferent periodic point, J. London Math. Soc. 43 (1991), 107–118.

[F] K.J. Falconer, Fractal Geometry-Mathematical Foundations and Applications, Wiley &
Sons, 1990.

[FM] J. Feng, T. MacGregor, Estimates of integral means of the derivative of univalent func-

tions, J. Analyse Math. 29 (1976), 203–231.

[H] T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, B. Shraiman, Fractal measures and their

singularities: the characterization of strange sets, Phys. Rev. A(3) 33 (1986), 1141–1151.

[IL] I.A. Ibragimov, Ju.V. Linnik, Independent and Stationary Dependent Variables, Nauka,

1965.

[IM] C. Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes
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