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The purpose of this paper is to prove some new variants on the harmonic analyst’s
uncertainty principle, i.e. interplay between the support of a function and its Fourier
transform, and to apply them to some questions in spectral theory. These results were
suggested by work on the one dimensional Anderson model due to Campanino-Klein and
others.

The paper consists of two parts, sections 2-3 and 4-5. Both parts depend on some
preliminary lemmas about characteristic functions of probability distributions, which are
proved in section 1.

The results in sections 2-3 are related to the approach to the Anderson model origi-
nating in [2] and [17], based on analyzing the formulas arising from the supersymmetric
replica method, and they lead to improvements of the estimates in these papers. In partic-
ular, this makes the method from [2] and [17] applicable also to questions about Bernoulli
type models such as Holder continuity of the density of states.

We now describe these results from the analysis point of view. Let

ρ(x) = min(1,
1

|x|) (1)

and make the following definition: a set E ⊂ Rn is ε-thin if

|E ∩D(x, ρ(x))| ≤ ε|D(x, ρ(x))|

for all x ∈ Rn, where D(x, r) is the disc centered at x with radius r and | · | is Lebesgue
measure. We also let Ec be the complement of the set E.

Theorem 2.1 There are ε > 0 and C <∞ such that if E and F are ε-thin sets in Rn then
for any f ∈ L2

‖f‖2 ≤ C(‖f‖L2(Ec) + ‖f̂‖L2(F c)) (2)
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Here f̂ (ξ)
def
=
∫
R

n f(x)e−2πix·ξdx is the Fourier transform of f . Theorem 2.1 is evidently

a version of the uncertainty principle - the fact that f and f̂ cannot both be concentrated
on small sets. There are numerous related results in the literature, e.g. Logvinenko and
Sereda [20] gave sharp conditions on F under which (2) holds if E = D(0, 1), and Amrein
and Berthier [1] showed that (2) holds if both E and F have finite volume. Further results
may be found in the survey article [9] and the book [15]. The form of Theorem 2.1 is
dictated by the application we want to make. However, Theorem 2.1 is also sharp in a
certain sense - see the remark after the proof.

Let G be a function on Rn with ‖G‖∞ = 1 and define an operator TG : L2 → L2 via

TGf = Ĝf

Clearly ‖TG‖ = 1 and in practice, one sometimes needs to bound the spectral radius of
TG away from 1. We will use Theorem 2.1 to prove the following:

Theorem 2.3 Suppose that µ and ν are probability measures on the line, neither of which
is a unit point mass and that Q1, Q2 are nondegenerate quadratic forms1 in Rn. Let G
and H be functions on Rn such that

|G(x)| ≤ |µ̂(Q1(x))|

|H(x)| ≤ |ν̂(Q2(x))|
Then

‖THTG‖L2→L2 ≤ ρ

where ρ < 1 depends only on µ, ν, Q1 and Q2. Indeed, we can take ρ = 1−C−1λ2γ where
C > 0 depends only on Q1 and Q2; here γ and λ are any numbers in (0, 1) such that

µ× µ({(x, y) ∈ R× R : |x− y| ≥ λ}) ≥ γ (3)

ν × ν({(x, y) ∈ R× R : |x− y| ≥ λ}) ≥ γ

Of course, any measure other than a unit point mass will satisfy (3) for some λ ∈ (0, 1)
and γ ∈ (0, 1).

We prove Theorems 2.1 and 2.3 in section 2 and in section 3 we apply Theorem 2.3
to the Anderson model. We give an alternate proof of Le Page’s theorem on Holder
continuity of the density of states using ideas from [2] and extend the proof of localization
in [17] to the case of Bernoulli models. See Propositions 3.3 and 3.6 below.

In the second part of the paper (sections 4 and 5) we prove quantitative results on
nonexistence of almost invariant vectors. First suppose that ν is a probability measure
on Rn satisfying the condition analogous to (3):

ν × ν({(x, y) ∈ Rn × Rn : |x− y| ≥ λ}) ≥ γ (4)

1By this we mean that Q(x) =< Ax, x > with A an invertible real symmetric matrix.
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Let I be the unitary operator on L2(Rn) associated with reflection in the unit sphere, i.e.

If(x) = |x|−nf(x∗) (5)

where x∗ = x
|x|2 . The following result is a special case of Theorem 4.1 below.

Theorem 4.1.0 Let Tf = ν ∗ If . Then ‖T 2‖L2→L2 ≤ 1 − C−1λ2 where C depends on
n and γ.

In addition to Theorem 4.1 we prove a similar result for general representations of
SL(2,R), Theorem 4.5. We then use this (via the equation for Furstenburg’s invariant
measure) to refine some of the known results on the Anderson model, e.g. we prove a
quantitative result for the Liapunov exponent (Corollary 4.7) and a refinement of LePage’s
theorem (Proposition 4.8) asserting that inside the spectrum of the Laplacian the bounds
are independent of the disorder as the disorder goes to zero.

In section 5 we prove an analogous result (Theorem 5.1) for the action of suitable
symplectic matrices on the lagrangian grassmannian instead of projective space. Analyt-
ically this means that we prove an analogue of Theorem 4.1.0 on the space of symmetric
matrices, with inversion of matrices replacing the euclidean inversion x → x∗.

We now explain briefly why the results in the two parts of the paper are related.
Namely, the operators f → µ ∗ If and the operators of type Tµ̂◦Q which arise from the
supersymmetric replica method are related by the metaplectic representation. For exam-
ple, if one takes n = 1 in Theorem 4.1.0 and makes some minor changes in the definitions
(defines If(x) to be x−1f(−1

x
) instead of |x|−1f( 1

x
)) then the resulting statement is an

immediate corollary of Theorem 2.3, since the operator f → µ∗If has a realization where
it is of the form Tµ̂◦Q. See e.g. [12], or the proof of Theorem 4.5 for the discrete series
given below. This type of argument is also implicit in papers on the Anderson model such
as [2] and [18], where similar formulas are used without the group theoretic framework.

Added 10/18/97: in an appendix, we also give a different (perhaps more straightfor-
ward) approach to the results in section 4 about almost invariant vectors and prove a
more general statement, Theorem A.1.

Acknowledgments The starting point for this paper was a seminar at California State
University, Northridge on references [2],[16],[17] during the summer and fall of 1995. The
third author is grateful to the CSUN mathematics department and Professors David Klein
and William Watkins for office space. We thank Abel Klein for pointing out reference [3]
(see section 4) . The first and third authors were partly supported by NSF.

1. Some lemmas on characteristic functions
The purpose of this section is to obtain a certain thinness property of the set where

the characteristic function of a probability distribution is close to its maximal possible
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value 1, which will be used in all the subsequent arguments.

Lemma 1.1 Let µ be a probability measure on Rn which is not a single Dirac mass and
let Eδ = {ξ ∈ Rn : |µ̂(ξ)| > 1 − δ}. Then for every ε > 0 there is δ > 0 such that
sup

a∈Rn |D(a, 1)∩Eδ | < ε. In fact, if (4) holds (with λ ∈ (0, 1)) we can take δ = C−1γλ2ε2

where C depends on n only.

Proof We use the following fact about the cosine function, which holds (uniformly over
k ∈ Rn and α) since the image of the set in question under the map ξ → ξ · k

|k| is a union

of intervals of length ≈ |k|−1
√
α centered at integer multiples of |k|−1.

sup
a∈Rn

|{ξ ∈ D(a, 1) : cos(2πk · ξ) > 1 − α}| ≤ Cα1/2 max(1, |k|−1) (6)

Fix a and let Ea

δ
= Eδ ∩D(a, 1). We clearly have

(1 − 2δ)|Ea

δ | ≤
∫

Ea

δ

|µ̂(ξ)|2dξ (7)

On the other hand∫
Ea

δ

|µ̂(ξ)|2dξ =

∫
R

n

∫
R

n

∫
Ea

δ

cos(2πξ · (x− y))dξdµ(x)dµ(y)

Let α satisfy Cα
1
2 = 1

2
|Ea

δ
|λ, with C as in (6). Then∫

Ea
δ

cos 2πξ · (x− y)dξ ≤ |Ea
δ ∩ {ξ : cos(2πξ · (x− y)) > 1 − α}|

+(1 − α)|Ea
δ ∩ {ξ : cos(2πξ · (x− y)) ≤ 1 − α}| (8)

If |x− y| ≥ λ, then (6) implies

|Ea
δ ∩ {ξ : cos(2πξ · (x− y)) > 1 − α}| ≤ 1

2
|Ea

δ |λmax(1, |x− y|−1)

≤ 1

2
|Ea

δ |

since λ ≤ 1. By (8), ∫
Ea

δ

cos(2πξ · (x− y))dξ ≤ (1 − α

2
)|Ea

δ|

when |x− y| > λ. Hence,∫
Ea

δ

|µ̂(ξ)|2dξ ≤ (1 − α

2
)|Ea

δ |γ + |Ea
δ |(1 − γ)

= (1 − αγ

2
)|Ea

δ |
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Combining this with (7) we conclude that δ ≥ αγ
4

. By choice of α this means that
δ ≥ C−1γλ2|Ea

δ |2. This is equivalent to the lemma. �

The next lemma and corollary are variants on Lemma 1.1 which will only be needed
in section 5.

Lemma 1.2 Let µ be a probability measure on Rn and assume that for certain constants
γ and A with γ > 0, and for a certain λ ≤ 1,

µ× µ({(x, y) ∈ Rn × Rn : |x− y| ≥ Aλ}) ≤ γ

2
(9)

If e is a unit vector in Rn then

µ× µ({(x, y) ∈ Rn × Rn : |(x− y) · e| ≥ λ}) ≥ γ (10)

Then, for a suitable constant C depending on γ, A and n the set

E
def
= {ξ ∈ Rn : |µ̂(ξ)| ≥ 1 − C−1ε2λ2}

satisfies the estimate

|{t ∈ R : t = x · e for some x ∈ E ∩D(a, 1)}| < ε

for all a ∈ Rn and all unit vectors e ∈ Rn.

Remarks (1) Condition (10) is the natural analogue here for the assumption in Lemma
1.1. However, (10) by itself does not imply the conclusion of the lemma. This may be
seen (say when n = 2) by taking µ to be the direct product of two copies of the measure
1
2
(δ−N + δN), e with irrational slope and using Dirichlet’s theorem on approximation of

irrationals by rationals. The conclusion will not hold uniformly in N as N → ∞.
(2) Any fixed probability measure on Rn which is not supported on a hyperplane will

satisfy the hypotheses of Lemma 1.2 for some choice of γ, any large A and some λ. In
fact, the hypotheses hold uniformly over any set of probability measures which is weak∗
compact and contains no measure supported on a hyperplane. This may be proved by
a suitable compactness argument. Furthemore, the assumptions are dilation invariant in
the following sense. If µ is a measure and t ∈ R+ then we let µt be the t-dilation of µ, i.e.

µt(E)
def
= µ(t−1E) (11)

If µ satisfies the hypotheses with λ = λ0, then µt will satisfy the hypotheses with the
same values of A and γ and with λ = tλ0.
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Proof of Lemma 1.2 Define

∆ = {x1, . . . , xn, y1, . . . , yn ∈ (Rn)2n : |yj − xj| ≤ Aλ ∀j and | det({yj − xj}n
j=1)| ≥ λn}

Claim 1
2n times︷ ︸︸ ︷
µ× . . .× µ(∆) ≥ C−1

Proof We consider the set of all 2n-tuples xj, yj (j ≤ n) which can be obtained by the
following recursive process: x1 and y1 are arbitrary points of Rn such that λ ≤ |y1−x1| ≤
Aλ. If 2 ≤ k ≤ n and if xj and yj have been chosen for j < k, then denote the orthogonal
projection of Rn on the orthogonal complement of sp({xj − yj}j<k) by P , and let xk and
yk be any points of Rn such that |P (xk − yk)| ≥ λ and |xk − yk| ≤ Aλ. The assumptions
imply that the µ × µ measure of the allowable pairs (xk, yk) is bounded below by γ

2
at

each stage. Accordingly, the µ × . . . × µ-measure of the set of 2n- tuples obtained this
way is bounded below by (γ

2
)n. On the other hand, some simple linear algebra implies

that |det(yj − xj)| ≥ λn for any such 2n-tuple, so Claim 1 is proved.

Claim 2 below will play the same role as did (6) in the proof of Lemma 1.1.

Claim 2 Let a ∈ Rn with radius 1, assume (x1, · · · , xn, y1, · · · , yn) ∈ ∆ and define

Σ = {ξ ∈ D(a, 1) : Πn
j=1 cos(2π(xj − yj) · ξ) ≥ 1 − ρ2λ2}

Then Σ is contained in the union of C discs of radius ρ. In particular, if e is any unit
vector in Rn then

|{t ∈ R : t = x · e for some x ∈ Σ}| ≤ Cρ

where C depends on n and γ.

Proof First consider the case where xj − yj = λej, where ej is the jth standard basis
vector. Then the set in question is contained in a Cρ-neighborhood of (2λ)−1Zn, so the
claim is obvious (recall that λ ≤ 1). The general case then follows since by definition of
∆, there is a linear map T ∈ GL(n) with T (λej) = xj − yj and such that ‖T‖ and ‖T−1‖
are bounded by constants.

In proving the lemma we may of course assume that e = en. We will denote variables
in Rn by ξ = ξ + te with ξ ∈ Rn−1 × {0} and t ∈ R. We fix a ∈ Rn and, for t ∈ R,
we let V (t) = sup(|µ̂(ξ)| : ξ ∈ D(a, 1), ξn = t). Fix a number δ and consider the set

Yδ
def
= {t ∈ R : V (t) ≥ 1 − δ} and the quantity∫

Yδ

V (t)2ndt (12)
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which is evidently ≥ (1 − δ)2n|Yδ |. On the other hand, (12) is

≤
∫

Yδ

sup

|ξ|≤1

|µ̂(a+ ten + ξ)|2ndt

=

∫
Yδ

 sup

|ξ|≤1

∫
R

2n
Πn

j=1 cos(2π(a + ten + ξ) · (xj − yj))dµ(x1)dµ(y1) . . . dµ(xn)dµ(yn)

dt

≤
∫

Yδ

∫
R

2n
sup
|ξ|≤1

Πn
j=1 cos(2π(a + ten + ξ) · (xj − yj))dµ(x1)dµ(y1) . . . dµ(xn)dµ(yn)dt (13)

We will denote the measure
2n times︷ ︸︸ ︷
µ× · · · × µ

by m. We subdivide the integral with respect to m in (13) into the contributions from ∆
and ∆c. Of course∫

Yδ

∫
∆c

sup

|ξ|≤1

Πn
j=1 cos(2π(a+ten+ξ)·(xj−yj))dµ(x1)dµ(y1) . . . dµ(xn)dµ(yn)dt ≤ |Yδ |m(∆c)

On the other hand, if (x1, . . . , xn, y1, . . . , yn) ∈ ∆ then for any ε, Claim 2 implies

sup

|ξ|≤1

Πn
j=1 cos(2π(a+ ten + ξ) · (xj − yj)) ≤ 1 − C−1ε2λ2

for all t ∈ I except a set of measure ε. Accordingly, if |Yδ | > ε then∫
Yδ

∫
R

2n
sup

|ξ|≤1

Πj cos((k + ten + ξ) · (xj − yj))dµ(x1)dµ(y1) . . . dµ(xn)dµ(yn)dt

≤ m(∆)[(|Yδ| − ε)(1 − C−1ε2λ2) + ε]

So |Yδ | > ε implies

(1 − δ)2n|Yδ| ≤ m(∆c)|Yδ| +m(∆)[(|Yδ| − ε)(1 − C−1ε2λ2) + ε]

= |Yδ | −C−1m(∆)(|Yδ| − ε)ε2λ2

If |Yδ| ≥ 2ε then it follows that (1 − δ)2n ≤ 1 − C−1m(∆)ε2λ2. Since m(∆) ≥ C−1 by

Claim 1 this means that δ & ε2λ2, finishing the proof of the lemma. �

The following corollary is what will actually be used below. If µ is a measure in Rn

then define
Σ(µ) = span({x− y : x, y ∈ supp(µ)}) (14)

In other words, we take the smallest affine plane containing the support of µ and translate
it to the origin.
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Corollary 1.3 For any given probability measure µ on Rn there is a constant C = Cµ such
that the following holds for all λ ∈ [0, 1], all ε > 0, all unit vectors e ∈ Σ(µ) and all
a ∈ Rn. Define

Eλ = {ξ ∈ Rn : |µ̂λ(ξ)| ≥ 1 −C−1ε2λ2}
Then

|{t ∈ R : t = x · e for some x ∈ Eλ ∩D(a, 1)}| < ε

The constant C may be taken uniform over any compact set of probability measures with
a given Σ(µ).

Proof If Σ(µ) = Rn this is the content of Remark (2) after the statement of Lemma
1.2. The general case follows since |µ̂| is constant in directions perpendicular to Σ(µ). �

2. Proof of Theorems 2.1 and 2.3
We fix a radial, real-valued Schwartz function φ : Rn → R with 0 ≤ φ̂ ≤ 1, suppφ̂ ⊂

D(0, 2) and φ̂ = 1 on D(0, 1). For j ∈ Z+ ∪ {0} we let φj(x) = 2jnφ(2jx). Thus

‖φj‖1 = ‖φ‖1, and φ̂j(ξ) = φ̂(2−jξ) so that suppφ̂j ⊂ D(0, 2j+1), φ̂j = 1 on D(0, 2j ).

Let ψ0 = φ̂, and when j ∈ Z+ let ψj = φ̂j−φ̂j−1. Thus suppψj ⊂ D(0, 2j+1)\D(0, 2j−1)
when j ≥ 1, and

∑∞
j=0 ψj = 1. Define now

SNf =
N∑

j=0

ψj · (φj ∗ f)

TNf =
N∑

j=0

ψj · (f − φj ∗ f)

Since the {φj} form an approximate identity and
∑
ψj = 1 with no more than three

terms being simultaneously nonzero, we may conclude that if f ∈ S then SNf and TNf
converge in the topology of S. We denote the limit operators by S and T . Clearly S + T
is the identity operator. One can think of Sf and Tf as f microlocalized to the regions
|ξ| ≤ |x| and |ξ| ≥ |x| respectively.

The proof of Theorem 2.1 will be based on making appropriate L2 estimates for the
operators S and T . The estimates will follow by applying Schur’s test to the integral
kernels of the operators. The following lemma contains the necessary calculations.

Lemma 2.2 Define

AN(x) =
N∑

j=0

ψj(x)φj(x− y)
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BN (ξ, η) =
N∑

j=0

ψ̂j(ξ − η)(1 − φ̂j(η))

Then, for a suitable constant C which is independent of N ,

(i)
∫
|AN(x, y)|dy ≤ C for all x.

(ii)
∫
|AN(x, y)|dx ≤ C for all y.

(iii)
∫
|BN (ξ, η)|dη ≤ C for all ξ.

(iv)
∫
|BN(ξ, η)dξ ≤ C for all η.

Furthermore, if E and F are ε-thin then

(v)
∫

E
|AN(x, y)|dy ≤ Cε for all x.

(vi)
∫

F
|BN(ξ, η)|dξ ≤ Cε for all η.

We will first complete the proof of Theorem 2.1 assuming Lemma 2..2 and will then
prove Lemma 2.2.

Proof of Theorem 2.1 Note that

SNf(x) =

∫
AN(x, y)f(y)dy

and

T̂Nf (ξ) =

∫
BN (ξ, η)f̂ (η)dη

Consequently, by (i)-(iv) of Lemma 2.2 and Schur’s test, the operators S and T extend
to bounded operators on L2 satisfying S + T =identity. Furthermore, if we let χE denote
the indicator function of the set E, then using (ii) and (v) (respectively (iii) and (vi)) and
Schur’s test, we have

‖S(χEf)‖2 ≤ Cε
1
2‖f‖2 (15)

‖χF T̂ f‖2 ≤ Cε
1
2‖f‖2 (16)

Suppose now that f is given, with ‖f‖2 = 1. Then

f̂ = ̂S(χEcf) + Ŝ(χEf) + χF cT̂ f + χF T̂ f

and therefore, using (15),(16),

‖f̂ − ̂S(χEcf) − χF cT̂ f‖2 ≤ Cε
1
2

If ‖f‖L2(Ec) ≤ α, say, then we conclude that

‖f̂‖L2(F ) ≤ ‖f̂ − χF cT̂ f‖2

≤ C(α+ ε
1
2 )

≤ 1√
2
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provided ε and α have been chosen small. So ‖f̂‖L2(F c) ≥ 1√
2

and the proof is complete.

Proof of Lemma 2.2
(i) For fixed x there are at most three values of j for which ψj(x) 6= 0. Furthermore

‖ψj‖∞ ≤ 1 for any j, and ‖φj‖1 = ‖φ‖1 for any j. We conclude that the integral in (i) is
≤ 3‖φ‖1.

(ii) Fix y and let
∑

∗ denote the sum over all j ∈ {0, . . . , N} such that dist(y, supp ψj) ≥
1. There are at most three values of j with dist(y, supp ψj) < 1, and since φ ∈ S we have
|φj(x− y)| ≤ C2jn(1 + 2j |x− y|)−3n, say. Hence∫

|AN(x, y)|dx ≤ 3‖φ‖1 +

∫ ∑
∗

|ψj(x)φj(x− y)|dx

≤ 3‖φ‖1 + C

∫ ∑
∗

|ψj(x)|2jn(1 + 2j|x− y|)−3ndx

≤ 3‖φ‖1 + C
∑
∗

2−2jn‖ψj‖1

= 3‖φ‖1 + C
∑
∗

2−jn‖ψ‖1

≤ C

as claimed.

(iii) and (iv). We rewrite the definition of BN as follows:

BN(ξ, η) =
N∑

j=0

ψ̂j(ξ − η)
∑
i>j

ψi(η)

=

∞∑
i=1

ψi(η)

min(i−1,N)∑
j=0

ψ̂j(ξ − η)

=
∞∑
i=1

ψi(η)φi∗(ξ − η) (17)

where we have set i∗ = min(i− 1, N). Note the similarity between (17) and the definition
of AN(η, ξ). We may therefore prove (iv) by repeating the proof of (i). For (iii), we further
rewrite (17) as

BN (ξ, η) =
N∑

i=1

ψi(η)φi−1(ξ − η) +
∑
i>N

ψi(η)φN (ξ − η)

=
N∑

i=1

ψi(η)φi−1(ξ − η) + (1 − φ̂N(η))φN(ξ − η)
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We have
∫
|(1− φ̂N(η))φN(ξ− η)|dη ≤

∫
|φN(ξ− η)|dη = ‖φN‖1 = ‖φ‖1, and the estimate∫

|
∑N

i=1 ψi(η)φi−1(ξ − η)|dη ≤ C follows by repeating the proof of (ii). This proves (iii).

(v) and (vi). We will only prove (v), since (vi) once again follows by the same argument
in view of (17).

Fix x and let j be such that ψj(x) 6= 0. We claim that∫
E

|φj(x− y)|dy ≤ Cε (18)

If we can prove this we are done as in the proof of (i), since there are only three possible
values for j and the ψj’s are uniformly bounded.

To prove the claim, we use the following simple geometric property of the discs
D(x, ρ(x)): if t > ρ(x), then D(x, t) can be covered by discs of the form D(xk, ρ(xk))
in such a way that ∑

k

|D(xk, ρ(xk))| ≤ C|D(x, t)|

This is true since
|y − x| ≤ ρ(x) ⇒ C−1ρ(x) ≤ ρ(y) ≤ Cρ(x) (19)

See for example [29]. The argument is as follows. Property (19) is easily verified. Now
choose a maximal set of points {xk} ⊂ D(x, t) such that |xk − xj| ≥ min(ρ(xj), ρ(xk))
for all j and k. By maximality, the discs D(xk, ρ(xk)) cover D(x, t). On the other
hand, (19) implies that for a suitable constant C0 the discs D(xk, C

−1
0 ρ(xk)) are disjoint

and contained in D(x, C0t),and therefore
∑

k |D(xk, ρ(xk))| .
∑

k |D(xk, C
−1
0 ρ(xk))| ≤

|D(x, C0t)| . |D(x, t)|.
It follows that

|D(x, t) ∩E| ≤
∑

k

|D(xk, ρ(xk)) ∩ E| ≤ ε
∑

k

|D(xk, ρ(xk))| ≤ Cε|D(x, t)| (20)

for any x and t ≥ ρ(x). Next, if ψj(x) 6= 0 then 2j is comparable to ρ(x)−1. Since φ ∈ S,

we therefore have |φj(x− y)| ≤ Cρ(x)−n(1 + |x−y|
ρ(x)

)−2n, so we may estimate the integral in

(18) by ∫
E

|φj(x− y)|dy .
∑
k≥0

2−2nkρ(x)−n|D(x, 2kρ(x)) ∩ E|

.
∑
k≥0

2−2nkρ(x)−nε(2kρ(x))n

. ε

where we used (20). �
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Remark Theorem 2.1 is sharp in the sense that the rate function ρ(x) cannot be replaced
by one which decays more slowly at ∞. We give the counterexamples in the case n = 1.
Let φ be a fixed C∞

0 function and consider the functions

ΦN (x)
def
=

N∑
j=−N

φ(N(x− j))

Then

Φ̂N (ξ) = DN (ξ)N−1φ̂(
ξ

N
)

where DN (ξ) =
sin(2π(N+1

2
)ξ)

sin(πξ)
is the Dirichlet kernel. Let EA

N = ∪AN
j=−AN (j − A

N
, j + A

N
) and

let FA
N be the complement of EA

N . Then it is not hard to see the following: for any η > 0
there is A <∞ such that for any large N , we have

‖ΦN‖L2(FA
N ) + ‖Φ̂N‖L2(FA

N ) < η‖ΦN‖2

Namely, ΦN will vanish on FA
N due to the support property of φ, and |Φ̂N |2 will have most

of its mass on EA
N since |DN |2 is concentrated near integers and φ̂( ξ

N
) dies out rapidly

when |ξ| is large compared with N .
On the other hand, if ρ is positive and continuous and |x|ρ(x) → ∞ as |x| → ∞, then

for any ε and A, we will have |D(x, ρ(x)) ∩ EA
N | < ε|D(x, ρ(x))| for all x provided N is

sufficiently large. This shows that the rate function in Theorem 2.1 is the optimal one,
as claimed.

However, we do not know whether Theorem 2.1 remains true if “There are ε > 0 and
C <∞ . . .” is replaced by “For all ε < 1 there is C <∞ . . .”.

Proof of Theorem 2.3 Basically, Theorem 2.3 follows by combining Theorem 2.1 and
Lemma 1.1.

Any nondegenerate quadratic form Q has the following property: Q maps each disc
D(x, ρ(x)) onto an interval Ix with |Ix| ∈ [C−1, C ]. Furthermore, if E ⊂ Ix then

|Q−1E ∩D(x, ρ(x))|
|D(x, ρ(x))| ≤ C|E|1/2

This holds essentially because when |x| is large, |∇Q(x)| is comparable to ρ(x)−1. We
leave details to the reader.

We conclude by Lemma 1.1 that for any given ε if δ = C−1γλ2ε2 then the sets

{x ∈ Rn : |µ̂(Q1(x))| > 1 − δ}

{ξ ∈ Rn : |ν̂(Q2(ξ))| > 1 − δ}
are

√
ε−thin. Here C depends on Q1 and Q2 only. Consequently by Theorem 2.1, we can

choose β > 0 and η > 0 depending on Q1 and Q2 so that, with δ = βγλ2 and

E = {x : |G(x)| > 1 − δ}

12



F = {ξ : |H(ξ)| > 1 − δ}
every function f must satisfy either

‖f‖L2(Ec) ≥ η‖f‖2

or
‖f̂‖L2(F c) ≥ η‖f‖2

To finish the proof of the lemma, fix f and consider two cases:

(i) ‖f‖L2(Ec) ≥ η‖f‖2.
(ii)‖f‖L2(Ec) < η‖f‖2.

In case (i) we have

‖Gf‖2
2 = ‖Gf‖2

L2(Ec) + ‖Gf‖2
L2(E)

≤ (1 − δ)2‖f‖2
L2(Ec) + ‖f‖2

L2(E)

≤ ((1 − δ)2η2 + 1 − η2)‖f‖2
2

= ‖f‖2
2 − (2δ − δ2)η2‖f‖2

2

so that ‖HĜf‖2
2 ≤ ‖Gf‖2

2 ≤ (1 − α)‖f‖2
2 with α = (2δ − δ2)η2.

In case (ii) we have also
‖Gf‖L2(Ec) < η‖Gf‖2

since supEc |G| ≤ infE |G|. Therefore

‖Ĝf‖L2(F c) ≥ η‖Ĝf‖2

Then the argument for case (i) shows that

‖HĜf‖2
2 ≤ (1 − α)||Ĝf‖2

2

with α as above. So ‖HĜf‖2
2 ≤ (1−α)‖f‖2

2 and the proof is complete, since α ≈ γλ2. �

Remarks 1. We will need a slight variant on Theorem 2.3 where the definition of TG is
modified as follows

TGf(x)
def
= Ĝf (Ux)

with U being a fixed orthogonal map of Rn. This version can be obtained by applying
Theorem 2.3 as stated with f and Qj replaced by f ◦ U and Qj ◦ U .

2. A generalization of Theorem 2.3 is possible where one of the two measures µ or ν
is allowed to be a unit point mass at a point a ∈ R provided a 6= 0. Namely, if we assume
that µ is not a unit point mass and that ν is not a unit point mass at the origin, then
‖Tµ̂◦Q1Tν̂◦Q2Tµ̂◦Q1‖L2→L2 < 1. We sketch the proof. Assume that ν is a unit point mass at

13



a point a 6= 0 - this is no loss of generality by Theorem 2.3. Then ν̂ ◦Q2 is an imaginary

Gaussian, which implies that the operator f → ̂Tν̂◦Q2 f̂ may be rewritten in the following
way:

̂Tν̂◦Q2f̂ = c(Γ2)((̂Γ1f) ◦ L)

where Γ1 and Γ2 are imaginary Gaussians, L is a linear change of variable and c is a
constant with |c| = | detL| 12 . Let L̃ = (L−1)t. We will also let Ff = f̂ and will use a lot
of parentheses in order to clarify the order of operations, e.g. in the preceding formula

c(Γ2)((̂Γ1f) ◦ L) means c times Γ2 times the composition of (̂Γ1f) with L. Then

Tµ̂◦Q1Tν̂◦Q2Tµ̂◦Q1f = cF ((µ̂ ◦Q1)(Γ2)(F(Γ1(µ̂ ◦Q1)f) ◦ L))

= c−1F
(
(µ̂ ◦Q1)(Γ2)(F((Γ1 ◦ L̃)(µ̂ ◦Q1 ◦ L̃)(f ◦ L̃))

)
= c−1TGTH(f ◦ L̃)

where G = (Γ2)(µ̂ ◦ Q1) and H = (Γ1 ◦ L̃)(µ̂ ◦ Q1 ◦ L̃). We now apply Theorem 2.3
with both measures equal to µ and with Q2 = Q1 ◦ L̃. It follows that for an appropriate
constant ρ < 1,

‖Tµ̂◦Q1Tν̂◦Q2Tµ̂◦Q1f‖ ≤ ρ|c|−1‖f ◦ L̃‖ = ρ‖f‖
as claimed.

3. Consequences of the supersymmetric formalism
We will first summarize some things to be found for example in [2], with some slight

modifications since we are using a different normalization of the Fourier transform and
also want to work directly with two dimensional Euclidean Fourier transforms instead of
using Hankel transforms as is done there. We refer to [2], [17] for further details.

If f is a (nice enough) function on the half line R+ then let us define

Df = − 1

π
f ′

We may consider f(|x|2), a radial function on R2. Its two dimensional (Euclidean) Fourier
transform is another radial function, hence of the form g(|ξ|2). We denote g by Tf .
Furthermore, we denote the operator TD (i.e. D followed by T ) by S. Then we have the
following fact. (cf. [16] for example)

Lemma 3.1 DS = T .

Now consider an interval Λ = {−l, . . . , l} ⊂ Z and a Schrodinger operator on Λ, i.e.
an operator H = ∆+V where ∆u(n) = 1

2
(u(n+1)+u(n−1)) and V is multiplication by

a function V (n), with Dirichlet boundary conditions. If im(z) > 0, and m,n ∈ Λ, then we

14



let GΛ(m,n, z) be the Green’s function, i.e., the matrix GΛ(m,n, z)m∈Λ
n∈Λ

which is inverse

to H − z · identity. The basic formula (cf. [2]) is as follows.
Let βj(r) = e−2πi(Vj−z)r and also let βj be the operator on functions defined by mul-

tiplication by the function βj. Then, when m ≤ n (and imz > 0), GΛ(m,n, z) is equal
to

2im−n+1

∫
((Πm−1

j=−lSβj)1)(|x|2))((Πn−m−1
j=0 Tβn−j)(Π

l−n−1
j=0 Sβl−j)1)(|x|2)βm(|x|2)dx (21)

Here, if Oj are (noncommuting) operators, then we use Πn
j=1Oj to denote the operator

OnOn−1 . . .O1, etc. Thus for example the expression ((Πm−1
j=−lSβj)1)(|x|2) means start

with the constant function 1, apply the operator β−l, then S, then β−l+1 and so forth and
evaluate the resulting expression at |x|2. In the case of the Anderson model with single
site distribution ν, taking expectations in the above formula for G(0, 0, z) leads [2] to

E(G(0, 0, z)) = 2i

∫
R

2
((SΓ)l1(|x|2))2Γ(|x|2)dx (22)

where we have let Γ(r) = ν̂(r)e2πizr and have also used Γ to denote the operator of
multiplication by Γ. An analogous formula for the expectation of |G(m,n, z)|2 may be
obtained in the same way, cf. [17] and (34) below.

Consider functions on R+ of the form

yζ(r) = e2πiζr, where imζ > 0 (23)

It is easy to check that
Syζ = y−1

4ζ
(24)

In particular, the class of such functions is closed under S. Note that it is also closed
under forming products. An important consequence is that (SΓ)n1 in (22), and other
similar expressions to be considered below, have L∞ norm ≤ 1, since they are averages of
functions of the form yζ with respect to a probability distribution.

Now let gl(z) = E(G(0, 0, z)), where G is the Green’s function for the Anderson model
on {−l, . . . , l} with single site distribution ν. We assume that∫

|x|dν(x) <∞ (25)

We denote z = E + iη, E, η ∈ R and will always assume that η > 0. We will prove the
following:

Proposition 3.3 For any ε0 > 0 there are ε1 > 0 and C < ∞, depending on ν, ε0 and a

bound for |E|, so that if η ≤ 1
2

and l > ε0 log 1
η

then |gl(z)| ≤ Cη−(1−ε1).
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An immediate corollary is Holder continuity of the integrated density of states for the
Anderson model on Z with single site distribution satisfying (25). Namely, by letting
l → ∞ in Proposition 3.3 we obtain the bound

|g(z)| ≤ Cη−(1−ε1)

for all z = E+ iη with 0 < η < 1
2
. Since g(z) is the z-derivative of the harmonic extension

of the integrated density of states, this bound is equivalent to Holder continuity (cf. [27],
ch. 5). One can also obtain an estimate of the finite volume density of states directly from
Proposition 3.3 using that the expected number of states in the interval (E − η, E + η) is
≤ Clη imgl(E + iη).

Remarks The assumption on l in Proposition 3.3 is easily seen to be best possible. This
argument is in [26]. Namely, if ν is Bernoulli, then there are only 22l+1 possible choices
for H on {−l, . . . , l}, hence (being generous) at most (2l + 1)22l+1 possible eigenvalues.
So gl is the Borel transform of a measure with ≤ (2l + 1)22l+1 mass points and then it
follows that supE imgl(E+ iη) & ((2l+1)22l+1η)−1, which is large compared with η−(1−ε)

for fixed ε if l is small compared with log 1
η
.

LePage’s theorem is adapted to finite volume in [4], Theorem 4.1, where a result closely
related to Proposition 3.3 is proved. However, it may be of interest that one can argue
directly in finite volume.

We note also that the proof of Proposition 3.3 does not really use stationarity. With
minor changes (mainly in the form of (22)) it works for independent, non-identically
distributed Vj ’s provided (say) that one assumes a uniform bound in (26) and uniform
lower bound on the disorder, i.e. on λ and γ in (4).

We now prove Proposition 3.3. This argument is related to the proof of Lipschitz
continuity of the integrated density of states given in [2], except that by using Theorem
2.3 we can make the relevant estimates without assuming decay of ν̂.

Following [2] we work from formula (22) and define Hilbert spaces H0 and H1 on the
half line as follows

‖f‖2
H0 =

∫
R

2
(
|f(|x|2)|

|x| )2dx

‖f‖2
H1 =

∫
R

2
|f(|x|2)|2 + |Df(|x|2)|2dx

Furthermore we define an operator R as follows: given a (nice) function f on the half
line, consider the function on R2,

f(|x|2) x

|x|2

Its Fourier transform is again of the form

g(|x|2) x

|x|2
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and we define Rf = ig. The following lemma is from [2].

Lemma 3.4 Sf = f(0) + Rf . In particular, if f vanishes at 0 then so does Sf , and Rf
and Sf coincide.

Iterating the lemma, it follows that (SΓ)l1 =
∑l

j=0(RΓ)j1. Furthermore, by the

Plancherel theorem, R is an isometry on H0 and (using Lemma 3.1) S is an isometry
on H1. By Theorem 2.3 applied to the functions x

|x|2f(|x|2) with the quadratic form

Q(x) = |x|2, we also have

‖(RΓ)jf‖H0 ≤ ρj‖f‖H0 (26)

for j ≥ 2, where ρ < 1 depends on ν only. Furthermore, since (25) implies that ν̂ ′ is
bounded, it is easily checked that

‖SΓf‖H1 ≤ A‖f‖H1 (27)

where A depends on a bound for |E|.
In order to exploit (26) and (27), we let φ be a C∞

0 function which is equal to 1 in a
neighborhood of the origin. We define φt(x) = φ(t−1x). We also fix an index k ≥ 2 and
may then express (SΓ)l1 for l > k in the following form:

(SΓ)l1 =

l∑
j=k

(RΓ)j1 + (SΓ)kφ+ (RΓ)k(1 − φ) (28)

In view of (27), the second term satisfies the following estimate:

‖(SΓ)kφ‖H1 ≤ CAk (29)

For the remaining estimates we use the fact that

|Γ(r2)| ≤ e−2πηr2

(30)

and therefore also

‖(1 − φt)Γ‖H0 ≤ C(log
1

η
)

1
2 (31)

provided t ≥ η, say. Taking t = 1 and using (26), we get the following bound for the third
term in (28):

‖(RΓ)k(1 − φ)‖H0 ≤ ρk(log
1

η
)

1
2 (32)

Next, we have the following lemma:

Lemma 3.5 ‖(RΓ)21‖H0 ≤ C(log 1
η
)

1
2
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Proof We have ‖(RΓ)2(1 − φη)Γ‖H0 ≤ ‖1 − φη‖H0 ≤ C(log 1
η
)

1
2 . On the other hand,

define g : R2 → R via g(x) = x
|x|2 (φηΓ)(|x|2). Then ‖g‖

L1(R
2
)
≤ Cη

1
2 . Consequently,

‖ĝ‖∞ ≤ Cη
1
2 or equivalently

|(RΓφη)(r
2)| ≤ Cη

1
2 r

It follows by (30) that

|(ΓRΓφη)(r
2)| ≤ Cη

1
2 re−2πηr2

and therefore that

‖ΓRΓφη‖H0 ≤ C(

∫ ∞

0

ηe−4πηr2

rdr)
1
2

which is bounded independently of η. The lemma follows, since R is an isometry. �

We conclude that the summands in the first term of (28) satisfy

‖(RΓ)j1‖H0 ≤ Cρj(log
1

η
)

1
2 (33)

Combining (28),(29),(32),(33) we conclude that for any k ≥ 2 and l > k, (SΓ)l1 = f + g
with

‖f‖H1 ≤ CAk

‖g‖H0 ≤ Cρk(log
1

η
)

1
2

We now set k equal to ε0 log 1
η

with ε0 a small positive constant. Then (SΓ)l1 = f + g,

where ‖f‖2
H1 ≤ Cη−

1
2 and ‖g‖2

H0 ≤ Cηε1. From (22) and (30), we have

|gl(z)| ≤ C(‖f‖2
H1 + ‖g‖2

H0 sup
r

(r2e−2πηr2

))

≤ Cηε1−1

completing the proof of Proposition 3.3. �

Further remarks 1. Theorem 2.3 can also be used to refine the main estimate in [17] and
extend it to Bernoulli distributions. Given Theorem 2.3, this argument is identical to the
corresponding argument in [17], so we will omit details. If we start from formula (21),
multiply it by its complex conjugate and take expectations, then we obtain the following,
where Gl(m,n, z) is the Green’s function on −l, . . . , l (cf. [17]):

E(|Gl(m,n, z)|2) = 4

∫
R

2×R2
((TΓ)m−nΦn)(x, y)Φm(x, y)Γ(x, y)dxdy (34)

Here T is the R2 ×R2 Fourier transform defined via

Tf(ξ, η) =

∫
R

2×R2
e−2πi(ξ·x−η·y)dxdy
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Γ(x, y) = ν̂(|x|2 − |y|2)e2πiE(|x|2−|y|2)e−2πη(|x|2+|y|2)

and we also use Γ to denote multiplication by the function Γ. Also Φm and Φn are
functions with L∞ norm ≤ 1 (see the discussion in the paragraph before (25)), and
therefore also ‖TΓΦn‖L2(R

2×R2
)
≤ ‖e−2πη(|x|2+|y|2)Φn‖L2(R

2×R2
)
≤ Cη−1 and similarly

‖ΓΦm‖
L2(R

2×R2
)
≤ Cη−1. Theorem 2.3 with the quadratic form Q(x, y) = |x|2 − |y|2

implies the estimate ‖(TΓ)2‖L2→L2 ≤ ρ, where ρ < 1 depends on ν only.2 Applying this
estimate ≈ |m− n| times to the function TΓΦn(x, y), we readily obtain

Proposition 3.6 If ν satisfies (3) then there is an estimate

E(|G(m,n, z)|2) ≤ Ce−C−1λ
2
lη−2

for the Green’s function on {−l, . . . , l}, uniformly in l and m,n ∈ {−l, . . . , l} with |m| ≤ l
4

and |n| ≥ l
2

and z = E + iη with 0 < η ≤ 1. Here C is a positive constant depending on
γ only.

The usual “multiscale” arguments lead from this and Proposition 3.3 to a proof of
localization, see the end of [17] and [8], Theorem 2.3.

2. More generally, the considerations in remark 1 can be applied on any tree with subex-
ponential growth. One can show for example that the spectrum of the Anderson model
is pure point provided the single site distribution is absolutely continuous with bounded
density, since the analogue of Proposition 3.6 can be proved as before using a suitable
generalization of (21) (essentially derived in [16]), and localization then follows using
the Wegner estimate and the theory of rank one perturbations. We omit the proofs.
Molchanov has previously obtained some results of this nature.

4. Inversion operators
If x ∈ Rn then in the introduction we defined

x∗ =
x

|x|2

and we defined a unitary operator I : L2(Rn) → L2(Rn) via If(x) = |x|−nf(x∗).
Let O(n) be the orthogonal group. If V ∈ O(n) then we let IV f = I(f ◦ V −1). We

note that IV is unitary and interchanges functions supported on the unit disc and its
complement.

Theorem 4.1 Assume that µ1 and µ2 are probability measures on Rn satisfying (4). Define
Tµ : L2 → L2 via Tµf = µ ∗ IV f . Then ‖Tµ1Tµ2‖L2→L2 ≤ 1 −C−1λ2 where C depends on
γ and n.

2The R2 × R2 Fourier transform differs from the R4 Fourier transform by an orthogonal change of
variable, so Theorem 2.3 is applicable by remark 1 at the end of section 2.
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The proof is quite simple. In particular, it is based on a standard version of the
uncertainty principle, namely the s = 0 case of the following lemma. Let L2

w be the

weighted L2 space with weight w, i.e. ‖f‖2
L2

w(E) =
∫

E
|f(x)|2w(x)dx, and L2

w

def
= L2

w(Rn).

Also let [α] be the greatest integer ≤ α and {α} = α− [α].

Lemma 4.2 Assume
sup

a∈Rn
|E ∩D(a, 1)| < ε (35)

Fix s ∈ R+ ∪ {0}. Then for a certain κ = κs > 0 and Cs <∞, suppf̂ ⊂ D(0, 1) implies

‖f‖L2
|x|−s (E) ≤ Csε

κ‖f‖L2
|x|−s

(36)

If s < n then we can take κs = 1
2
(1 − s

n
), and the constant Cs may also be taken uniform

over s ∈ [0, a] for any fixed a < n. If s ≥ n we can take κs = 1
n
(1 − { s−n

2
}).

Proof Fix a Schwarz function φ with φ̂ = 1 on D(0, 1). Then f = φ ∗ f . Consider
convolution with φ as an operator from L2

(1+|x|)−s to L2
(1+|x|)−s(E). By Schur’s test its

operator norm is bounded by
√
A1A2 where A1 = supx∈E

∫
|φ(x− y)| (1+|x|) s

2

(1+|y|) s
2
dy and A2 =

sup
y∈Rn

∫
E
|φ(x − y)| (1+|x|) s

2

(1+|y|) s
2
dx. Using the rapid decay of φ it is not hard to show that

A1 . 1 and A2 . ε. We conclude that (36) holds with κ = 1
2

if s = 0, and also for any s
provided the weight |x|−s is replaced by (1 + |x|)−s. Hence

‖f‖L2
|x|−s (E∩D(0,1)c) .

√
ε‖f‖L2

|x|−s

On the other hand, if suppf̂ ⊂ D(0, 1) and ‖f‖L2
|x|−s

= 1 (say) then f must vanish to

order k at 0, where k = [ s−n
2

] + 1 if s ≥ n and k = 0 if s < n. Furthermore, when |x| ≤ 1
the kth derivatives of f are bounded by constants, since

Dαf(x) =

∫
f(y)Dαφ(x− y)dy

=

∫
|y|− s

2 f(y)|y| s
2Dαφ(x− y)dy

≤ ‖f‖L2
|x|−s

‖(1 + |y|) s
2Dαφ‖2

Accordingly |x| ≤ 1 implies |f(x)| . |x|k, and then
∫

E∩D(0,1)
|x|−s|f |2 .

∫
E∩D(0,1)

|x|2k−s .
ε

2k−s+n
n , and one can check that κs in the statement of the lemma is equal to 1

2
(2k−s+n

n
).

�

The next two lemmas are from elementary functional analysis; we include proofs for
the reader’s convenience. (Lemmas like 4.4 are often used in related contexts - see [6],[23])
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Lemma 4.3 Let X, µ be a measure space, H a closed subspace of L2(X, µ), PH the or-
thogonal projection on H and U a unitary operator on L2. Assume that for a certain
A ≥ 1

‖f‖2 ≤ A2(‖PHf‖2 + ‖PHUf‖2) (37)

for all f ∈ L2. Let G1, G2 be functions on X with ‖Gj‖∞ ≤ 1, and define T : L2 → L2

via Tf = G2U(G1f). Fix ρ > 0 and let Ej = {x ∈ X : |Gj(x)| ≥ 1 − ρ}. Assume the
following condition: if h ∈ H, then ‖h‖L2(Ej) ≤ 1

4A
‖h‖2, j = 1, 2.

Then ‖T‖L2→L2 ≤ 1 − C−1ρ, where C depends on A only.

Proof Let α = 1
4A

. we note for future reference that 2
√

2Aα =
√

2
2

and 1−(2A2+2)α2 ≥
3
4
>

√
2

2
. Now fix a function f . If

‖f‖L2(Ec
1) ≥ α‖f‖2 (38)

then ‖G1f‖2
2 ≤ (1−α2ρ)‖f‖2

2, as in the proof of Theorem 2.3. Consequently it suffices to

show that either f satisfies (38) or f̃
def
= U(G1f) satisfies

‖f̃‖L2(Ec
2) ≥ α‖f̃‖2 (39)

We first prove the following:

Claim Assume that g and h are orthogonal in L2 and ‖g + h‖L2(Ec) ≤ α‖g + h‖2,
‖h‖L2(E) ≤ α‖h‖2. Then (unless g = h = 0) ‖g‖2

2 > 2A2‖h‖2
2.

Proof Assume the opposite. Then h 6= 0 and

2 < g, h >L2(Ec) ≤ ‖g + h‖2
L2(Ec) − ‖h‖2

L2(Ec)

≤ α2‖g + h‖2
2 − (1 − α2)‖h‖2

2

= α2‖g‖2
2 − (1 − 2α2)‖h‖2

2

≤ −(1 − (2A2 + 2)α2)‖h‖2
2

whence
2 < g, h >L2(E)≥ (1 − (2A2 + 2)α2)‖h‖2

2

and then by the Schwartz inequality

‖h‖2
2 ≤

2

1 − (2A2 + 2)α2
‖g‖L2‖h‖L2(E) ≤

2
√

2Aα

1 − (2A2 + 2)α2
‖h‖2

2 < ‖h‖2
2

which is a contradiction.

Suppose now that f does not satisfy (38). Then, as in the proof of Theorem 2.3,
G1f also does not satisfy (38). Accordingly, the claim with g = PH⊥(G1f), h = PH(G1f)
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implies that ‖PHG1f‖2 < 1
2A2‖G1f‖2. Likewise, if f̃ does not satisfy (39), then the claim

implies ‖PH f̃‖2 < 1
2A2‖f̃‖2 which is equivalent to ‖PHU(G1f)‖2 < 1

2A2 ‖G1f‖2. Thus

‖G1f‖2 ≤ A2(‖PHG1f‖2 + ‖PHU(G1f)‖2) < ‖G1f‖2

and we have a contradiction. �

Remarks 1. Note that (37) will hold with A = 1 if U maps H onto its orthogonal
complement.

2. Lemma 4.3 remains valid for Hilbert space valued functions. Namely, replace
L2(X, µ) in the statement by L2(X, µ, V ), the L2 functions on X taking values in the
Hilbert space V . The lemma is still valid, with exactly the same proof.

Lemma 4.4 Assume that ν is a probability measure on a space X and that {UE}E∈X is
a (measurable) family of unitary operators on a Hilbert space H. Let T =

∫
UEdν(E).

Then for f ∈ H ∫
‖UEf − f‖2

2dν(E) ≥ 1

2
(1 − ‖T 2‖)

Proof Fix f ∈ H with ‖f‖ = 1. Then

1 − ‖T 2‖ ≤ 1 − re〈T 2f, f〉

=

∫
1 − re〈UEUF f, f〉dν(E)dν(F )

=
1

2

∫
‖UEUFf − f‖2dν(E)dν(F )

≤
∫

‖UEf − f‖2dν(E)dν(F ) +

∫
‖UE(UFf − f)‖2dν(E)dν(F )

= 2

∫
‖UEf − f‖2dν(E)

�

Proof of Theorem 4.1 Let H be the functions whose Fourier transforms are supported
in D(0, 1), let Gj = µ̂j and ρ = C−1λ2, where C is a large constant. Define Ej = {x ∈
Rn : |Gj(x)| ≥ 1 − ρ, as in Lemma 4.3. If ε > 0 is given, then by choosing C = Cε
large enough, we can guarantee that |E ∩ D(a, 1)| < ε for all a ∈ Rn, uniformly in λ -
this follows from Lemma 1.1. If ε is small enough then we conclude by Lemma 4.2 that
‖f‖L2(E) ≤ 1

4
‖f‖2 for all f ∈ H. The conclusion now follows from Lemma 4.3, since IV is

unitary and interchanges functions supported on D(0, 1) and D(0, 1)c. �

When n = 1, V x = −x the operator IV is an element of the principal series represen-
tation P+,0 (cf. [19], p.36) of SL(2,R). We now prove the analogous result for the other
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irreducible unitary representations. We let

J =

(
0 −1
1 0

)
and for E ∈ R we let

sE =

(
1 0
E 1

)
Theorem 4.5 Let ρ be any irreducible unitary representation of SL(2,R) except for the

trivial one dimensional representation. If µ and ν are probability measures on R satisfying
(3) and if ρ(µ) =

∫
ρ(sEI)dµ(E), then ‖ρ(µ)ρ(ν)‖ ≤ 1 − C−1λ2. Here C depends on γ

and on the representation ρ. The dependence on ρ is as follows: if ε > 0 is given then C
may be taken independent of ρ provided (in the notation of [19], section 2.5) ρ is not a
complementary series representation Cu with u > 1 − ε.

Remarks 1. The estimate in Theorem 4.5 generalizes in an obvious way to represen-
tations ρ such that for some ε the direct integral decomposition of ρ does not contain the
trivial representation or the representations Cu, u > 1 − ε.

2. The assumption that ρ not contain Cu for u > 1 − ε is needed. Essentially this
follows from the fact that SL(2,R) does not have property T . For example, [6] (ch. 3,
proofs of Theorem 4 and Proposition 6(i)) gives examples of representations of SL(2,R)
whose restrictions to the subgroup generated by J and τ2 have almost invariant vectors
but no invariant vectors.

3. An analogous result is valid for SL(2,C) and in fact is a bit easier, since there are
no discrete series representations. In the next section, we also prove a result like Theorem
4.1 for the real symplectic group, although at present we don’t have a result for general
representations in that case.

Proof of Theorem 4.5 We will follow the terminology in [19]. We have to discuss the
principal, discrete and complementary series. We let I = ρ(J) and τE = ρ(sE).

As has already been mentioned the case of the principal series representation P+,0 is
simply the one dimensional case of Theorem 4.1. The other principal series representations
differ from this one only in that the definition of I is multiplied by a unimodular factor.
The operators in Theorem 4.1 are positive (in the pointwise sense), hence multiplying
I by a unimodular factor can only decrease the norm of ρ(µ)ρ(ν), so in the case of the
principal series nothing needs to be done.

The complementary series representation Cu acts on the Sobolev spaces W−u
2 ,

‖f‖
W−u

2

def
=

(∫
R

|f̂(ξ)|2
|ξ|u dξ

) 1
2

where in this case 0 < u < 1. The operators τE are translations, τEf(x) = f(x−E). The
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operator I, which we will now denote by Iu, is given by

Iuf(x) = |x|−(u+1)f(
−1

x
)

and ρ(µ) : f → µ ∗ Iuf . Consider the weighted L2 space L2
u

def
= L2

|x|−u(R). Let H = {f ∈
L2

u : suppf̂ ⊂ [−2, 2]}. Define U via Ûf = Iuf̂ and note that UH = {f ∈ L2
u : suppf̂ ⊂

R\(−1
2
, 1

2
).

If f ∈W−u
2 , then f = g + h with suppg ⊂ [−2, 2], supph ⊂ R\(−1

2
, 1

2
) and ‖g‖

W−u
2

+
‖h‖

W−u
2
≤ A0‖f‖W−u

2
; A0 is independent of u ∈ [0, a] for a < 1. It follows by basic

Hilbert space theory that (37) is valid for an appropriate constant A depending on A0

only. Now define Ej = {x ∈ R : |µ̂j(x)| ≥ 1 − C−1λ2} for an appropriate C . Lemma 1.1
and the n = 1, s < 1 case of Lemma 4.2 imply that if C is large enough (depending on
a lower bound for 1 − u and on γ) and if h ∈ H, then ‖h‖L2

|x|−u (Ej) ≤ 1
4A
‖h‖L2

|x|−u
. The

result now follows from Lemma 4.3.
The preceding argument could also be used in the case of the discrete series, but would

not show that the bounds are independent of the representation. Accordingly we will give
a different proof3 based on the metaplectic representation and Theorem 2.3. Consider
the tensor product of two copies of the metaplectic representation of SL(2,R); this gives
a representation on L2(R2). The discrete series representations are subrepresentations
of this one or its conjugate (one reference for this is [12] where an analogous result is
proved for the holomorphic discrete series representations of the symplectic group; other
references are in [10], p.216), and Theorem 2.3 can be applied to the resulting realizations
of the operators ρ(µ) on L2(R2).

Details are as follows. We consider the holomorphic m ∈ Z+; the antiholomorphic
ones are entirely analogous. The argument is elementary so we will avoid quoting results
from the representation theory literature; however the following unitary equivalence is
essentially the one in [12]. Let Hm be the Hilbert space for D+

m+1, i.e., the elements

f ∈ W−m
2 such that f̂ (ξ) vanishes when ξ < 0. Also let F be the R2 Fourier transform.

Define Vm : Hm → L2(R2) via

Vmf(z) =
zm

|z|2m
f̂(

|z|2
2

) (40)

where we use complex notation for points of R2. Then Vm is a scalar multiple of an
isometry and has the following intertwining properties

VmImf = −iFVmf (41)

VmτEf = e−πiE|z|2Vmf (42)

(Proofs: the isometry property follows from the definition of the norm in W−m
2 using

calculus. The formula (42) is obvious. One elementary way to prove (41) is to verify it

3Actually, it would also be possible to reduce the discrete series case to the case of P+,0 using the
“principe de majoration”.
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by hand for functions of the form fa(x) = (x + ia)−(m+1), a > 0; linear combinations of
such functions are dense in Hm. The verification may be reduced to the case a = 1 using
dilations, and on the other hand Imf1 = i−(m+1)f1, and also Vmf1 is a scalar multiple of the
function zme−π|z|2 whence FVmf1 = i−mVmf1 by the Hecke identity) Hence Vm intertwines
the operator ρ(µ) : f → µ ∗ Imf with the operator on L2(R2), f → −i(µ̂ ◦Q)Ff , where
Q(z) = 1

2
|z|2. The product of two operators of the latter type has norm ≤ 1 − C−1λ2 by

Theorem 2.3 and the result follows. �

Remark Theorems 4.1 and 4.5 assert the existence of a “spectral gap” and have the
usual corollaries associated to such results. See [23] and references there.

For example, let Γ be a lattice in PSL(2,R), let M = PSL(2,R)/Γ and let ρ be the

representation of PSL(2,R) on L2
0(M)

def
= {f ∈ L2(M) :

∫
M
f = 0} resulting from the left

action of PSL(2,R) on M . We will assume Γ is cocompact in order to have a convenient
reference (namely [13], p. 47) for the fact that a complementary series representation
Cu can occur in the direct integral decomposition of ρ only if 1−u2

4
is an eigenvalue of

the Laplacian on the corresponding hyperbolic surface H/Γ. It follows that ρ satisfies
the hypothesis in remark 1 after the statement of Theorem 4.5. Fix α1, α2 ∈ R and let
gj = sαjJ , j = 1, 2. Let {γj}2n

j=1 be all words of length n in g1 and g2. Then we have an
estimate

‖2−n

2n∑
j=1

ρ(γj)f‖2 ≤ e−C−1|α1−α2|2n‖f‖2, f ∈ L2
0(M)

uniformly in n ≥ 2, and the resulting mixing properties. Here C depends on a lower bound
for the first eigenvalue of the Laplacian on H/Γ. This follows by applying Theorem 4.5
with µ = 1

2
(δα1 + δα2) and expanding out the definition of T n

µ .
Next let G be the conformal group in Rn, i.e. the group generated by translations,

conformal linear maps and the inversion z → z∗; G acts on L2(Rn) via

Uγ−1 : f → |det(Dγ)| 12f ◦ γ, γ ∈ G

Let Γ be a finitely generated subgroup of G with generators {γj}n
j=1. Assume (i) Γ contains

a parabolic element (i.e. an element which is conjugate to a translation) and (ii) there is
no point of Rn ∪ {∞} which is fixed by all elements of Γ. Then there is ε0 > 0 such that

∀f ∈ L2∃j ∈ {1, . . . , n} : ‖f − Uγjf‖2 ≥ ε0‖f‖2

Namely, by appropriate conjugations we may assume that Γ contains a translation τp
and an element γ mapping ∞ to 0 and furthermore (conjugate γ by a dilation if necessary)
that γ has the form

z → (V z − b)∗

with V ∈ O(n). But then γ ◦ τp is another element of the same form with the same V
and a different b so the result follows in a standard way from Theorem 4.1.
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We now consider applications of Theorem 4.5 to the Anderson model; this is related
e.g. to considerations in [7] and [18]. We would like to consider the strip so we will
now prove a result like Theorem 4.1 which is applicable to the equation for the invariant
measure on projective space.

We will denote points of R2n by (x, y), x, y ∈ Rn, or by (x, xn, y, yn), x, y ∈ Rn−1. We
define P2n−1 in the usual way, i.e. as the lines through the origin in R2n, and will use
the coordinate system obtained by normalizing yn, i.e. the line ` ∈ P2n−1 has coordinates
x, xn, y if (x, xn, y, 1) ∈ `.

By viewing the action of Sp(n,R) on P2n−1 in these coordinates, we get a unitary
representation on L2(R2n−1). Thus, if we denote the action of the element g ∈ Sp(n,R)
on ` ∈ P2n−1 by g`, then the element of the representation corresponding to g ∈ Sp(n,R)
maps f to f ◦ g−1 times an appropriate Jacobian factor. We let I be the element of this
representation corresponding to the matrix

J =

(
0 −I
I 0

)
Also, we let M(n) be the n × n symmetric matrices, and if m ∈ M(n) we let τm be the
representation element corresponding to the matrix

sm
def
=

(
I m
0 I

)
Explicitly,

If(x, t, y) = |t|−nf(
−y
t
,−1

t
,
x

t
)

and if

m =

(
A b
bt c

)
with A an (n− 1) × (n− 1) symmetric matrix, b ∈ Rn, c ∈ R, then

τmf(x, t, y) = f(x− Ay − b, t− b · y − c, y)

If ν is a measure on M(n), then we define τν by integrating the representation, i.e

τνf(x, t, y) =

∫
τmf(x, t, y)dν(m)

We also let ν̃ be the measure on symplectic matrices of the form(
m −I
I 0

)
determined by the measure ν on M(n). Explicitly, we set gm = smJ and let ν̃ be the push
forward of ν by the map m→ gm.

We will work with the following property of ν:
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Condition Cλ: for some k, the conditional measures obtained by freezing all but the
(k, k) entry satisfy (3) with probability at least β.

Explicitly, this means that if we identify M(n) with R
n(n+1)

2 by m↔ {mij}i≤j then for
continuous compactly supported f∫

f(m)dν(m) =

∫
f(m,mkk)dσm(mkk)dρ(m) (43)

where m means {mij}i≤j,(i,j) 6=(k,k), and where ρ is a probability measure on R
n(n+1)

2
−1, and

σm is a probability measure on R for each m and ρ({m : σm satisfies (3)}) ≥ β.
Note this condition is satisfied if the distribution of Mkk is independent of the other

entries and satisfies (3), e.g. by the Anderson model with disorder parameter λ, even if one
randomizes only at one site. Note also that the condition is invariant under translation
of ν so in the Anderson model case the resulting estimates are uniform in the energy E.
Corollary 4.7 below is known (in stronger form) if say n = 1 and the single site distribution
is sufficiently smooth, cf. [22] and [3].

Theorem 4.6 Assume that ν1, ν2 satisfy condition Cλ. Then

‖τν1Iτν2‖L2(R
2n−1

)→L2(R
2n−1

)
≤ 1 − C−1λ2

where C depends on γ and β.

Corollary 4.7 Assume that ν satisfies condition Cλ. Then the largest Liapunov expo-

nent of the measure ν̃ (in the sense of [5]) is ≥ C−1λ
2

n
; C depends on γ and β.

Proof of Theorem 4.6 This is similar to the proof of Theorem 4.1, except that we work
with vector valued functions. Note first that we can assume k = n, since the statement
is invariant under the natural changes of coordinates on projective space. Next, we claim
that it suffices to prove the result in the special case where σ1 and σ2 are two probability
measures on R satisfying (3) and νj = δ0 × σj, where δ0 is the δ-mass at the origin in

R
n(n+1)

2
−1.

For if this is proved, then for any ν1 and ν2 we express as in (43)

dνj(m) = dσj

m(mnn)dρj(m)

Using that smsm′ = sm+m′ for any symmetric matrices m and m′, we have

‖τν1Iτν2‖L2→L2 = ‖
∫
τ(m1,0)τδ0×σ1

m1

Iτδ0×σ2

m2

τ(m2,0)dρ
1(m1)dρ

2(m2)‖L2→L2

≤
∫

‖τδ0×σ1

m1

Iτδ0×σ2

m2

‖L2→L2dρ1(m1)dρ
2(m2)

≤ (1 − C−1λ2)β2 + (1 − β2)

≤ 1 − C−1λ2
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Now let S be the “slab” {(x, xn, y) : −1 ≤ xn ≤ 1} and let H = {f ∈ L2(R2n−1) :
suppf ⊂ S}. Then I interchanges H and H⊥. Let E be a set in R with sup

a∈Rn |E ∩
D(a, 1)| < ε. If f ∈ H then, by the n = 1, m = 0 case of Lemma 4.2 applied to the partial
Fourier transform, ∫

E

|f̂(ξ, ξn, η)|2dξn . ε

∫
R
|f̂(ξ, ξn, η)|2dξn

for any ξ, η. Hence also ∫
E

‖f̂(·, ξn, ·)‖2

L2(R
n−1×Rn−1

)
dξn . ε‖f̂‖2

2

With νj = δ0 × σj we have

τ̂νjf(ξ, ξn, η) = σ̂j(ξn)f̂ (ξ, ξn, η)

Since σj satisfies (3) the result now follows using Lemma 1.1 and the vector valued version
of Lemma 4.3. �

Proof of Corollary 4.7 We will follow the original proof of positivity of the Liapunov
exponent due to Furstenburg [11], incorporating Theorem 4.6 in order to make the result
quantitative. We first reformulate Theorem 4.6 as follows: if ν satisfies Cλ then∫

‖(τmI)−1f − f‖2

L2(R
2n−1

)
dν(m) ≥ C−1λ2 (44)

This follows immediately from Theorem 4.6 and Lemma 4.4.
Because of the upper semicontinuity of the Liapunov exponent under weak conver-

gence, we can assume that ν is absolutely continuous to Lebesgue measure with a C∞
0

density provided we obtain estimates which are independent of this assumption.

Claim: if ν is absolutely continuous with a C∞
0 density then ν̃ has a unique invariant

measure and it is absolutely continuous with respect to the Cauchy measure (i.e. rotation
invariant measure) on P2n−1 with a continuous density.

Here by invariant measure, we mean of course the invariant measure in the sense of
[11],[5]. Thus an invariant measure for ν̃ is a measure µ on P2n−1 such that∫

M (n)

∫
P2n−1

f(gmz)dµ(z)dν(m) =

∫
P2n−1

fdµ (45)

for continuous functions f on P2n−1. The claim is certainly known but we could not find
a reference where it is proved (except when n = 1 [26]) and a very simple argument is
available so we give the argument.
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Namely, any invariant measure with respect to ν̃ is also invariant with respect to any
convolution power of ν̃ on the symplectic group, so by [11], Lemma 8.5 it suffices to show
that some such convolution power is absolutely continuous (to Haar measure on Sp(n,R))
with a continuous density. The matrices of the form(

m −I
I 0

)
generate Sp(n,R) as a Lie group. So by a general lemma of Ricci and Stein (see [28],
p. 209), a suitable convolution power ν̃(k) is absolutely continuous with a density ρ
satisfying an L1 Holder estimate, i.e. in local coordinates dν̃(k)(x) = ρ(x)dx with

∫
|ρ(x+

h) − ρ(x)|dx . |h|ε. It follows that ρ ∈ Lp for some p > 1. Hence, by Young’s inequality
on Sp(n,R), a high convolution power of ρ will be continuous.

We also note the following fact. Suppose that f and g are positive L2 functions on
a measure space X, dx,

∫
f2dx =

∫
g2dx = 1 and

∫
(f − g)2dx = β. Then f2 log+

g
f

is
integrable and ∫

f2 log
g

f
dx ≤ −β

2
(46)

Namely, the integrability follows since f2 log+
g
f
≤ f2 g

f
= fg ∈ L1. Also∫

f2 log
g

f
dx ≤

∫
(
g

f
− 1)f2dx =

∫
fg − f2dx =

1

2

∫
g2 − (f − g)2 − g2dx = −β

2

as claimed.
The Liapunov exponent can be expressed as

λ1 = − 1

2n

∫
log

dg−1
m σ

dσ
(x)dµ(x)dν(m)

where σ is the Cauchy measure. See [5], propositions IV.6.2 and IV.6.4. If φ : P2n−1 →
(0,∞) is continuous, and if we let dσ̃ = φdσ, then we have log dg−1

m σ̃
dσ̃

= log φ◦gm

φ
+log dg−1

m σ
dσ

.
By the invariance property of µ,

λ1 = − 1

2n

∫
log

dg−1
m σ̃

dσ̃
(x)dµ(x)dν(m) (47)

We would like to replace σ̃ by µ here. The Radon-Nikodym derivative f = dµ
dσ

is a
continuous nonnegative function on P2n−1 by the claim. We haven’t shown that it is
nonzero, but we have

∫
| log dµ

dσ
|dµ =

∫
f | log f |dσ < ∞. Using this, an approximation of

log f by continuous functions and the dominated convergence theorem it follows that (47)
is applicable with σ̃ = µ. This can be expressed in coordinates in the following way. Let
g be the density of µ with respect to Lebesgue measure dz on R2n−1. Then

λ1 = − 1

2n

∫
M (n)

∫
R

2n−1
log

(
I−1

1 τ−1
m g(z)

g(z)

)
g(z)dzdν(m)
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where I−1
1 f(x, t, y) = t−2nf(−y

t
,−1

t
, x

t
).

Note that I−1
1 g = (I−1√g)2. So by (46),

λ1 &
1

n

∫
‖√g − (τmI)−1√g‖2

2dν(m)

and now we are done by (44). �

It is also possible to use the m = 1 case of Theorem 4.5 to prove Holder continuity of
the density of states. In fact we will prove a refinement asserting that inside the spectrum
of the Laplacian the bounds in Le Page’s theorem are independent of the disorder for small
disorder. This can also be proved by an extension of the argument in section 3, in fact we
originally did it that way (see [24]). The two arguments are in a sense equivalent since
the operator I1 corresponds to the operator S of section 3 under the unitary equivalence
V1 given by (40). The supersymmetric approach has the advantage that it works directly
in finite volume, but the approach via Theorem 4.5 is shorter so we will do it that way.

We do not have a version of Proposition 4.8 below for the strip and will assume
n = 1 for the remainder of this section. The zero moment assumption on ν is just a
normalization. The compact support could perhaps be weakened but we wanted to avoid
technicalities as much as possible.

Proposition 4.8 Suppose λ ≤ 1 and let ν be a measure which is supported on {x : −Aλ ≤
x ≤ Aλ} and satisfies (3), and assume

∫
xdν(x) = 0. Then, on compact subintervals4

I ⊂ (−2, 2) the integrated density of states for the Anderson model with single site
distribution ν satisfies |k(x)− k(y)| ≤ C|x− y|α where C and α depend only on A, γ and
I (and not for example on λ).

Proof We will actually consider the Liapunov exponent instead of the density of states
which of course is equivalent. We let τE be translation by E, i.e. τEf(x) = f(x − E) for
distributions f , and dνE = τEdν. We let µE be the invariant measure at energy E, i.e.
the measure µE corresponding to ν = νE in (45), and we let λ(E) be the corresponding
Liapunov exponent. We must prove that for E0, E ∈ I there is an estimate |λ(E) −
λ(E0)| . |E − E0|α.

Let Y0 = W− 1
2 , let Y1 be the subspace of L2

1+x2(R) consisting of functions with∫
R fdx = 0, and let Yθ be the complex interpolation space [Y0, Y1]θ. Let µE be the

invariant measure corresponding to energy E. We first prove the following

Claim There are constants α > 0 and C < ∞ such that for sufficiently small θ, the
estimate ‖µE − µE0‖Yθ

≤ C|E −E0|αλ−2 is valid.

4We are normalizing the free laplacian via ∆f(k) = f(k + 1) + f(k − 1) here, rather than including a
factor of 1

2 as in section 3.
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Since the invariant measure behaves correctly under weak convergence we can assume
that ν has a smooth density provided we get bounds which are independent of this as-
sumption. If ν has a smooth density then the invariant measures µE will have (say)
continuous densities, dµE(x) = fE(x)dx with fE(x) ≤ min(1, x−2). This is the one di-

mensional case of the claim in the proof of Corollary 4.7. We also let PE(x) = 1
π

imζ
|x−ζ|2 ,

where

ζ =
E

2
+ i

√
1 − E2

4
(48)

Thus ζ is a point in the upper half plane with absolute value 1. It is a fixed point of the
map z → −1

z−E
, and PE is the corresponding Poisson kernel. It follows that PEdx is an

“invarian measure at zero disorder” i.e.

τEI1PE = PE (49)

a well-known fact (cf. [3]) which can easily be verified by direct computation.
We note the following properties of the spaces Yθ:

(i) If θ < µ then Yµ ⊂ Yθ and ‖f‖Yθ
. ‖f‖Yµ . Furthermore f ∈ Yµ implies translation

of f is Holder continuous into Yθ,

‖τvf − f‖Yθ
. |v| 12 (µ−θ)‖f‖Yµ (50)

Since the Yθ are defined by interpolation it suffices to give the proof when µ = 1, θ = 0.

If f ∈ Y1 then f̂ (0) = 0 and
∫
|f̂ |2 + |f̂ ′|2 < ∞ and it follows that

∫ |f̂(ξ)|2
|ξ| < ∞, i.e.

f ∈ Y0. (50) is a standard fact about Sobolev spaces: ‖τtf−f‖2
Y0

=
∫ |e2πitξ−1|2

|ξ| |f̂(ξ)|2dξ .∫
min(t2|ξ|, |ξ|−1)|f̂(ξ)|2dξ . |t|‖f‖2

L2 ≤ |t|‖f‖2
Y1

.

(ii) If
∫
R fdx = 0 and |f(x)| ≤ Bmin(1, x−2) then ‖f‖Y1 . B. Consequently‖f‖Yθ

.
B for all θ.

This is obvious. It follows that for any θ:

‖PE − τvPE‖Yθ
. |v| (51)

‖PE − νE ∗ I1PE‖Yθ
. λ2 (52)

fE − PE ∈ Yθ (53)

(51) just follows from (ii) using that |dPE

dx
| . min(1, x−2). As for (52), by (i) and (49)

it is equivalent to prove that ‖PE − ν ∗ PE‖Y1 . λ2. The latter is an easy calculation
using that ν has zero first moment. And (53) follows from our a priori hypothesis and
the obvious fact that

∫
fE − PEdx = 0.
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(iii) Define TEf = νE ∗I1f . Then for a certain θ0 > 0 and any θ ∈ [0, θ0], the operator
id−TE is invertible on Yθ with ‖(id − TE)−1‖Yθ→Yθ

. λ−2.

We use id for the identity operator. To prove (iii), we introduce an equivalent norm
‖ · ‖θ,E on Yθ as follows: the new norm on Y1 is the L2

|x−ζ|2 norm, the norm on Y0 remains

the same and the norm on Yθ when 0 < θ < 1 is obtained by interpolation. (this trick
is suggested by an idea in [3]). We let Yθ,E be Yθ with the ‖ ‖θ,E norm. The point is
that the operator f → τEI1f may easily be seen to be an isometry on Y1,E. Furthermore,
using that ν has zero first moment, it is not hard to show that convolution with ν has
norm ≤ 1 + O(λ2) on Y1,E. It follows that T 2

E has norm ≤ 1 + O(λ2) on Y1,E. On the
other hand T 2

E has norm ≤ 1 − C−1λ2 on Y0 by Theorem 4.5. It follows by interpolation
that T 2

E has norm ≤ 1 − C−1λ2 on Yθ,E for θ ≤ θ0, hence ‖(id − TE)−1‖Yθ,E→Yθ,E
≤

‖id + TE‖Yθ,E→Yθ,E
‖(id − T 2

E)−1‖Yθ,E→Yθ,E
. λ−2. This implies (iii) since ‖ ‖θ and ‖ ‖θ,E

are equivalent norms.

The function fE satisfies νE ∗ I1fE = fE and therefore νE ∗ I1(fE − PE) = fE − PE +
PE − νE ∗ I1PE . By (53), this means that fE − PE is obtained from νE ∗ I1PE − PE by
applying the operator (id− TE)−1 : Yθ → Yθ. Hence by (52) and (iii),

‖fE − PE‖Yθ
. λ−2 · λ2 = 1 (54)

We now finish with the proof of the claim. We have fE − fE0 ∈ Yθ by (53) and the
obvious (from (ii)) fact that PE − PE0 ∈ Yθ, and

νE0 ∗ I1(fE − fE0) − (fE − fE0) = (νE0 − νE) ∗ I1fE

= (τE0−E − id)fE

= (τE0−E − id)(fE − PE) + (τE0−E − id)PE

If θ is small, then the first term on the right side in the bottom formula has Yθ norm
. |E −E0|α for suitable α > 0, by (54) and (50). The second term has norm . |E −E0|
by (51). The claim now follows from (iii).

To prove Proposition 4.8, we apply (47) with dσ̃ = PE0(x)dx. This gives the formula
for the difference of Liapunov exponents

λ(E) − λ(E0) =

∫
Γ(x)(fE(x)− fE0(x))dx (55)

where

Γ(x) =

∫
log

(
x2PE0(x)

PE0(E0 + v − x−1)

)
dν(v)

Letting ζ correspond to E0 as in (48) we may rewrite (55) as follows:

x2PE0(x)

PE0(E0 + v − x−1)
= x2 |E0 + v − x−1 − ζ|2

|x− ζ|2

= |(1 + vζ)
z − ζ

1+vζ

z − ζ
|2
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hence

λ(E) − λ(E0) =

∫
Γ̃(x)(fE(x)− fE0(x))dx

where

Γ̃(z) = 2

∫
log

∣∣∣∣∣z −
ζ

1+vζ

z − ζ

∣∣∣∣∣ dν(v) (56)

Because of the claim (with θ = 0) it now suffices to show that ‖Γ̃‖
W

1
2
. λ2. We consider

(56) with z in the lower half space R2
−, and v ∈suppν. The functions

z − ζ
1+vζ

z − ζ

are bounded and bounded away from zero when z ∈ R2
−, uniformly over v for fixed ζ.

Thus (56) defines a bounded harmonic function of z on R2
−. Differentiating under the

integral sign and using the zero moment condition, we obtain

|∂Γ̃

∂z
| . λ2|z − ζ|−2

which implies

(

∫
R

2

−
|∂Γ̃

∂z
|2) 1

2 . λ2

The W
1
2 norm coincides with the Dirichlet integral of the harmonic extension, so the proof

is complete. �

Remarks 1) If one compares Proposition 4.8 and Proposition 3.6 then one sees that
it should be possible to use multiscale analysis as in [8] to prove the following estimate
for the “localization length” in the one dimensional Anderson model, under the same
assumptions as in Proposition 4.8:

Let I be a compact interval contained in (−2, 2). Then with probability 1, all eigen-

functions φ with eigenvalue in I satisfy |φ(m)| ≤ Cφe
−C−1λ2|m|, with C = CAγI being a

fixed constant and Cφ a constant depending on φ.

We omit the proof. It may be found in [24] together with analogous results when the
randomization decays at ∞.

2) We have been unable to answer the following question. Fix a compact subinterval
I ⊂ (−2, 2), and let ν be as in Proposition 4.8. Is the density of states Lipschitz (or
better) on I provided λ is sufficiently small?
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5. The lagrangian grassmannian
The purpose of this section is to prove a result like Theorem 4.6 for the action of Sp(n)

on the Lagrangian (maximal isotropic) subspaces instead of projective space.
We will work in the “noncompact picture”, i.e. with the action on M(n), the n × n

symmetric matrices. We define translation operators τA (A ∈ M(n)) acting on functions
on M(n) via τAf(T ) = f(T−A). The inner product on M(n) is given by 〈A,B〉 =tr(AB),
and other quantities defined in terms of the inner product such as norm and Fourier
transform will be interpreted accordingly. We let D = {A ∈ M(n) : | detA| ≤ 1} and
define an inversion operator on functions via

If(A) = |det A|−n+1
2 f(A−1)

Then I is unitary on L2 and evidently interchanges functions supported on D and on Dc.

Theorem 5.1 Let µ be a probability measure on M(n) and assume that the plane
Σ(µ) ⊂ M(n) (cf. (14)) contains a positive definite matrix. Define Tλ : L2(M(n)) →
L2(M(n)) via

Tλf = If ∗ µλ
where µλ is the dilation of µ by λ, cf. (11). Then, for λ ∈ (0, 1],

‖T 2

λ‖L2→L2 ≤ 1 − C−1λ2

where C depends on µ.

Remarks 1. More precisely, let λn(P ) and λ1(P ) be the largest and smallest eigenvalues
of the matrix P . Then C depends on n, on a bound for the quantity

inf(
λn(P )

λ1(P )
: P ∈ Σ(µ), P positive definite)

and on constants A and γ for which (10) and (9) hold for all e ∈ Σ(µ). It follows for
example that the bound is uniform over the family of all translates of a given measure µ
and over any weak∗ compact family with a given Σ(µ).

2. As with our earlier results, one can also consider the product of operators corre-
sponding to two different measures. Thus if µ1 and µ2 are two measures satisfying the
hypotheses and if T

j,λf = If ∗ µj

λ
, then ‖T

1,λT2,λ‖ ≤ 1−C−1λ2. This follows by making

appropriate (purely notational) changes in the last part of the proof below.

Theorem 5.1 differs from Theorem 4.1 in that the set D is not compact, which means
that the usual “elliptic” uncertainty principle (e.g. Lemma 4.2) is not applicable. We will
base the proof on the fact that the relevant differential operator (the Cayley operator) is
hyperbolic in positive definite directions together with Corollary 1.3 and an uncertainty
principle type lemma for hyperbolic operators, Lemma 5.2 below. This approach is likely
not the shortest possible but it is natural from a certain point of view and Lemma 5.2
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may be of some independent interest. We recall that the Cayley operator (for symmetric
matrices) is the order n constant coefficient differential operator acting on functions on
M(n),

Ω = det


∂

∂t11
. . . ∂

∂t1n

. .

. .

. .
∂

∂t1n
· · · ∂

∂tnn


where {tij} are the entries of the matrix in question.

Let p be a homogenous polynomial in Rd with real coefficients, P (D) = p( ∂
∂x1
, . . . , ∂

∂xj
)

the corresponding constant coefficient differential operator, e ∈ Rd a unit vector, and
assume
(i) p is hyperbolic in the e direction, i.e., if ξ ∈ R then the equation p(ξ − te) = 0 has
only real roots.
(ii) |p(ξ + ie)| ≥ C−1(|ξ| + 1) for any ξ ∈ Rd.
(iii) If {λj(ξ)} are the roots of p(ξ + te) = 0, ordered so that λj(ξ) ≤ λj+1(ξ), then
|λj(ξ) − λj(η)| ≤ C|ξ − η|.
(iv) the set {ξ ∈ Rd : p(ξ + te) = 0 has a multiple root} has measure zero.

Also let E ⊂ R be a set with the following property:

sup
a∈Rd

|{t ∈ R : t = x · e for some x ∈ E ∩D(a, 1)}| < ε (57)

Lemma 5.2 If p satisfies (i) - (iv) and E satisfies (57) then there is an a priori estimate
on Schwarz functions

‖u‖L2(E) ≤ Cε1/2(‖u‖L2 + ‖p(D)u‖L2)

Remark: The example we care about is d = n(n+1)
2

, p(D) = Cayley operator on n × n
symmetric matrices, e any positive definite matrix.

We show that (i) - (iv) are then satisfied. If ξ ∈M(n), then

p(ξ − te) = det(e) · det(e−
1
2 ξe−

1
2 − t)

So the roots {λj} of p(ξ+te) = 0 are the eigenvalues of the symmetric matrix e−
1
2 ξe−

1
2 .

This gives (i), and (ii) also follows: |p(ξ + ie)| = det e
∏

j |λj − i|. All the factors are ≥ 1
and at least one must be comparable to |ξ| + 1. Property (iv) is obvious, and (iii) is a
basic fact in eigenvalue perturbation theory (see [25], Theorem 1.20(b) for example).
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Note though that the Cayley operator is not strictly hyperbolic if n ≥ 3. In order to
avoid assuming strict hyperbolicity we need some estimates on trigonometric polynomials
which are independent of any lower bounds on the gaps between frequencies, which we
now record.

Lemma 5.3 Let q(t) =
∑N

j=1 aje
2πiλjt where the {λj} are real numbers. Then

(i) For any R, ||q||L∞([−R,R]) ≤ C(N,R)||q||L1([−1,1])

(ii) If |λj | ≤ 1 for all j, then ‖q′‖L∞([−1,1]) ≤ C(N)‖q‖L∞([−1,1])

(iii) Suppose all {λj} belong to the set {|λ| ≥ 1} ∪ {|λ| ≤ ρ}, where ρ < 1. Let q1 =∑
j:|λj|≤ρ aje

2πiλjt Then ‖q1‖L∞([−1,1]) ≤ C(N, ρ)‖q‖L∞([−1,1]).

Proof All of this must clearly be known, but we do not know a reference for (iii), so
we will give proofs starting from a basic inequality of Turan (see [14], p. 62 or [21] - the
latter reference also gives several applications of Turan’s method to questions about the
uncertainty principle). Turan’s inequality is

‖q‖L∞([−R,R]) ≤ C(N,R)‖q‖L∞([−1,1]) (58)

with an explicit C(N,R), whose value we do not need here.

(i) This is a direct consequence of [21], Theorem I, but we will give a proof since the
same argument will be used below to prove (iii). Consider the function

φ(x) = 1 −
N∏

j=1

(1 − (
sin(x− λj)

x− λj

)2)

This is an entire function of exponential type . N and also satisfies ‖φ‖
L1(R)

. N

since φ(x) ≤
∑

j(
sin(x−λj)

x−λj
)2. It follows that φ̂ is supported in |x| ≤ CN and ‖φ̂‖∞ ≤ CN .

Furthermore, φ(λj) = 1 for all j. So (constants depend on N)

|q(0)| = |
∑

j

aj| = |〈q̂, φ〉 = |〈q, φ̂〉| . ‖q‖L1([−CN,CN ])

where we used the distributional Fourier transform. It follows by translation invariance
that ‖q‖L∞([−1,1]) . ‖q‖L1([−CN−1,CN+1]). Then (58) implies

‖q‖L∞([−R,R]) . ‖q‖L1([−CN−1,CN+1])

for any fixed R and then (i) follows by rescaling.

(ii) We skip this argument since a stronger result is explicitly proved in [14].
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(iii) We will construct a function φ such that

• φ has exponential type ≤ C(N, ρ)

• ‖φ‖L1(R) ≤ C(N, ρ)

• φ(λj) = 1 when |λj | ≤ ρ, φ(λj) = 0 when |λj| ≥ 1

The following function has the indicated properties: let bij be numbers such that
bij(λj − λi) = π(mod 2πZ) and 1 ≤ |bij| ≤ π

1−ρ
and define

φ(x) =
∏

i:|λi|≥1

1 −
∏

j:|λj |≤ρ

(1 − (
sin bij(x− λj)

bij(x− λj)
)2)


The same argument as for (i) now shows that ‖q1‖L∞([−1,1]) ≤ CN‖q‖L1([−CN−1,CN+1]) and
then (iii) follows from (i). �

Remark Part (iii) will be used in the following way. Suppose that

q(t) =
N∑

j=1

aje
2πiλjt, λj < λj+1

is a trigonometric polynomial. Then we can put the frequencies into groups {gn}∞n=−∞ so
that

(i) λj ∈ gn ⇒ |λj − n| < 1

(ii) λj ∈ gn, λk /∈ gn ⇒ |λj − λk| ≥ 1
N

Namely, for each n there is an interval (cn, dn) ⊂ [n, n + 1] of length ≥ N−1 which
contains no λj ’s. We fix such an interval for each n and define

gn = {λj : dn−1 ≤ λj ≤ cn}

If we define
bn(t) =

∑
λj∈gn

aje
2πi(λj−n)t

so that
q(t) =

∑
n

bn(t)e2πint
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then Lemma 5.3(iii) implies (uniformly in n) that

‖bn‖L∞([−1,1]) . ‖q‖L2([−1,1])

Proof of Lemma 5.2 We can assume e = ed and will denote points of Rd by (x, t), x ∈
Rd−1, t ∈ R.

We subdivide Rd in “slabs”

Sn
def
= {(x, t) : n ≤ t < n+ 1}, n ∈ Z

and will also denote S0 by S. It suffices to show that

‖u‖L2(E∩S) .
√
ε(‖u‖L2(S) + ‖p(D)u‖L2(S)) (59)

since the corresponding statement for Sn then follows by translation invariance and the
lemma follows by taking an `2 sum over n.

Let f = χSp(D)u and consider the solution of p(D)v = f given by

ê2πtv = p((ξ, τ ) + i · (0, 1))−1ê2πtf

Property (ii) implies that
‖e2πtv‖W 12 . ‖p(D)u‖L2(S)

where W 12 is the inhomogeneous Sobolev space, i.e. ‖g‖2
W 12

def
= ‖g‖2

2 + ‖∇g‖2
2. It follows

in particular that
‖v‖L2(S) + ‖v̇‖L2(S) . ‖p(D)u‖L2(S) (60)

where v̇ = ∂v
∂t

. Applying the one dimensional inequality

‖v‖L∞([0,1]) . ‖v‖L2([0,1]) + ‖v̇‖L2([0,1]) (61)

in the t variable and using (57), we obtain

‖v‖L2(S∩E) .
√
ε‖p(D)u‖L2(S) (62)

Set w = u− v. We are going to show that

‖w‖L2(S∩E) .
√
ε‖w‖L2(S) (63)

This will finish the proof of (59) (hence of the lemma) since then

‖u‖L2(S∩E) .
√
ε(‖w‖L2(S) + ‖p(D)u‖L2(S)) by (61) and (63)

.
√
ε(‖u‖L2(S) + ‖v‖L2(S) + ‖p(D)u‖L2(S))

.
√
ε(‖u‖L2(S) + ‖p(D)u‖L2(S))

by (60).
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Let w̃(ξ, t) be the partial Fourier transform in the x variables, i.e.

w̃(ξ, t) =

∫
w(x, t)e2πix·ξdx

Then, since p(D)w = 0 on S we have (here we use assumption (iv))

w̃(ξ, t) =
∑

aj(ξ)e
2πiλj(ξ)t

where {λj(ξ)} are the roots of p((ξ, 0) + t · (0, 1)) = 0. By the remark after Lemma 5.3
this means that

w̃(ξ, t) =
∑
m∈Z

bm(ξ, t)e2πimt

where the bm are trigonometric polynomials with frequencies in [−1, 1] and∫ 1

0

|bm(ξ, t)|2dt .
∫ 1

0

|ŵ(ξ, t)|2dt

uniformly in m and ξ. For fixed ξ there are only a bounded number of values of m with
bm(ξ, ·) 6= 0, so in fact ∑

m∈Z

∫ 1

0

|bm(ξ, t)|2dt .
∫ 1

0

|ŵ(ξ, t)|2dt (64)

uniformly in ξ.
Now let φ be a fixed Schwarz function in Rd−1 such that φ̂ has compact support and

|φ(x)| ≥ 1 when |x| ≤
√
d. For k ∈ Zd−1, let φk(x) = φ(x − k). Let ψk = φ̂k and let

b
(k)
m = ψk ∗ bm, where the convolution is on Rd−1. Then∑

k∈Zd−1

‖b(k)
m (·, t)‖2

L2(dξ) . ‖bm(·, t)‖2
L2(dξ) (65)

∑
k∈Zd−1

‖ḃ(k)
m (·, t)‖2

L2(dξ) . ‖ḃm(·, t)‖2
L2(dξ) (66)

uniformly in t ∈ [0, 1] and m; these estimates just follow from the Plancherel theorem in
Rd−1 since

∑
k∈Zd−1 |φ(x− k)|2 is bounded. Furthermore, for fixed ξ we can apply parts

(i) and (ii) of Lemma 5.3 to the trigonometric polynomial bm(ξ, ·) obtaining

sup
t∈[0,1]

(|bm(ξ, t)|2 + |ḃm(ξ, t)|2) .
∫ 1

0

|bm(ξ, t)|2dt (67)

uniformly in ξ. If we integrate (67) dt and (65),(66) dξ we get∑
k∈Zd−1

‖b(k)
m ‖2

L2(S) + ‖ḃ(k)
m ‖2

L2(S) . ‖bm‖2
L2(S) (68)
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uniformly in m. Now, by the thinnness assumption (57),

‖w‖L2(S∩E) .
∑

k∈Zd−1

∫
D(k,

√
d)×Yk

|w(x, t)|2dxdt

where the Yk are subsets of [0, 1] with measure . ε. Consequently

‖w‖L2(S∩E) .
∑

k∈Zd−1

∫
Rd−1×Yk

|φkw|2dxdt

=

∫
Rd−1×Yk

|
∑
m

b(k)
m (ξ, t)e2πimt|2dξdt (69)

by Plancherel. Assumption (iii) implies (since φ̂ has compact support) that for fixed ξ

and k there are only a bounded number of values of m for which b
(k)
m (ξ, t) 6= 0. So by

Cauchy-Schwarz,

(69) .
∫ ∑

k,m

∫
Yk

|b(k)
m (ξ, t)|2dtdξ

Using (61) we obtain∫
Yk

|b(k)
m (ξ, t)|2dt . ε(

∫ 1

0

|b(k)
m (ξ, t)|2dt+

∫ 1

0

|ḃ(k)
m (ξ, t)|2dt)

so (68) implies

‖w‖2
L2(S∩E) .

∫ ∑
m

∫
|bm(ξ, t)|2dtdξ

. ε‖w‖2
L2(S)

where the last line follows from (64). �

Corollary 5.4 Assume that E ⊂ M(n) satisfies (57), with e being positive definite. Let
u ∈ L2(M(n)) be such that suppû ⊂ D. Then

‖u‖L2(E) ≤ Cε
1
2‖u‖2 (70)

Proof We can assume that u is a Schwarz function, and then (70) follows by applying
Lemma 5.2 to the Cayley operator, since suppû ⊂ D implies ‖Ωu‖2 ≤ ‖u‖2. �

Proof of Theorem 5.1 Define J via Ĵ f = I f̂ . Taking Fourier transforms, we see it
suffices to prove that ‖µ̂λJ µ̂λ‖L2→L2 ≤ 1 − C−1λ2.

Let H = {u : suppû ⊂ D}. Let e be a positive definite matrix in Σ(µ) and for suitable
constants C and ε let E = {m ∈ M(n) : |µ̂λ(m)| ≥ 1 − C−1ε2λ2}. Corollary 1.3 implies
that E satisfies (57). Hence if ε is small then by Corollary 5.4

‖u‖L2(E) ≤
1

4
‖u‖2

for all u ∈ H. Since J interchanges H and H⊥ the result now follows from Lemma 4.3.�
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Appendix: A general contraction property in PSL(2,R)
After submitting this paper we realized that some of the results in the later sections

can be proved without using Fourier transforms. In particular this means that there is no
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need to restrict to situations involving parabolic elements. Here we will prove a general
form of Theorem 4.5. This can be read independently of the rest of the paper.

Before stating it we introduce some notation. H = {z = x + iy ∈ C : y > 0} will be
the upper half space and R∗ = R ∪ {∞} its boundary. The closure of a set in H will be
its closure relative to H∪R∗. An interval in R∗ will be allowed to contain ∞, i.e. will be
any connected subset of R∗. We regard PSL(2,R) as acting on H and on R∗ via Mobius
transformations, normalizing as in [19]. Thus, if

g = (
a b
c d

) ∈ PSL(2,R)

and x ∈ H∪R∗ then gx = dx+c
bx+a

. We will use the subgroups stabilizing a one or two point
set:

If z ∈ H, then Fz
def
= {g ∈ PSL(2,R) : gz = z}.

If x ∈ R∗, then Fx
def
= {g ∈ PSL(2,R) : gx = x}.

If x, y ∈ R∗, x 6= y, then Fx,y
def
= {g ∈ PSL(2,R) : g maps the set {x, y} into itself}.

A convenient reference for basic properties of Mobius transformations is [30]. Abusing
slightly the terminology in [30], we define an elementary subgroup of PSL(2,R) to be a
subgroup which is of one of the three types Fz,Fx or Fx,y. Any left coset of an elementary
subgroup is also a right coset of some elementary subgroup and vice versa.

By a representation we will always mean a unitary representation of PSL(2,R). For
0 < α < 1, we let Cα be the complementary series representation as defined in [19]; thus,

if u = (
a b
c d

), then

Cα(u)f(x) = | − bx+ d|−(1+α)f(
ax− c

−bx+ d
) (71)

We will view Cα as acting on the L2 Sobolev space

W−α
2 (R) = {f : ‖f‖2 def

=

∫
R
|f̂(ξ)|2|ξ|−αdξ <∞}

This norm is the same as the one in [19] as may be seen by taking Fourier transforms.
For reasons that will be clear below, we will use C0 to denote the principal series

representation obtained by inducing the trivial representation of the upper triangular
subgroup, i.e. the representation called P+,0 in [19]. Thus C0 acts on L2(R) and C0u is
given by (71) with α = 0.

Theorem A.1 Let µ be a probability measure on PSL(2,R) and assume that suppµ is
not contained in a coset of an elementary subgroup.

Let ρ be a representation of PSL(2,R) such that for some δ > 0, the direct integral
decomposition of ρ does not contain the trivial representation nor the representations
Cu, u > 1 − δ. Define ρ(µ) =

∫
ρ(g)dµ(g). Then ‖ρ(µ)‖ < 1.
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Corollary A.2 Let µ be a probability measure on PSL(2,R) such that suppµ is not
contained in an elementary subgroup. Let ρ be a representation satisfying the condition
in Theorem A.1. Then ‖ρ(µ)3‖ < 1.

Proof of the corollary If E ⊂ PSL(2,R) then let Ek = {Πk
j=1ej : e1, e2, . . . , ek ∈ E}.

Using that a Mobius transformation has at most two fixed points it is easy to see that if E,
E2 and E3 are each contained in a coset of an elementary subgroup, then E is contained
in an elementary subgroup. We leave details of this argument to the reader. Let µ be a
probability measure, E = suppµ. If ‖ρ(µ)3‖ = 1, then of course also ‖ρ(µ)2‖ = ‖ρ(µ)‖ =
1. Combining the preceding observation with Theorem A.1 we get the result. �

Remarks 1. Theorem A.1 can be applied to the left regular representation of PSL(2,R),
whose direct integral decomposition contains no complementary series representations. It
follows that if µ is a probability measure not supported on a coset of an elementary sub-
group, then left (or right) convolution with µ is a strict contraction on L2(PSL(2,R)).
Theorem A.1 also be applied to L2(PSL(2,R)/Γ) as indicated in the remarks in section
4.

2. The hypothesis that µ not be supported on an elementary subgroup is exactly the
hypothesis of Furstenburg’s theorem [11] in the case of PSL(2,R), so our assumptions
are the natural ones. In fact it is easy to construct various examples showing that if µ is
supported on an elementary subgroup then ρ(µ) can have spectral radius 1.

Now the proof of Theorem A.1. It suffices to consider irreducible representations, and
although this could be avoided, we will simplify matters a bit further by using the “principe
de majoration” of Herz, which implies that it suffices to consider the representations
Cα, 0 ≤ α < 1. This follows just as in [31] for example: the principe de majoration (e.g.
[31], Lemma 5.2) shows that if ρ is induced from a unitary representation of the upper
triangular subgroup then ‖ρ(µ)‖ ≤ ‖C0(µ)‖. The other principal series representations
as well as the regular representation are induced from the upper triangular subgroup,
and the discrete series representations are direct summands of the regular representation.
Thus, Theorem A.1 is equivalent to the following

Theorem A.1′ Let µ be a probability measure on PSL(2,R) not supported on a coset
of an elementary subgroup. Then, for any δ > 0 there is ε > 0 such that ‖Cα(µ)‖ < 1− ε
for all α ∈ [0, 1 − δ).

We define an ε-invariant vector for an operator T in the usual way, i.e. as a vector f
such that ‖Tf − f‖ < ε‖f‖, and a vector is ε-invariant for a collection of operators T if
it is ε- invariant for each T ∈ T . Thus no vector is 0- invariant. It is well-known that
bounding ‖ρ(µ)‖ away from 1 reduces to a question of nonexistence of ε-invariant vectors
for small ε > 0. The following lemma is a convenient formulation of this principle.
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Lemma A.3 Let k be a positive integer, ρ a unitary representation, and for each
g, g1, · · · , gk, let ε(g; g1 . . . gk) be such that collection of operators {ρ(g1g

−1), . . . , ρ(gkg
−1)}

has no ε(g; g1 . . . gk)-invariant vectors. (We allow the possibility that ε(g; g1 . . . gk) = 0)
Then for any probability measure µ

1 − ‖ρ(µ)‖2 ≥ (2k)−1

∫
ε(g; g1 . . . gk)

2dµ(g)dµ(g1) . . . dµ(gk)

Proof For any unit vector f ,

1 − ‖ρ(µ)f‖2 =
1

2

∫
‖ρ(g)f − ρ(g)f‖2dµ(g)dµ(g)

=
1

2k

∫ k∑
i=1

‖ρ(g)f − ρ(gi)f‖2dµ(g)dµ(g1) . . . dµ(gk)

≥ 1

2k

∫
ε(g; g1 . . . gk)

2dµ(g)dµ(g1) . . . dµ(gk)

�

Lemma A.4 Let k ∈ (0, 1) ∪ (1,∞) and define

uk =

(
k

1
2 0

0 k−
1
2

)
∈ PSL(2,R) (72)

Let I be an interval in R of the form [a, b] or [−b,−a], where 0 < a < b
2
. Let n ∈ Z+

be such that max(kn, k−n) ≥ b
a
. Then, for 0 ≤ α ≤ 1 − δ, any unit vector f which is

ε−invariant under Cα(uk) must satisfy

‖χIf‖W−α
2
≤ C(nε)

1
3

where C depends on δ only.

Proof We note that Cα(uk)f(x) = k
1+α

2 f(kx).
We consider the interval [a, b], where 0 < a ≤ b

2
, and we may assume that n = 1 and

k ≥ b
a
, since any vector ε- invariant for a unitary operator T is ε|n|-invariant for T n. We

will use the following fact:

For n ∈ Z, let In = [kna, knb]. Define ∆nf via ∆̂nf = χIn f̂ , where χIn is the indicator

function of In. Let Sf be the Littlewood-Paley square function, Sf = (
∑

n |∆nf |2)
1
2 .

Then, for 0 ≤ α ≤ 1 − δ,∫
R
|Sf(x)|2|x|−αdx ≤ Cδ

∫
R
|f(x)|2|x|−αdx (73)
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where Cδ depends on δ only.
When α = 0 this is obvious, and the general case is also well-known. For example,

since |x|−α is an A2 weight uniformly in α ≤ 1 − δ, it follows from Theorem 2 of [32] by
the randomization argument used there.

Using (73) and taking Fourier transforms, we have∑
j

‖χIjf‖2

W−α
2
≤ Cδ‖f‖

2

W−α
2

(74)

In particular,
‖χIf‖2

W− α
2
≤ Cδ‖f‖

2

W−α
2

(75)

Now let f be an ε-invariant vector with norm 1 and define fm = Cα(ukm)f . Then
‖f − fm‖ ≤ ε|m| and therefore

‖χI(f − fm)‖ ≤ Cε|m|

by (75). It follows that

If |m| ≤ ‖χIf‖
2Cε

, then ‖χIfm‖ ≥ 1

2
‖χIf‖

On the other hand, we have χIfm = Cα(ukm)(χImf), and Cα(ukm) is unitary, so if

|m| ≤ ‖χIf‖
2Cε , then ‖χImf‖ ≥ 1

2
‖χIf‖. If we square this, sum over m and use (74) we

obtain the following:

ε−1‖χIf‖3 ≤ 8C
∑

|m|≤‖χI f‖
2Cε

‖χImf‖2

. ‖f‖2

and therefore the lemma. �

Lemma A.5 Let h1 and h2 be two hyperbolic elements of PSL(2,R) without a common

fixed point. Let {pi, qi} be the fixed point set of hi and let [p1, q2, p2, q1]
def
= (p1−p2)(q2−q1)

(p1−q2)(p2−q1)

be the cross ratio. Assume that

trace(hi) ≥ 2 + η2, i = 1, 2 (76)

τ−1 ≤ |[p1, q1, q2, p2]| ≤ τ (77)

for certain numbers η ∈ (0, 1] and τ ∈ [2,∞).
Fix δ > 0 and let ε = C−1 η

log τ
for a suitable constant C = Cδ . Then the pair

{Cα(h1), Cα(h2)} has no ε-invariant vectors if 0 ≤ α ≤ 1 − δ.

Remark Of course any hyperbolic h1 and h2 without common fixed points will satisfy
(76) and (77) for some η ∈ (0, 1] and τ ∈ [2,∞). Further, η, τ and therefore also ε may
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be chosen uniformly over all pairs (h1, h2) in a small neighborhood of a given one. The
quantitative statement in Lemma A.5 is used only through this uniformity property.

Proof The statement is clearly invariant under conjugation in PSL(2,R), so, with uk

as in (72), we can assume that h1 = uk and that h2 has fixed points ω and 1, with τ−1 ≤
ω < 1. Thus h2 = vumv

−1, where v maps {0,∞} to {ω, 1}. Here k,m ∈ (0, 1) ∪ (1,∞)

must satisfy k
1
2 + k−

1
2 ≥ 2 + η2, m

1
2 +m− 1

2 ≥ 2 + η2.
Consider the four intervals in R∗ defined by I1 = [−2,−ω

2
], I2 = [−ω

2
, ω

2
], I3 =

[ω
2
, 2], I4 = [2,−2]. I1 and I3 are of the form in Lemma A.4 with b

a
≈ ω−1 ≤ τ while

the images of I2 and I4 under v−1 are of the form in Lemma A.4 with b
a
≤constant.

Let n = C log τ
η

for a suitable fixed constant C . By taking C large enough, we can

make max(kn, k−n) ≥ C1τ (and also max(mn, m−n) ≥ C1) for any fixed constant C1. If
f is ε-invariant for Cα(h1) and Cα(h2) then we can apply Lemma A.4 for uk with the
intervals I1 and I3 and the function f and for um with the intervals v−1I2 and v−1I4
and the function Cα(v−1)f . It follows that ‖χIjf‖ . (ε log τ

η
)

1
3 ‖f‖ for j = 1 or 3 and

‖χIjf‖ . (ε
η
)

1
3 . (ε log τ

η
)

1
3‖f‖ for j = 2 or 4. Since f is the sum of the four functions χIjf

we conclude that ε log τ
η
& 1, as claimed. �

Proof of Theorem A.1′ We fix δ > 0; it is understood below that constants may depend
on δ. Fix γ ∈ suppµ, let Σ = {gγ−1 : g ∈ suppµ} and let Γ be the group generated
(algebraically) by Σ. By [30], Theorem 5.1.3, Γ must contain two hyperbolic elements
h0

1, h
0
2 without common fixed points. Hyperbolic elements without common fixed points

are open in PSL(2,R)× PSL(2,R); further, we can choose a neighborhood V of (h0
1, h

0
2)

in PSL(2,R)×PSL(2,R) and numbers τ ∈ [2,∞) and η ∈ (0, 1] such that if (h1, h2) ∈ V ,
then h1 and h2 satisfy (76) and (77) with these values of τ and η. It follows by Lemma A.5
that there is ε > 0 such that if (h1, h2) ∈ V and α ≤ 1− δ then the pair {Cα(h1), Cα(h2)}
has no ε-invariant vectors. Regarding h0

1 and h0
2 as words in the elements of Σ, we see

that there are a positive integer k and open sets S ⊂ PSL(2,R)× k times. . . ×PSL(2,R)
with µ × . . . × µ(S) > 0 and U ⊂ PSL(2,R) with µ(U) > 0 such that if g ∈ U and
(g1, . . . , gk) ∈ S then there are two words h1 and h2 of length ≤ k in (g1g

−1, . . . , gkg
−1)

such that (h1, h2) ∈ V . It follows that if (g1, . . . , gk) ∈ S and g ∈ U then {Cα(gig
−1)}k

i=1

have no ε
k
-invariant vectors. The theorem now follows by Lemma A.3. �

Remark The above proof does not immediately give a quantitative result, because of
the appeal to Theorem 5.1.3 of [30]. It is not very difficult to modify the argument so as
to obtain such a result, but we will not pursue this here.

On the other hand, the above proof does give the following uniformity statement:

Corollary A.6 Let K be a weak∗-compact set of probability measures on PSL(2,R)
and ρ a representation satisfying the hypothesis of Theorem A.1. If no measure in K is
supported on a coset of an elementary subgroup, then there is ε > 0 such that ‖ρ(µ)‖ ≤
1 − ε for all µ ∈ K. If no measure in K is supported on an elementary subgroup, then
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there is ε > 0 such that ‖ρ(µ)3‖ ≤ 1 − ε for all µ ∈ K.

To see this, fix µ ∈ K and γ ∈ suppµ, and define S and U as in the proof of Theorem
A.1′. Observe that for ν in a suitable weak∗ neighborhood N of µ, the quantities ν(U) and
ν × . . .× ν(S) are bounded away from zero independently of ν. It follows that the bound
in Theorem A.1′ is uniform in ν ∈ N , hence so is the bound in Theorem A.1. The first
part of Corollary A.6 now follows using the Heine-Borel property. The second part follows
from the first since taking the third convolution power preserves weak∗ compactness. �
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