
Exponential Decay of Quantum Wave Functions

I’ve no doubt that for ODEs, the questions and techniques for exponential decay
of solutions go back a long way, maybe even to the nineteenth century. For one body
systems with decaying potential, I think they are at least in Titchmarsh’s book. For
ODEs with explicit polynomially growing potentials there are precise asymptotics
going back to the at least the middle of the twentieth century.

My work concerns N–body systems and qualitative polynomially growth where
instead of exact asymptotics on the potential one supposes lower bounds on the
growth.

Slaggie-Wichmann [45] used integral equation ideas to prove some kind of ex-
ponential decay in certain three body systems with decaying potentials. I gave
looking at N–body systems to Tony O’Connor, my first graduate student (who
began working with me when I was a first year instructor). He had the idea
of looking at analyticity of the Fourier transform and obtains results in the L2

sense (i.e. ea|x|ψ ∈ L2) that were optimal in that you couldn’t do better in
terms of isotropic decay. Here |x| is a mass weighted measure of the spread of
the N particles, explicitly if X =

∑N
j=1mjxj/

∑N
j=1mj is the center of mass, then

|x|2 =
∑N

j=1mj(xj −X)2/
∑N

j=1mj .
His paper [33] motivated Combes–Thomas [15] to an approach that has now

become standard of using boost analyticity. Independently of O’Connor, Ahlrichs
[4] found pointwise isotropic bounds but his result was not optimal and restricted
to Coulomb systems since he used the explicit |r|−1 form.

All these results, except Ahlrichs, obtained L2–decay. In three papers [37, 38, 39],
I looked at getting pointwise bounds. In the first paper, I obtained optimal pointwise
isotropic bounds for N–body systems. In the second paper, I considered the case
where V goes to infinity at infinity and proved pointwise exponential decay by every
exponential (Sch’nol [36] earlier had a related result). In the third paper, I assumed
|x|2m lower bounds and got exp(−|x|m+1) pointwise upper bounds. When one has
an upper bound on V of this form, one gets lower bounds of the same form on the
ground state. Papers 1-2 were written during my fall 1972 visit to IHES, one of my
most productive times when Lieb and I did most of the Thomas–Fermi work and I
developed new aspects of correlation inequalities and Lee–Yang for EQFT.

Two of my students used these bounds in their work. Jay Rosen [35] needed them
in his thesis proof of supercontractive estimates. Harrell [19, 20] while a postdoc
followed my suggestions to study 1D double wells using these bounds and he and
I [21] then used his techniques to prove the Oppenheimer formula for the width
of the Stark Hamiltonian and the Bender–Wu formula for the asymptotics of the
anharmonic oscillator perturbation coefficients.

Optimal decay estimates for N–body systems were obtained in the fourth paper
in my series [17] jointly with Deift, Hunziker and Vock.

1982 saw two big breakthroughs. Agmon [1] introduced his metric as a way to
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compute the optimal upper bound for fairly general situations. Froese–Herbst [18]
proved the remarkable theorem if ψ is an L2 solution of Hψ = Eψ for a multiparticle
Hamiltonian, then sup{α2 + E | e−α|x|ψ ∈ L2} is either a scattering threshold or is
+∞ and used this to show absence of positive eigenvalues.

The Agmon metric could be used to understand the results of Deift et al. [17].
I used it to in my Annals paper on instanton formulae for multidimensional dou-
ble wells [42]. At about the same time as papers IV-VI, the Hoffmann-Ostenhofs
(sometimes jointly with Ahlrichs and/or Morgan) [5, 6, 7, 23, 24, 25, 26, 27]found
bounds on atomic wave functions and they and I interacted on these questions. Both
Ahlrichs and Thomas Hoffmann–Ostenhof were in Chemistry departments but they
approached the world like mathematical physicists.

********************************************************

Here is a more detailed discussion of these papers (leaving discussion of [41]) to
another commentary [TK]. I note that several of my other papers have connections
to the subject of this commentary [3, 12, 44, 29, 43]. There are six papers in a single
titled series, [37, 38, 39, 17, 13, 30]. Common to all six is the notion of pointwise
decaying estimates - for papers I and II, I had L2–estimates (i.e. efψ ∈ L2) and
proved L∞ estimates while papers III-VI prove both L2 and L∞ estimates. A brief
overview of the six papers:

(I) O’Connor had proven “optimal” L2–isotropic estimates for N–body quantum
systems, eα|x|ψ ∈ L2 if α2 < (Σ − E) where Σ = inf σess(H), Hψ = Eψ and
|x| is a mass weighted distance of the particles from their center of mass. This
paper proved for such α that eα|x|ψ ∈ L∞.

(II) This proved a pointwise bound eα|x|ψ ∈ L∞ for all α if V goes to ∞ at ∞ so
that H has empty essential spectrum.

(III) This proved that exp(c|x|β)ψ ∈ L∞ if V (x) ≥ d|x|m − c,
(
β = 1

2m+ 1
)

and
complementary lower bounds if ψ > 0 and V (x) ≤ d|x|m + c. If V (x)|x|−m has
a limit and ψ > 0, one finds the existence and value of lim|x|→∞ |x|−β logψ(x)
from these bounds.

(IV) This paper (joint with Deift, Hunziker and Vock; Deift had been my student and
we continued working on this while he was a postdoc. I learned that Hunziker
was looking at similar questions so we joined forces – Vock was his master’s
student) explored non–isotropic bound for N -body systems. We found a critical
differential inequality that if f obeys it, then efψ ∈ L∞ and in some cases
were able to find explicit formula for the optimal f (but only in a few simple
situations). Later, Agmon [1] found the optimal solution of the differential
inequality as a geodesic distance in a suitable Riemann metric (discontinuous
in the case of N–body systems) – this is now called the Agmon metric, a name
that appeared first in Carmona–Simon [13], which also proved lower bounds
for the ground state complementary to Agmon’s upper bounds proving that
if ψ(x) is the ground state and ρ(x) the Agmon metric distance from x to 0,
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then lim|x|→∞− log |ψ(x)|/ρ(x) = 1. In some ways this paper is made obsolete
by [1, 13] although the explicit closed form for ρ in some cases remains of
significance.

(V) Due to my book on Functional Integration [40], Herbst–Sloan [22] and Carmona
[10, 11], there was a revolution in using path integrals and Schrodinger semi-
group to study eigenfunctions (eventually reviewed in [41]). A key lemma in
this approach goes back to Khasmin’skii [28], and was rediscovered by Portenko
[34] and Berthier–Gaveau [9] (the last one motivated Carmona and me). With
this lemma, the standard hypotheses one needs are that V− ≡ max(−V, 0) lies
in the Kato class, Kν and the that V+ ≡ max(V, 0) lies in Kν,loc (this includes
all the various Lp conditions; see [41, 16] and [TK] for more on Kν). Paper
V, joint with René Carmona (who visited me in Princeton) applied semigroup
and path integral ideas to study eigenfunction decay. We interpreted Agmon’s
geodesic distance as a minimum action and then applied the theory of large de-
viations in path space to get lower bounds. This paper influence my tunnelling
paper [42].

(VI) This paper, joint with Elliot Lieb, studied asymptotic behavior of N–body
ground states in the special two cluster region where x = (ζ1, ζ2, R) where ζj is
an internal coordinate for cluster j and R is the distance between the center of
masses of the clusters. When the bottom of the essential spectrum comes from
this two cluster breakup, if ψ is the ground state of the full system and ηj of
cluster j, and if E = Σ − κ2/2µ with (µ = M1M2/(M1 +M2)) ,Mj = mass of
cluster j, then as R→∞, |ζj | bounds, we have, when xj ∈ R3, that

ψ(ζ1, ζ2, R) = cη1(ζ1)η2(ζ2)e−κRR−1(1 + O(e−γR)

We end with a brief discussion of the modern view of the two main issues studied
in these papers: the passage from L2 to L∞ bounds and the formulation and proof
of optimal L2 upper bounds (lower bounds are a different matter). We look first at
the passage from L2 to L∞ bounds. This is handled in paper I in an ad hoc way and
more systematically in papers II-IV until the ultimate technique is used in paper
V. A subsolution is a function, ϕ, obeying (H − E)ϕ ≥ 0. By Kato’s inequality
(that as distributions ∆|ψ| ≥ ψ|ψ|−1∆ψ), one sees that if (H − E)ψ = 0, then |ψ|
is a subsolution. For any Schrödinger operator with V− ∈ Kν , there is a constant
C depending only on R > 0, E, ν and Kato class norms of V− so that subsolutions
obey:

|ϕ(x)| ≤ C
∫
|y−x|≤R

|ϕ(y)|dνy

This immediately implies that efψ ∈ L2 ⇒ efψ ∈ L∞ so long as sup|x−y|≤R |f(x)−
f(y)| <∞ which is true for the N -body situation and that efψ ∈ L2 ⇒ e(1−ε)fψ ∈
L∞ so long as sup|x−y≤1 |f(x)/f(y)| → 1 as |x| → ∞ as holds for the exp(xβ)
bounds.
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Subsolution estimates go back to Trudinger [47] who treated general elliptic
operators but with stronger hypotheses than Kν (he used ideas of Stampacchia [46]
and Moser [32]) and were pushed by the Hoffmann–Ostenhofs [7, 23, 24, 25, 26, 27]
for Schrödinger operators.

A probabilistic approach goes back to Chung-Rao [14] but they supposed locally
bounded V . The general Kν result (by probabilistic methods) is from Aizenman–
Simon [3]. This approach uses the Fenyman–Kac formula and stopping times and
cannot be summarized in a few lines.

A simpler approach to eigenfunction bounds when |f(x) − f(y)| ≤ |x − y| and
f(x) ≥ ε|x| −D depends on proving that

|e−tH(x, y)| ≤ C|et∆(x, y)|1/2 (1) eq1

Given this, one uses |ψ(x)| ≤ etE
∫
e−tH(x, y)|ψ(y)|dνy. Given the Gaussian decay

of |et∆(x, 0)|, the contribution of the integral from those y with |x − y| ≥ |x|3/4 is
o
(
e−f
)

and the L2 bounds control the integral over those y with |x−y| ≤ |x|3/4. To
prove (1), one notes that by a Schwarz inequality in path space and the Feynman–
Kac formula (or by a Trotter approximation), one has that

|e−tH(x, y)| ≤ |et∆(x, y)|1/2|e−(−∆+2V )(x, y)|1/2

For W− ∈ Kν , one can prove (see, e.g. Aizenman–Simon [3]) that |e−(−∆+W )(x, y)|
is bounded proving (1).

We turn finally to L2 bounds. Combes–Thomas [15] notes that ea|x|ψ ∈ L2, if
and only if for any unit vector, ê, ψz ≡ exp(izê ·x)ψ(x) has an analytic continuation
from z ∈ R to {z | |Imz| < a}. Similarly if f is a non-negative function and U(s)
is the unitary operator of multiplications by eisf , then for e(1−ε)fψ ∈ L2, it suffices
that U(s)ψ have an analytic continuos to Q ≡ {s | |Ims| < 1}. By ideas going
back to Combes et. al. [2, 8] (see also [TK]), this is true if H(s) has an analytic
continuation to Q so that E is an isolated eigenvalue of H(iy), 0 ≤ y < 1.

If V → ∞ at ∞, then for s real, H(s) has compact resolvent and by the argu-
ments in [2, 8], it suffices to show that H(s) has an analytic continuation to Q. Since
Re(H(iy)−H) = y2(∇f)2 this is true if (∇f)2 ≤ V + c with c = 1− inf(V (x)). The
optimal solution of this inequality is the geodesic distance in the Riemann metric
(V (x) + c)(dx)2. For eigenfunction decay, this is a realization of Lithner [31] and
Agmon [1].

For N -body systems, an analysis of the essential spectrum of H(iy) using geo-
metric spectral analysis (see [TK]) shows that f has to obey the bound (∇f)2 ≤
Σ(x) − E. For any x = (x1, . . . , xN ), an N -body coordinate let C(x) be the clus-
tering defined by putting i and j in the same cluster if and only if xi = xj so C(x)
is N singlets for all x except for planes of codimension at least ν. Then Σ(x) is
the inf of the essential spectrum of H(C(x)) the Hamiltonian obtained by dropping
all potentials between clusters. The inequality is essentially in paper IV but it was
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Agmon [1] who realized that the solution was the geodesic distance in the discontin-
uous Riemann metric (Σ(x) − E)(dx)2. Geodesics from x to 0 are piecewise linear
with the lines in a plane with C(y) constant. Essentially the special hyperplanes
where C(y) has fewer than N clusters are superhighways where one can go faster
and the geodesic is the path that takes the least time. Paper IV has explicit formula
for this distance in some special cases.
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