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1 Introduction

In this chapter we discuss how dense can a set be without containing an arithmetic
progression of some length. This discussion leads us to studying the Fourier transform.
We begin by mentioning a well-known result, without proof.

Theorem 1.1 (Szemerédi’s theorem). Given ε > 0 and a positive integer k,
there exists a sufficiently large n0 that satisfies: For any n ≥ n0 and any subset
A ⊂ {1, . . . , n} with |A| ≥ εn, there exists a k-term arithmetic progression in A.

In this chapter we focus on the case of k = 3. As a first example, it is easy to
notice that in any subset A ⊂ {1, . . . , n} with |A| ≥ ⌈2n/3⌉ there exists a 3-term
arithmetic progression in A. Indeed, partition {1, . . . , n} into triples of consecutive
numbers (1, 2, 3), (4, 5, 6), and so on (possibly with one or two elements without a
triple at the end), and notice that a set without a 3-term arithmetic progression can
have at most two elements out of each triple. In Section 5 we prove that every set
A ⊂ {1, . . . , n} with |A| ≥ cn

lg lgn
(for some constant c) contains a 3-term arithmetic

progression. This result is known as Roth’s theorem and is one of the two theorem
for which Roth received his fields medal. Before that, in Section 4 we consider a
somewhat simpler variant of the problem in Fn

3 .
After observing Theorem 1.1, one natural question that arises is: What happens

when |A| is of a smaller density? The following theorem shows that the theorem is
false for a somewhat smaller density.

Theorem 1.2 (Behrend [3]). For every sufficiently large n, there exists a set A ⊂
{1, . . . , n} with |A| ≥ n2−c

√
lgn that contains no 3-term arithmetic progression (for

some small constant c > 1).
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We prove Theorem 1.2 in Section 2. It is not known whether this result is tight (for
more details, see Section 5 below). The following is another main problem concerning
dense sets that contain large arithmetic progressions.

Conjecture 1.3 (Erdős and Turan [6]). Let A ⊂ N satisfy
∑

x∈A
1
x
= ∞. Then

A contains arbitrarily long arithmetic progressions.

Erdős offered 3000$ for proving or disproving this conjecture — one of the largest
prizes that Erdős ever offered. It is known that the set P of prime numbers satis-
fies

∑
p∈P

1
p
= ∞. Green and Tao [7] proved that P indeed contains infinitely long

arithmetic progressions.

2 Behrend’s Construction

In this section we prove Theorem 1.2. Before presenting the proof, we first introduce
the concept of Freiman homomorphisms.

Let F be a field, let m, n, and t be positive integers, let A ⊂ Fn, and consider
a function τ : Fn → Fm. We say that τ is a Freiman t-homomorphism of A if
τ(a1)+τ(a2)+ · · ·+τ(at) = τ(b1)+τ(b2)+ · · ·+τ(bt) (where a1, . . . , ak, b1, . . . , bk ∈ A)
implies a1 + a2 + · · ·+ at = b1 + b2 + · · ·+ bt.

For example, let A ⊂ Fn
5 and let τ : Fn

5 → Z be defined as τ(a1, a2, . . . , an) =∑n
j=1 aj10

j−1. That is, the j’th decimal digit of τ(a1, a2, . . . , an) is determined only
by aj. In this case τ is a Freiman 2-homomorphism of A. Indeed, assume that
τ(a) + τ(b) = τ(c) + τ(d) for a, b, c, d ∈ Fn

5 , and notice that the j’th decimal digit of
τ(a)+τ(b) is aj+bj . Since this holds for every j, we obtain that a+b = c+d. Similarly,
let A ⊂ Fn

4 and let τ ′ : Fn
4 → Z be defined as τ ′(a1, a2, . . . , an) =

∑n
j=1 aj10

j−1. Then
τ ′ is a Freiman 3-homomorphism of A.

Proof of Theorem 1.2. We define a hypersphere in Rd as a the set of points that are
at a given distance r from a given point a = (a1, a2, . . . , ad). That is, a hypersphere
is defined by an equation of the form (x1 − a1)

2 + · · · + (xd − ad)
2 = r2. A line in

Rd is defined by a point a ∈ Rd and a direction v ∈ Rd \ {0}, as {a + cv : c ∈ R}.
The proof is based on the observation that a line in Rd intersects a hypersphere in at
most two points.1

1Asking for a point (p1, . . . , pd) to lie on a line and on a hypersphere corresponds to d − 1
independent linear equations (with variables p1, . . . , pd) and one quadratic equation. Such a system
has at most two solutions.
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For positive integers m and d that will be set below, we consider an m× · · · ×m
section of the integer lattice L = {(a1, . . . , ad) ∈ Zd : 0 ≤ aj ≤ m−1}. For a positive
integer r we define the hypersphere Sr = {(a1, . . . , ad) ∈ Rd : a21 + · · · + a2d = r}.
Notice that Sr is a hypersphere of radius

√
r that is centered at the origin. Our next

observation is that every point of L is contained in one of the spheres S1, S2, . . . , Sdm2 .
Since |L| = md, at least one of these hyperspheres contains at least md−2/d points
of L. We pick an arbitrary hypersphere with this property and denote it as S. We
then define the finite point set P = S ∩L; notice that |P| ≥ md−2/d. Since P is fully
contained in the hypersphere S, every line contains at most two points of P.

We consider the projection τ : Rd → R that is defined as

τ(x1, . . . , xd) =
d∑

j=1

xj(2m)j−1.

Let P ′ = τ(P) = {τ(p) : p ∈ P}. Since every coordinates of every points of P is at
most m− 1, the map τ is Freiman 2-homomorphism. It is also a bijection between P
and P ′, which implies |P ′| = |P| ≥ md−2/d.

Assume for contradiction that P ′ contains a 3-term arithmetic progression p′, q′, r′;
that is, p′ + r′ = 2q′. Set p = τ−1(p′), q = τ−1(q′), and r = τ−1(r′). Since τ is a
Freiman 2-homomorphism, we have p + r = 2q. This in turn implies that p, q, and r
are collinear, contradicting the fact that no line contains three points of P. Thus, the
set P ′ ⊂ Z contains no 3-term arithmetic progression. We set A = P ′ \ {0}. Since
P ′ ⊂ {0, 1, 2, . . . , (2m)d}, we set n = (2m)d. To conclude the proof, it remains to
derive a lower bound for |P ′|.

We set d =
√

lg2 n and m = 2d−1, which implies n = 2d
2

= (2m)d. This in turn
implies

|P ′| ≥ md−2

d
=

n

d2dm2
≥ n · 2−c

√
lgn,

for some constant c and sufficiently large n.

3 The Fourier transform

To prove more advanced results concerning density and arithmetic progressions, we
require the Fourier transform. This section contains a basic introduction for this tool.
For now, we only work over Fn

p , where n is a positive integer and p is a prime.

We denote the set of p’th roots of unity in C as Sp = {e2kπi/p : 0 ≤ k < p}. By

3



the formula for a geometric sum, we have

∑

s∈Sp

s =

p−1∑

k=0

e2kπi/p =
1− e2πi

1− e2πi/p
= 0. (1)

The characters of Fn
p are the homomorphisms2 from Fn

p to Sp. For any α ∈ Fn
p we

have the character
χα(x) = e2πi(x·α)/p,

where x · α is the standard inner product in Fn
p . The following claim presents several

basic properties of the characters χα.

Claim 3.1. (i) For any α, x, y ∈ Fn
p , we have χα(x+ y) = χα(x)χα(y).

(ii) For any α, β, x ∈ Fn
p , we have χα+β(x) = χα(x)χβ(x).

(iii) For any α ∈ Fn
p \ {0}, we have

∑
x∈Fn

p
χα(x) = 0.

Proof. For (i), notice that

χα(x+ y) = e2πi((x+y)·α)/p = e2πi(x·α)/pe2πi(y·α)/p = χα(x)χα(y).

For (ii), we have

χα+β(x) = e2πi(x·(α+β))/p = e2πi(x·α)/pe2πi(x·β)/p = χα(x)χβ(x).

For (iii), we assume without loss of generality that the n’th coordinate of α is
non-zero. We partition the elements of Fn

p into pn−1 subset, each consisting of p
elements. Specifically, for every y ∈ Fn

p−1 we consider together the p elements of Fn
p

that can be obtained by adding to y an n’th coordinate. That is, we consider the set
Sy = {(y, 0), (y, 1), . . . , (y, p− 1)} ⊂ Fn

p .
Given a specific y ∈ Fn

p−1, we set c = α · (y, 0). For α ∈ Fn
p , let αn be the n’th

coordinate of α. We get that

∑

x∈Sy

χα(x) =
∑

x∈Sy

e2πi(x·α)/p =

p−1∑

k=0

e2πi(c+k·αn)/p = e2πic
p−1∑

k=0

e2πi(k·αn)/p = 0.

The last step holds by (1), since we sum up the p’th roots of unity. Indeed, since Fp is a
group under multiplication, we have that {k ·αn : 0 ≤ k ≤ p−1} = {0, 1, 2, . . . , p−1}.
Part (iii) of the claim is obtained by summing this up over every y ∈ Fn

p−1.

2Recall that a function f : Fn
p → C is a homomorphism if for every a, b ∈ Fn

p we have f(a)f(b) =
f(ab).
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Consider a function f : Fn
p → C. The Fourier coefficient of f with respect to

α ∈ Fn
p is defined as

f̂(α) = p−n
∑

x∈Fn
p

f(x)χα(x).

These are called coefficients since we can use them to write any function f : Fn
p →

C as a linear combination of the characters χα.

Claim 3.2. For every x ∈ Fn
p , we have f(x) =

∑
α∈Fn

p
f̂(α)χα(x).

Proof. By the definition of f̂(α) we have
∑

α∈Fn
p

f̂(α)χα(x) =
∑

α∈Fn
p

χα(x)p
−n
∑

y∈Fn
p

f(y)χα(y) = p−n
∑

y∈Fn
p

f(y)
∑

α∈Fn
p

e2πi((x−y)·α)/p.

By part (iii) of Claim 3.1, for every x 6= y we have
∑

α∈Fn
p
e2πi((x−y)·α)/p = 0. This

implies ∑

α∈Fn
p

f̂(α)χα(x) = p−nf(x)
∑

α∈Fn
p

1 = f(x).

The function f̂ is called the Fourier transform of f , and the formula f(x) =∑
α∈Fn

p
f̂(α)χα(x) is called the Fourier inversion of f . As a first example, consider

the function f : Fn
2 → C defined as f(x) = eπix·x. Notice that f(x) = 1 if x consists

of an even number of 1’s, and otherwise f(x) = eπi = −1. That is, f(x) = (−1)|x|

(where |x| is the sum of the coordinates of x). For every α ∈ Fn
2 , we have

f̂(α) = 2−n
∑

x∈Fn
2

f(x)χα(x) = 2−n
∑

x∈Fn
2

eπix·xe−πix·α = 2−n
∑

x∈Fn
2

(−1)|x|e−πix·α.

Assume that the j’th coordinate of α is zero. If x, x′ ∈ Fn
2 differ only in their j’th

coordinate, then (−1)|x|e−πix·α + (−1)|x
′|e−πix′·α = 0. That is, by pairing up every

element x ∈ Fn
2 with another element that differs from x only in the j’th coordinate,

we obtain that
∑

x∈Fn
2

(−1)|x|e−πix·α = 0. This implies that f̂(α) = 0 for any α that
contains at least one zero coordinate. Let 1n denote the all 1’s element of Fn

2 . By
Claim 3.2 we obtain

f(x) =
∑

α∈Fn
2

f̂(α)χα(x) = χ1n(x) · f̂(1n) = eπix·1n · 2−n
∑

x∈Fn
2

f(x)χ1n(x)

= (−1)|x| · 2−n
∑

x∈Fn
2

(−1)|x| · (−1)|x| = (−1)|x|.
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That is, the expression in Claim 3.2 indeed gives the correct function. The fol-
lowing claim presents several basic properties of the Fourier transform.

Claim 3.3. (i) For any f, g : Fn
p → C we have f̂ + g = f̂ + ĝ.

(ii) For any f : Fn
p → C and c ∈ C we have ĉf = cf̂ .

(iii) For f : Fn
p → C and y ∈ Fn

p we set g(x) = f(x − y). Under this notation

ĝ(α) = e−2πi(α·y)/p · f̂(α).
(iv) (Parseval’s theorem). For any f : Fn

p → C, we have
∑

α∈Fn
p

|f̂(α)|2 = p−n
∑

x∈Fn
p

|f(x)|2.

Proof. For (i), notice that

f̂ + g(α) = p−n
∑

x∈Fn
p

(f + g)(x)χα(x)

= p−n
∑

x∈Fn
p

f(x)χα(x) + p−n
∑

x∈Fn
p

g(x)χα(x) = f̂(α) + ĝ(α).

Similarly, for (ii) we have

ĉf = p−n
∑

x∈Fn
p

(cf)(x)χα(x) = cp−n
∑

x∈Fn
p

f(x)χα(x) = cf̂(α).

To obtain (iii) we set z = x− y. Claim 3.1 implies

ĝ(α) = p−n
∑

x∈Fn
p

f(x− y)χα(x) = p−n
∑

z∈Fn
p

f(z)χα(z + y)

= p−n
∑

z∈Fn
p

f(z)χα(z)χα(y) = e−2πi(α·y)/p · f̂(α).

For (iv), we recall that |a|2 = aa for any a ∈ C. By combining this property with
the definition of f̂ and then with part (iii) of Claim 3.1, we obtain

∑

α∈Fn
p

|f̂(α)|2 =
∑

α∈Fn
p

f̂(α)f̂(α) =
∑

α∈Fn
p


p−n

∑

x∈Fn
p

f(x)χα(x)




p−n

∑

y∈Fn
p

f(y)χα(y)




= p−2n
∑

x,y∈Fn
p

f(x)f(y)
∑

α∈Fn
p

e2π(α·(y−x))/p = p−n
∑

x∈Fn
p

f(x)f(x) = p−n
∑

x∈Fn
p

|f(x)|2.

For more details about the Fourier transform, see for example [11].
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4 Meshulam’s theorem

We are now ready for our first use of the Fourier transform. Consider a set A ⊂ Fn
3

for some large integer n. In this case, we say that A contains a 3-term arithmetic
progression if there exist a, b ∈ Fn

3 such that b 6= 0 and

{a, a+ b, a + 2b} ⊂ A.

Such a triple of points can also be thought of as a line that is defined by n − 1
independent linear equations in x1, . . . , xn.

Figure 1: The “line” that is defined by y = x+ 2 in F2
5.

This may be a good place to point out that lines behave somewhat differently in
Fn
p . For example, consider F2

5 as a 5 × 5 lattice in the plane. Figure 1 depicts the
“line” that is defined by y = x + 2 in this plane. In Fn

3 a linear equation defines
a “hyperplane” that contains a third of the points of Fn

3 and may consist of many
distinct “connected components”.

How large can a set A ⊂ Fn
3 be without containing a 3-term arithmetic progression?

A straightforward example of such a set is A = {0, 1}n. This set obviously contains
no 3-term progression and is of size 2n. Edel [5] derived sets of size 2.2174n with
no 3-term progression, which is currently the largest known lower bound. We now
present an upper bound proof by Meshulam [8].

Theorem 4.1. There exists a constant c > 0 such that any set A ⊂ Fn
3 with |A| ≥

c · 3n/n contains a 3-term arithmetic progression.

Proof. We prove the theorem by induction on n. For the induction basis, the claim
holds for small n by taking c to be a sufficiently large constant.

For the induction step we assume for contradiction that there exists a set A ⊂ Fn
3

such that |A| = c ·3n/n and A contains no 3-term arithmetic progression. Recall that
the indicator function 1A(x) equals 1 if x ∈ A and is otherwise zero. The proof is
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based on studying the Fourier coefficients of 1A. First, we observe that

1̂A(0) = 3−n
∑

a∈Fn
3

1A(a)χ0(a) = 3−n
∑

a∈Fn
3

1A(a) =
|A|
3n

=
c

n
. (2)

Finding another large coefficient. Set δ = maxα∈Fn
3
\{0}

∣∣∣1̂A(α)
∣∣∣. We now show

that δ cannot be too small. By the definition of a Fourier coefficient, we have

∑

α∈Fn
3

1̂A(α)
3 =

∑

α∈Fn
3


3−n

∑

x∈Fn
3

1A(x)χα(x)




3

= 3−3n
∑

α∈Fn
3

∑

x,y,z∈A
e−2πi((x+y+z)·α)/3. (3)

By part (iii) of Claim 3.1, when x+ y+ z 6= 0 we have
∑

α∈Fn
3

e2πi(α·(x+y+z))/3 = 0.
That is, it suffices to sum over x, y, z ∈ A with x+y+z = 0. Notice that x+y+z = 0
is equivalent to x + z = 2y. This holds either when x = y = z or when x, y, z is a
3-term arithmetic progression. Since we assume that A contains no such progression,
the only solution to x+ y + z = 0 is x = y = z. Thus, (3) becomes

∑

α∈Fn
3

1̂A(α)
3 = 3−3n

∑

α∈Fn
3

∑

x∈A
1 = 3−2n|A| = c

n3n
.

By combining this with (2), we obtain

c

n3n
− c3

n3
=
∑

α∈Fn
3

α6=0

1̂A(α)
3.

By taking the absolute value of both sides and applying the triangle inequality, we
obtain

c3

n3
− c

n3n
=

∣∣∣∣∣∣∣

∑

α∈Fn
3

α6=0

1̂A(α)
3

∣∣∣∣∣∣∣
≤
∑

α∈Fn
3

α6=0

∣∣∣1̂A(α)
∣∣∣
3

.

By recalling the definition of δ and applying Parseval’s Theorem (Claim 3.3(iv)),
we get

c3

n3
− c

n3n
≤ δ

∑

α∈Fn
3

α6=0

∣∣∣1̂A(α)
∣∣∣
2

≤ δ

3n

∑

α∈Fn
3

|1A(α)|2 =
δ

3n
|A| = δc

n
.

That is, we obtain δ ≥ c2

n2 − 1
3n
.
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Studying the large coefficient. Since δ ≥ c2

n2 − 1
3n
, there exists α ∈ Fn

3 \ {0} with

|1̂A(α)| ≥ c2

n2 − 1
3n
. We now study what such a large Fourier coefficient implies about

A.
A hyperplane in Fn

3 is the set of points that are defined by a linear equation
in x1, . . . , xn. Notice that every hyperplane contains exactly 3n−1 points of Fn

3 . For
j ∈ {0, 1, 2} (and α as set above), we denote by Hα,j the hyperplane that is defined by
α · (x1, . . . , xn) = j. Notice that Hα,0, Hα,1, and Hα,2 are three “parallel” hyperplanes
that together cover Fn

3 . We can think of these hyperplanes as being orthogonal to the
vector α.

For 0 ≤ j ≤ 2, we set kj = |A ∩ Hα,j|/3n−1 − c/n. Notice that the first term in
this difference is the density of A in Hα,j and the second term is the density of A in
Fn
3 . We have

1̂A(α) = 3−n
∑

x∈Fn
3

1A(x)e
−2πi(x·α)/3

= 3−n


 ∑

x∈hα,0

1A(x) +
∑

x∈hα,1

1A(x)e
−2πi/3 +

∑

x∈hα,2

1A(x)e
−4πi/3




= 3−1
(
(k0 + c/n) + (k1 + c/n)e−2πi/3 + (k2 + c/n)e−4πi/3

)
.

Since the sum of the 3’rd roots of unity is zero (that is, 1 + e−2πi/3 + e−4πi/3 = 0),
we get

c2

n2
− 1

3n
≤
∣∣∣1̂A(α)

∣∣∣ =
∣∣3−1

(
k0 + k1e

−2πi/3 + k2e
−4πi/3

)∣∣ .

By the triangle inequality, we have

c2

n2
− 1

3n
≤ |k0|+ |k1|+ |k2|

3
.

That is, there exists j ∈ {0, 1, 2} such that c2

n2 − 1
3n

≤ |kj|. Notice that k0+ k1 + k2 =

|A|/3n−1−3c/n = 0. Thus, if c2

n2 − 1
3n

≤ −kj then there exists j′ ∈ {0, 1, 2} \ {j} with

kj′ ≥ c2

2n2 − 1
2·3n . Either way, we have maxj∈{0,1,2} kj ≥ c2

2n2 − 1
2·3n .

To recap, we showed that the existence of a large Fourier coefficient 1̂A(α) (where
α 6= 0) implies that A is not well-distributed along the hyperplanes Hα,j. That is,
there exists a hyperplane H = Hα,j for some j ∈ {0, 1, 2} such that |A ∩ H| ≥
3n−1( c

n
+ c2

2n2 − 1
2·3n ).
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Concluding the proof. Consider the set A′ = A∩H . We consider H as Fn−1
3 and

A′ as a subset of Fn−1
3 . By the above, for sufficiently large c we have

|A′| = 3n−1

(
c

n
+

c2

2n2
− 1

2 · 3n
)

> 3n−1 c

n− 1
.

By the induction hypothesis, this means that A′ contains a 3-term arithmetic
progression. Since A′ is a subset of A, we obtain a contradiction to A not containing
such a progression. This contradiction completes the induction step, and proves the
assertion of the theorem.

In the proof of Theorem 4.1 we showed that a large Fourier coefficient 1̂A(α)
(where α 6= 0) implies that A is not well-distributed along the hyperplanes that are
orthogonal to α. It is not difficult to show that the complement statement also holds
— no large Fourier coefficients (excluding 1̂A(0)) implies that the point set A is well-
distributed. That is, for any direction α the points of A are well-distributed among
the three hyperplanes that are orthogonal to α.

Bateman and Katz [2] improved the bound of Theorem 4.1 to c ·3n/n1+ε, for some
small ε > 0. They did this by showing that there are many large coefficient, and
studying what this implies. This still leaves a significantly large bound between the
current best lower and upper bounds for this problem.

5 Roth’s theorem

Theorem 1.2 stated that there exist somewhat dense sets that do not contain a 3-
term arithmetic progression. Roth [9] proved the complement claim — any sufficiently
dense set must contain a 3-term arithmetic progression.

Theorem 5.1 (Roth’s theorem). There exists a constant c > 0 such that the
following holds for every positive integer n. Any set A ⊂ {1, 2, . . . , n} with |A| ≥
cn/ lg lg n contains a 3-term arithmetic progression.

Notice that there is a gap of between the density e−c
√
lgn in Theorem 1.2 and the

density 1
lg lgn

in Theorem 5.1. Over the years, Theorem 5.1 has been improved to

smaller densities. The current best bound is by Bloom [4], stating that sets of density

at least c (lg lgn)
4

lgn
must contain a 3-term arithmetic progression.

To prove Theorem 5.1, we will rely on the following two number theoretic results
(the first is taken from [1]; for the second, see for example [10, Section II.1])
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Theorem 5.2. For any sufficiently large integer n, the interval {⌊n− n0.525⌋, . . . , n}
contains a prime number.

Theorem 5.3 (Dirichlet’s approximation theorem). For every γ ∈ R and pos-
itive integer N , there exist integers p and 1 ≤ q ≤ N such that |γ − p

q
| ≤ 1

N ·q .

We will also rely on the following claim, whose technical proof can be found below
in Appendix A.

Claim 5.4. Let I ⊂ R be a continues interval of length β > 0, and let f : I → R be
a function that satisfies |f(x)| ≤ γ for any x ∈ I. Then for any x1, . . . , xm ∈ I we
have ∣∣∣∣∣

m∑

j=1

f(xj)e
−2πixj

∣∣∣∣∣ ≤
∣∣∣∣∣

m∑

j=1

f(xj)

∣∣∣∣∣+ 2πβγm.

Proof of Theorem 5.1. We first claim that it suffices to prove the theorem for the case
where n is prime. Indeed, by Theorem 5.2 for every n there exists a prime of size
smaller than 2n. That is, proving the theorem for every prime n when |A| ≥ cn

lg lgn

implies the theorem for every positive integer n when |A| ≥ 2cn
lg lgn

.

We imitate the proof of Theorem 4.1 (this is opposite of what actually happened —
Meshulam adapted Roth’s proof). We prove the theorem by contradiction, assuming
that there exists an n and A ⊂ {1, 2, . . . , n} such that |A| = cn

lg lgn
and A contains

no 3-term arithmetic progression (for a sufficiently large constant c). Let n be the
smallest prime for which such a set A exists. In various parts of our analysis, we may
assume that n is sufficiently large by taking c to be sufficiently large (by taking c to
be large we get cn

lg lgn
> n for small values of n, preventing the existence of a set A of

this size).
We decrease every element of A by one, so that A ⊂ {0, 1, . . . , n− 1}. To use the

Fourier transform as in the proof of Theorem 4.1, we will work over the finite field Fn

(this is why we asked for n to be prime). Although A might not contain 3-term arith-
metic progressions, it might contain such progressions in Fn; for example, {1, 8, 10}
is not an arithmetic progression over R but is a progression over F11. To address this
issue, we notice the following property. In any 3-term arithmetic progression in R,
the first and third elements have the same parity. On the other hand, if a 3-term
progression was created in A due to working in Fn, then the first and third elements
in this progression have opposite parities.

If at least |A|/2 elements of A are even, we denote by B the set of even elements
of A. Otherwise, we denote by B the set of odd elements of A. As before, we denote

11



the indicator functions of A and B as 1A and 1B, respectively. We observe that

1̂A(0) = n−1
∑

a∈Fn

1A(a)χ0(a) = n−1
∑

a∈Fn

1A(a) =
|A|
n

.

1̂B(0) = n−1
∑

a∈Fn

1B(a)χ0(a) = n−1
∑

a∈Fn

1B(a) =
|B|
n

.

(4)

Finding another large coefficient. Set δ = maxα∈Fn\{0}

∣∣∣1̂A(α)
∣∣∣. We now show

that δ cannot be too small. By the definition of a Fourier coefficient, we have

∑

α∈Fn

1̂B(α)
21̂A(−2α) =

∑

α∈Fn

(
n−1

∑

x∈Fn

1B(x)χα(x)

)2(
n−1

∑

y∈Fn

1A(y)χ−2α(y)

)

= n−3
∑

α∈Fn

∑

x,z∈B

∑

y∈A
e−2πi((x+z−2y)·α)/n. (5)

By part (iii) of Claim 3.1, when x+z−2y 6= 0 we have
∑

α∈Fn
e2πi(α·(x+z−2y))/n = 0.

That is, it suffices to sum over x, y, z with x + z = 2y. This holds either when
x = y = z or when x, y, z is a 3-term arithmetic progression. Since A contains no
such progressions in R and since x and z have the same parity, the only solution to
x+ z = 2y is x = y = z. Thus, (5) becomes

∑

α∈Fn

1̂B(α)
21̂A(−2α) = n−3

∑

α∈Fn

∑

x∈B
1 = n−2|B|.

By combining this with (4), we obtain

|B|
n2

− |A||B|2
n3

=
∑

α∈Fn
α6=0

1̂A(α)
21̂A(−2α).

For sufficiently large n, we have |B|
n2 < |A||B|2

n3 (for any c ≥ 1). Thus, taking the
absolute value of both sides and applying the triangle inequality gives

|A||B|2
n3

− |B|
n2

=

∣∣∣∣∣∣∣

∑

α∈Fn
α6=0

1̂B(α)
21̂A(−2α)

∣∣∣∣∣∣∣
≤
∑

α∈Fn
α6=0

∣∣∣1̂B(α)
∣∣∣
2 ∣∣∣1̂A(−2α)

∣∣∣ .

12



By recalling the definition of δ and applying Parseval’s theorem (part (iv) of Claim
3.3), we get

|A||B|2
n3

− |B|
n2

≤ δ
∑

α∈Fn
α6=0

∣∣∣1̂B(α)
∣∣∣
2

≤ δ

n

∑

α∈Fn

|1B(α)|2 =
δ

n
|B|.

Since |B| ≥ |A|/2, we have δ ≥ |A|2
2n2 − 1

n
.

Using the large coefficient. Since δ > |A|2
2n2 − 1

n
, there exists α ∈ Fn \ {0} with

|1̂A(α)| ≥ |A|2
2n2 − 1

n
. We now study what such a large Fourier coefficient implies about

A. Notice that the density of A in {0, 1, 2, 3, . . . , n− 1} is c/ lg lg n. By part (iii) of
Claim 3.1, for sufficiently large n we obtain

∣∣∣∣∣
∑

x∈Fn

(
1A(x)−

c

lg lg n

)
e−2πiαx/n

∣∣∣∣∣ =
∣∣∣∣∣
∑

x∈Fn

1A(x)e
−2πiαx/n

∣∣∣∣∣ = n ·
∣∣∣1̂A(α)

∣∣∣

≥ |A|2
2n

− 1 >
c2n

3(lg lg n)2
. (6)

By applying Theorem 5.3 with γ = α/n and N =
√
n, we obtain integers r and

1 ≤ q ≤ √
n such that ∣∣∣∣

α

n
− r

q

∣∣∣∣ ≤
1√
n · q . (7)

We partition the set {0, 1, 2, 3, . . . , n− 1} into the q arithmetic progressions Sa =
{a+qb : 0 ≤ b ≤ ⌊(n−a)/q⌋}, where a ∈ {0, 1, 2, . . . , q−1}. Notice that for any such
a we have n/q− 1 ≤ |Sa| ≤ n/q. For a k that we will set below, we further subdivide
each Sa into k arithmetic progressions Sa,j (where 0 ≤ j ≤ k − 1), each consisting
of either ⌈|Sa|/k⌉ or ⌊|Sa|/k⌋ consecutive elements of Sa. This process creates kq
arithmetic progressions, each with difference q and of size between n/qk − 2 and
n/qk + 1.

The reason for partitioning {0, 1, 2, . . . , n− 1} into the above arithmetic progres-
sions is that every element x ∈ Sa,j (for a fixed progression Sa,j) gives the expression
e−2πi(α·x)/n almost the same value. Indeed, by (7) we have e−2πiαq/n = e−2πi(r+εq) =
e−2πiεq for some |ε| ≤ 1√

n·q . By combining (6) and the triangle inequality, we have

c2n

3(lg lgn)2
<

∣∣∣∣∣
∑

x∈Fn

(
1A(x)−

c

lg lg n

)
e−2πiαx/n

∣∣∣∣∣ ≤
∑

Sa,j

∣∣∣∣∣∣
∑

x∈Sa,j

(
1A(x)−

c

lg lg n

)
e−2πiαx/n

∣∣∣∣∣∣

13



Consider the value of
∣∣∣
∑

x∈Sa,j

(
1A(x)− c

lg lgn

)
e−2πiαx/n

∣∣∣ for a specific progression

Sa,j . We write the elements of Sa,j as a′ + bq (where 0 ≤ b ≤ n/qk), and recall the
definition of ε above. For every such x we have

e−2πiαx/n = e−2πiα(a′+bq)/n = e−2πiαa′/ne−2πi(r+εqb) = e−2πiαa′/ne−2πiεqb.

As we take different elements x ∈ Sa,j, the above expression changes only in
e−2πiεqb. We can thus apply Claim 5.4 to the function f(y) = 1A(a

′ + y/ε) − c
lg lgn

,

where y = εbq and 0 ≤ b ≤ n/qk. That is, we may take β =
√
n/qk ≥ εq(n/qk),

γ = c, and m = 2n/qk, to obtain

c2n

3(lg lg n)2
<
∑

Sa,j



∣∣∣∣∣∣
∑

x∈Sa,j

(
1A(x)−

c

lg lg n

)∣∣∣∣∣∣
+

14cn3/2

q2k2




≤
∑

Sa,j

∣∣∣∣∣∣
∑

x∈Sa,j

(
1A(x)−

c

lg lg n

)∣∣∣∣∣∣
+

14cn3/2

qk
.

By setting k = 84
√
n(lg lgn)2/cq, for sufficiently large n we have

c2n

3(lg lgn)2
<
∑

Sa,j

∣∣∣∣∣∣
∑

x∈Sa,j

(
1A(x)−

c

lg lg n

)∣∣∣∣∣∣
+

c2n

6(lg lg n)2
,

or

c2n

6(lg lg n)2
<
∑

Sa,j

∣∣∣∣∣∣
∑

x∈Sa,j

(
1A(x)−

c

lg lg n

)∣∣∣∣∣∣
(8)

On the other hand, notice that

∑

Sa,j

∑

x∈Sa,j

(
1A(x)−

c

lg lgn

)
=
∑

x∈Fn

(
1A(x)−

c

lg lgn

)
=

cn

lg lg n
− cn

lg lgn
= 0. (9)

Recall that we have kq arithmetic progressions Sa,j . For both (8) and (9) to hold,
there must exist Sa,j such that

∑

x∈Sa,j

(
1A(x)−

c

lg lg n

)
>

c2n

12(lg lg n)2
· 1

kq
. (10)

14



To recap, we showed that the existence of a large Fourier coefficient 1̂A(α) (where
α 6= 0) implies that A is not well-distributed along the progressions Sa,j.

Concluding the proof. We are done with the Fourier analysis part of the proof
and return to work over R. Let Sa,j be the set satisfying (10) and let D = Sa,j ∩ A.
Since |A ∩ Sa,j | = |D ∩ Sa,j|, we get

|D| − c|Sa,j|
lg lg n

=
∑

x∈Sa,j

(
1D(x)−

c

lg lg n

)
>

c2n

12(lg lg n)2
· 1

kq
. (11)

We translate and dilate Sa,j so that Sa,j becomes the set {1, 2, 3, . . . , |Sa,j|}. De-
note by D′ be the set that is obtained by applying the same translation and dilation
to D. Let n′ denote the smallest prime that satisfies n′ ≥ |Sa,j|. By Theorem 5.2,
n′ ≤ |Sa,j |+ |Sa,j |0.53, which in turn implies n′ ≤ |Sa,j|+ (n′)0.53. Notice that

2n

kq
≥ n′ ≥ n

2kq
≥ c

√
n

168(lg lg n)2
and (n′)0.53 <

n′

lg lg n
.

Notice also that the inequality 10
(lg lgn)2

+ 1
lg lgn

> 1
lg lgn1/3 holds for any n > 31. By

combining the above observations and taking n and c to be sufficiently large, we get
that (11) gives

|D′| = |D| > c2n

12(lg lgn)2
· 1

kq
+

c|Sa,j|
lg lg n

≥ 11cn′

(lg lg n)2
+

c (n′ − (n′)0.53)

lg lg n

>
10cn′

(lg lg n)2
+

cn′

lg lg n
>

cn′

lg lg n1/3
>

cn′

lg lg n′ .

By the minimality of n, since D′ is a subset of {1, 2, . . . , n′} and |D′| > cn′

lg lgn′ ,
there is a 3-term arithmetic progression in D′. Since A contains a translated and
dilated copy of D′, A also contains such a progression. This contradiction completes
the proof.
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A Claim 5.4

In this appendix we prove Claim 5.4. We first repeat the statement of the claim.

Claim 5.4. Let I ⊂ R be a continues interval of length β > 0, and let f : I → R be
a function that satisfies |f(x)| ≤ γ for any x ∈ I. For x1, . . . , xm ∈ I we have

∣∣∣∣∣
m∑

j=1

f(xj)e
−2πixj

∣∣∣∣∣ ≤
∣∣∣∣∣

m∑

j=1

f(xj)

∣∣∣∣∣+ 2πβγm.
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Proof. By the triangle inequality, we have

∣∣∣∣∣
m∑

j=1

f(xj)e
−2πixj

∣∣∣∣∣ =
∣∣∣∣∣f(x1) +

m∑

j=2

f(xj)
e−2πixj

e−2πix1

∣∣∣∣∣

=

∣∣∣∣∣f(x1) +
m∑

j=2

(
f(xj)− f(xj) + f(xj)

e−2πixj

e−2πix1

)∣∣∣∣∣

≤
∣∣∣∣∣

m∑

j=1

f(xj)

∣∣∣∣∣+
m∑

j=2

∣∣∣∣f(xj)
e−2πixj

e−2πix1

− f(xj)

∣∣∣∣

=

∣∣∣∣∣
m∑

j=1

f(xj)

∣∣∣∣∣ +
m∑

j=2

f(xj)
∣∣e−2πi(xj−x1) − 1

∣∣ . (12)

It is known that |1− e−2πix| ≤ 2π‖x‖, where ‖x‖ is the distance between x and
the closest integer (e.g., see [13, Section 4.4]). Combining this with (12) gives

∣∣∣∣∣
m∑

j=1

f(xj)e
−2πixj

∣∣∣∣∣ ≤
∣∣∣∣∣

m∑

j=1

f(xj)

∣∣∣∣∣+
m∑

j=2

f(xj)2πβ ≤
∣∣∣∣∣

m∑

j=1

f(xj)

∣∣∣∣∣+ 2πβγm.
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