Stability of the Hersch inequality for the first eigenvalue on the 2-sphere and generalizations.

Mikhail Karpukhin

(California Institute of Technology)

Based on a joint work with Mickaël Nahon, Iosif Polterovich and Daniel Stern
Shape optimization for Dirichlet eigenvalues

Let $\Omega \subset \mathbb{R}^d$ be a domain in the Euclidean space

\[
\begin{cases}
\Delta u = \lambda u & \text{on } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\]
Shape optimization for Dirichlet eigenvalues

• Let $\Omega \subset \mathbb{R}^d$ be a domain in the Euclidean space

\[
\begin{cases}
\Delta u = \lambda u \quad \text{on } \Omega, \\
u = 0 \quad \text{on } \partial \Omega.
\end{cases}
\]

• The eigenvalues form a sequence

\[0 < \lambda_1(\Omega) \leq \lambda_2(\Omega) \leq \cdots \uparrow +\infty\]
Faber-Krahn theorem

Theorem

(Faber, Krahn 1923) One has

$$
\lambda_1(\Omega)\text{Vol}(\Omega)^{\frac{2}{d}} \geq \lambda_1(B)\text{Vol}(B)^{\frac{2}{d}},
$$

where B is any ball. Equality iff Ω is a ball.
Faber-Krahn theorem

Theorem
(Faber, Krahn 1923) One has

$$\lambda_1(\Omega)\text{Vol}(\Omega)^{\frac{2}{d}} \geq \lambda_1(B)\text{Vol}(B)^{\frac{2}{d}},$$

where B is any ball. Equality iff Ω is a ball.

The quantity $\lambda_1(\Omega)\text{Vol}(\Omega)^{\frac{2}{d}}$ can be made arbitrarily large.
Shape optimization for Neumann eigenvalues
Shape optimization for Neumann eigenvalues

• Let $\Omega \subset \mathbb{R}^d$ be a (Lipschitz) domain in the Euclidean space

\[
\begin{cases}
\Delta u = \nu u & \text{on } \Omega, \\
\partial_n u = 0 & \text{on } \partial \Omega.
\end{cases}
\]
Shape optimization for Neumann eigenvalues

• Let $\Omega \subset \mathbb{R}^d$ be a (Lipschitz) domain in the Euclidean space

\[
\begin{cases}
\Delta u = \nu u & \text{on } \Omega, \\
\partial_n u = 0 & \text{on } \partial \Omega.
\end{cases}
\]

• The eigenvalues form a sequence

\[0 = \nu_0(\Omega) < \nu_1(\Omega) \leq \nu_2(\Omega) \leq \cdots \uparrow +\infty\]
Szegö-Weinberger theorem

Theorem
(Szegö 1954, Weinberger 1956) One has

\[\nu_1(\Omega) \text{Vol}(\Omega)^{\frac{2}{d}} \leq \nu_1(B) \text{Vol}(B)^{\frac{2}{d}} \]

where \(B \) is any ball. Equality iff \(\Omega \) is a ball.
Theorem
(Szegö 1954, Weinberger 1956) One has

$$\nu_1(\Omega) \text{Vol}(\Omega)^{\frac{2}{d}} \leq \nu_1(B) \text{Vol}(B)^{\frac{2}{d}}$$

where B is any ball. Equality iff Ω is a ball.

The quantity $\nu_1(\Omega) \text{Vol}(\Omega)^{\frac{2}{d}}$ can be made arbitrarily small.
Stability estimates

\[A(\Omega) = \inf \{ \frac{\text{Vol}(\Omega - B)}{\text{Vol}(B)} : B \text{ is a ball, } \text{Vol}(B) = \text{Vol}(\Omega) \} \]

Theorem (Brasco–De Philippis–Velichkov 2015) There exists \(C_d > 0 \) such that
\[\lambda_1(\Omega) \frac{\text{Vol}(\Omega)}{2^d} - \lambda_1(B) \frac{\text{Vol}(B)}{2^d} \geq C_d A^2(\Omega). \]

Theorem (Nadirashvili 1996, Brasco–Pratelli 2012) There exists \(C_d > 0 \) such that
\[\nu_1(B) \frac{\text{Vol}(B)}{2^d} - \nu_1(\Omega) \frac{\text{Vol}(\Omega)}{2^d} \geq C_d A^2(\Omega). \]
Stability estimates

\[A(\Omega) = \inf \left\{ \frac{\text{Vol}(\Omega \triangle B)}{\text{Vol}(B)} : B \text{ is a ball, } \text{Vol}(B) = \text{Vol}(\Omega) \right\} \]
Stability estimates

\[A(\Omega) = \inf \left\{ \frac{\text{Vol}(\Omega \triangle B)}{\text{Vol}(B)} : B \text{ is a ball, } \text{Vol}(B) = \text{Vol}(\Omega) \right\} \]

Theorem

(Brasco–De Philippis–Velichkov 2015) There exists \(C_d > 0 \) such that

\[\lambda_1(\Omega)\text{Vol}(\Omega)^{\frac{2}{d}} - \lambda_1(B)\text{Vol}(B)^{\frac{2}{d}} \geq C_d A^2(\Omega). \]
Stability estimates

\[A(\Omega) = \inf \left\{ \frac{\text{Vol}(\Omega \triangle B)}{\text{Vol}(B)} : B \text{ is a ball, } \text{Vol}(B) = \text{Vol}(\Omega) \right\} \]

Theorem
(Brasco–De Philippis–Velichkov 2015) There exists \(C_d > 0 \) such that
\[\lambda_1(\Omega) \text{Vol}(\Omega)^{\frac{2}{d}} - \lambda_1(B) \text{Vol}(B)^{\frac{2}{d}} \geq C_d A^2(\Omega). \]

Theorem
(Nadirashvili 1996, Brasco–Pratelli 2012) There exists \(C_d > 0 \) such that
\[\nu_1(B) \text{Vol}(B)^{\frac{2}{d}} - \nu_1(\Omega) \text{Vol}(\Omega)^{\frac{2}{d}} \geq C_d A^2(\Omega). \]
Let \((M, g)\) be a closed Riemannian surface.

The Laplace-Beltrami operator is defined by

\[\Delta_g f = -\frac{1}{\sqrt{|g|}} \partial_i (\sqrt{|g|} g^{ij} \partial_j f), \]

where \(g_{ij}\) is the Riemannian metric, \(g^{ij}\) are the components of the matrix inverse to \(g_{ij}\) and \(|g| = \text{det} g\).
Laplace-Beltrami operator

Let \((M, g)\) be a closed Riemannian surface. The Laplace-Beltrami operator is defined by

\[
\Delta_g f = -\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^i} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x^j} \right),
\]

where \(g^{ij}\) are the components of the matrix inverse to \(g_{ij}\) and \(|g| = \det g\).
Laplace-Beltrami operator

Let \((M, g)\) be a closed Riemannian surface. The Laplace-Beltrami operator is defined by

\[
\Delta_g f = -\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^i} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x^j} \right),
\]

where \(g_{ij}\) is the Riemannian metric, \(g^{ij}\) are the components of the matrix inverse to \(g_{ij}\) and \(|g| = \det g\).
Eigenvalues of the Laplacian

Consider the eigenvalue problem:

\[\Delta_g f = \lambda f \]
Eigenvalues of the Laplacian

Consider the eigenvalue problem:

$$\Delta_g f = \lambda f$$

The spectrum is discrete,

$$0 = \lambda_0(M, g) < \lambda_1(M, g) \leq \lambda_2(M, g) \leq \cdots \nearrow +\infty$$
Eigenvalues of the Laplacian

Consider the eigenvalue problem:

$$\Delta_g f = \lambda f$$

The spectrum is discrete,

$$0 = \lambda_0(M, g) < \lambda_1(M, g) \leq \lambda_2(M, g) \leq \cdots \nearrow +\infty$$

Set

$$\bar{\lambda}_k(M, g) = \lambda_k(M, g) \text{Area}(M, g).$$
Hersch theorem

Theorem

(Hesch 1970) For any metric g on S^2 one has

$$\bar{\lambda}_1(S^2, g) \leq \bar{\lambda}_1(S^2, g_0) = 8\pi,$$

where g_0 is a round metric on the sphere. Equality iff g is round.
Stability estimate

Theorem (K.–Nahon–Stern–Polterovich, in prep.) There exists $C > 0$ such that

Remarks:

• $W^{−1, 2} = (W^{1, 2})^∗$ is the borderline norm: there is no stability for $(W^{1, p})^∗, p < 2$;
• the power is optimal;
• unclear how to use the Hessian.
Stability estimate

Theorem

(K.-Nahon–Stern–Polterovich, in prep.) There exists $C > 0$ such that

$$
\overline{\lambda}_1(g_0) - \overline{\lambda}_1(g) \geq C \inf_{\Phi \in \text{Diff}(S^2)} \| \lambda_1(g) \, dv_{\Phi^*g} - \lambda_1(g_0) \, dv_{g_0} \|^2
$$
Stability estimate

Theorem
(K.–Nahon–Stern–Polterovich, in prep.) There exists $C > 0$ such that

$$\bar{\lambda}_1(g_0) - \bar{\lambda}_1(g) \geq C \inf_{\Phi \in \text{Diff}(S^2)} \left\| \lambda_1(g) dv_{\Phi^*g} - \lambda_1(g_0) dv_{g_0} \right\|_{W^{-1,2}(g_0)}^2$$

Remarks:
• $W^{-1,2}$ is the borderline norm: there is no stability for $(W^p, p < 2$);
• the power is optimal;
• unclear how to use the Hessian.
Stability estimate

Theorem
(K.–Nahon–Stern–Polterovich, in prep.) There exists \(C > 0 \) such that

\[
\bar{\lambda}_1(g_0) - \bar{\lambda}_1(g) \geq C \inf_{\Phi \in \text{Diff}(S^2)} \| \lambda_1(g) \, dv_{\Phi^*g} - \lambda_1(g_0) \, dv_{g_0} \|_{W^{-1,2}(g_0)}^2
\]

Remarks:

- \(W^{-1,2} = (W^{1,2})^* \) is the borderline norm: there is no stability for \((W^{1,p})^*, p < 2;\)
Stability estimate

Theorem

(K.–Nahon–Stern–Polterovich, in prep.) There exists $C > 0$ such that

$$\bar{\lambda}_1(g_0) - \bar{\lambda}_1(g) \geq C \inf_{\Phi \in \text{Diff}(S^2)} \| \lambda_1(g) \, dv_{\Phi^* g} - \lambda_1(g_0) \, dv_{g_0} \|^2_{W^{-1,2}(g_0)}$$

Remarks:

• $W^{-1,2} = (W^{1,2})^*$ is the borderline norm: there is no stability for $(W^{1,p})^*$, $p < 2$;
• the power is optimal;
Stability estimate

Theorem

(K.–Nahon–Stern–Polterovich, in prep.) There exists $C > 0$ such that

$$\bar{\lambda}_1(g_0) - \bar{\lambda}_1(g) \geq C \inf_{\Phi \in \text{Diff}(S^2)} \| \lambda_1(g) \, dv_{\Phi^*g} - \lambda_1(g_0) \, dv_{g_0} \|_{W^{-1,2}(g_0)}^2$$

Remarks:

- $W^{-1,2} = (W^{1,2})^*$ is the borderline norm: there is no stability for $(W^{1,p})^*$, $p < 2$;
- the power is optimal;
- unclear how to use the Hessian.
Geometric optimization of eigenvalues

Consider $\bar{\lambda}_1(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$g \mapsto \bar{\lambda}_1(M, g)$$
Geometric optimization of eigenvalues

Consider $\bar{\lambda}_1(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$g \mapsto \bar{\lambda}_1(M, g)$$

We are interested in the following quantities

$$\Lambda_1(M) = \sup_g \bar{\lambda}_1(M, g);$$
Geometric optimization of eigenvalues

Consider \(\tilde{\lambda}_1(M, g) \) as a \textit{functional} on the space \(\mathcal{R} \) of Riemannian metrics on \(M \).

\[
g \mapsto \tilde{\lambda}_1(M, g)
\]

We are interested in the following quantities

\[
\Lambda_1(M) = \sup_{g} \tilde{\lambda}_1(M, g); \\
\Lambda_1(M, c) = \sup_{g \in c} \tilde{\lambda}_1(M, g),
\]
Geometric optimization of eigenvalues

Consider $\overline{\lambda}_1(M, g)$ as a \textit{functional} on the space \mathcal{R} of Riemannian metrics on M.

$$g \mapsto \overline{\lambda}_1(M, g)$$

We are interested in the following quantities

$$\Lambda_1(M) = \sup_g \overline{\lambda}_1(M, g);$$

$$\Lambda_1(M, c) = \sup_{g \in c} \overline{\lambda}_1(M, g),$$

where $c = [g] = \{ e^\omega g | \omega \in C^\infty(M) \}$ is a fixed conformal class of metrics.
Geometric optimization of eigenvalues

Consider $\tilde{\lambda}_1(M, g)$ as a functional on the space \mathcal{R} of Riemannian metrics on M.

$$g \mapsto \tilde{\lambda}_1(M, g)$$

We are interested in the following quantities

$$\Lambda_1(M) = \sup_{g} \tilde{\lambda}_1(M, g);$$

$$\Lambda_1(M, c) = \sup_{g \in c} \tilde{\lambda}_1(M, g),$$

where $c = [g] = \{e^{\omega} g | \omega \in C^\infty(M)\}$ is a fixed conformal class of metrics.

Korevaar (1993): $\Lambda_k(M) < +\infty.$
Weak formulation

Given a measure μ on (M, g) define the eigenvalues

$$\lambda_k(M, [g], \mu) = \inf_{E_{k+1} \subset C^\infty(M)} \sup_{u \in E_{k+1} \setminus \{0\}} \frac{\int \lvert du \rvert_g^2 dv_g}{\int u^2 \, d\mu}$$

Has been considered by Grigor'yan–Netrusov–Yau (2004), formally defined by Kokarev (2014) and studied in more detail by Girouard–K.–Lagac´e (2020).
Weak formulation

Given a measure μ on (M, g) define the eigenvalues

$$\lambda_k(M, [g], \mu) = \inf_{E_{k+1} \subset C^\infty(M)} \sup_{u \in E_{k+1} \setminus \{0\}} \frac{\int |du|^2_g \, dv_g}{\int u^2 \, d\mu}$$

Weak formulation

Given a measure μ on (M, g) define the eigenvalues

$$\lambda_k(M, [g], \mu) = \inf_{E_{k+1} \subseteq C^\infty(M)} \sup_{u \in E_{k+1} \setminus \{0\}} \frac{\int |du|_g^2 dv_g}{\int u^2 d\mu}$$

A measure μ is called *admissible* if there is a natural compact operator $W^{1,2}(M, g) \to L^2(\mu)$.
Weak formulation

Given a measure μ on (M, g) define the eigenvalues

$$
\lambda_k(M, [g], \mu) = \inf_{E_{k+1} \subset C^\infty(M)} \sup_{u \in E_{k+1} \setminus \{0\}} \frac{\int |du|_g^2 \, dv_g}{\int u^2 \, d\mu}
$$

A measure μ is called *admissible* if there is a natural compact operator $W^{1,2}(M, g) \to L^2(\mu)$.

$$
\Lambda^w_1(M, [g]) = \sup_{\mu \neq 0, \mu \text{ is adm.}} \lambda_1(M, [g], \mu) \mu(M) \geq \Lambda_1(M, [g])
$$
Reformulation of Hersch inequality

- Up to a diffeomorphism, there is a unique conformal structure on S^2

$$\Lambda_1(S^2) = \Lambda_1(S^2, [g_0]) = 8\pi$$
Reformulation of Hersch inequality

• Up to a diffeomorphism, there is a unique conformal structure on \mathbb{S}^2

$$\Lambda_1(\mathbb{S}^2) = \Lambda_1(\mathbb{S}^2, [g_0]) = 8\pi$$

• Kokarev (2014): the proof of Hersch inequality works for admissible measures as well

$$\Lambda_1^w(\mathbb{S}^2, [g_0]) = 8\pi$$
Reformulation of Hersch inequality

- Up to a diffeomorphism, there is a unique conformal structure on \mathbb{S}^2
 \[\Lambda_1(\mathbb{S}^2) = \Lambda_1(\mathbb{S}^2, [g_0]) = 8\pi \]

- Kokarev (2014): the proof of Hersch inequality works for admissible measures as well
 \[\Lambda^w_1(\mathbb{S}^2, [g_0]) = 8\pi \]

- Similarly, our stability inequality can be formulated as
 \[\bar{\lambda}_1(g_0) - \lambda_1([g_0], \mu)\mu(\mathbb{S}^2) \geq C \inf_{\Phi \in \text{Conf}(\mathbb{S}^2)} \| \lambda_1([g_0], \mu) \Phi_* \mu - \lambda_1(g_0) d\nu_{g_0} \|^2_{W^{-1,2}(g_0)} \]
Existence and regularity theory

Petrides (2014): For any \(c \) on \(M \) there exists "smooth" metric \(g \in c \) such that \(\overline{\lambda}_1(M, g) = \Lambda_1(M, c) \).

Matthiesen–Siffert (2019): there exists "smooth" metric \(g \) such that \(\overline{\lambda}_1(M, g) = \Lambda_1(M) \).

K.–Stern (2020): \(\Lambda_{w1}(M, c) = \Lambda_1(M, c) \) and any maximal measure is a volume measure of a "smooth" metric. Regularity for \(\Lambda_1(M) \) easily follows.
Existence and regularity theory

- Petrides (2014): For any c on M there exists “smooth” metric $g \in c$ such that $\bar{\lambda}_1(M, g) = \Lambda_1(M, c)$.

- Matthiesen–Siffert (2019): there exists “smooth” metric g such that $\bar{\lambda}_1(M, g) = \Lambda_1(M)$.

- K.–Stern (2020): $\Lambda_w^1(M, c) = \Lambda_1(M, c)$ and any maximal measure is a volume measure of a “smooth” metric.

Regularity for $\Lambda_1(M)$ easily follows.
Existence and regularity theory

- Petrides (2014): For any c on M there exists “smooth” metric $g \in c$ such that $\bar{\lambda}_1(M, g) = \Lambda_1(M, c)$.

Petrides (2014): For any c on M there exists “smooth” metric $g \in c$ such that $\bar{\lambda}_1(M, g) = \Lambda_1(M, c)$.

Matthiesen–Siffert (2019): there exists “smooth” metric g such that $\bar{\lambda}_1(M, g) = \Lambda_1(M)$
Existence and regularity theory

• Petrides (2014): For any c on M there exists “smooth” metric $g \in c$ such that $\bar{\lambda}_1(M, g) = \Lambda_1(M, c)$.

• Matthiesen–Siffert (2019): there exists “smooth” metric g such that $\bar{\lambda}_1(M, g) = \Lambda_1(M)$

• K.–Stern (2020): $\Lambda_1^w(M, c) = \Lambda_1(M, c)$ and any maximal measure is a volume measure of a “smooth” metric. Regularity for $\Lambda_1(M)$ easily follows.
Qualitative stability in the conformal class

Theorem (K.–Nahon–Stern–Polterovich, in prep.)
Assume $M \neq S^2$ and $[g]$ be a conformal class on M. If μ_n is a sequence of admissible measures such that $\bar{\lambda}_1(M, [g], \mu_n) \to \Lambda_1(M, [g])$, then μ_n converge in $W_{-1,2}(M, g)$ to a maximal measure.

Remarks.
• Qualitative stability for $\Lambda_1(M)$ easily follows.
• If $M = S^2$, then there are exceptional δ-sequences.
Qualitative stability in the conformal class

Theorem
(K.–Nahon–Stern–Polterovich, in prep.)
Assume $M \neq S^2$ and $[g]$ be a conformal class on M. If μ_n is a sequence of admissible measures such that
$\bar{\lambda}_1(M, [g], \mu_n) \to \Lambda_1(M, [g])$, then μ_n converge in $W^{-1,2}(M, g)$ to a maximal measure.
Qualitative stability in the conformal class

Theorem
(K.–Nahon–Stern–Polterovich, in prep.)
Assume $M \neq \mathbb{S}^2$ and $[g]$ be a conformal class on M. If μ_n is a sequence of admissible measures such that
\[
\overline{\lambda}_1(M, [g], \mu_n) \to \Lambda_1(M, [g]),
\]
then μ_n converge in $W^{-1,2}(M, g)$ to a maximal measure.

Remarks.
• Qualitative stability for $\Lambda_1(M)$ easily follows.
Qualitative stability in the conformal class

Theorem
(K.–Nahon–Stern–Polterovich, in prep.)
Assume \(M \neq S^2 \) and \([g]\) be a conformal class on \(M \). If \(\mu_n \) is a sequence of admissible measures such that \(\bar{\lambda}_1(M,[g],\mu_n) \to \Lambda_1(M,[g]) \), then \(\mu_n \) converge in \(W^{-1,2}(M,g) \) to a maximal measure.

Remarks.

• Qualitative stability for \(\Lambda_1(M) \) easily follows.

• If \(M = S^2 \), then there are exceptional \(\delta \)-sequences.
General quantitative stability
General quantitative stability

Proposed formulation (KNPS): Assume $M \neq S^2$ and $[g]$ be a conformal class on M. There exist $\delta, C > 0$ such that for any admissible μ satisfying $\Lambda_1(M, [g]) - \bar{\lambda}_1(M, [g], \mu) < \delta$ there exists a maximal measure μ_0 such that

$$\Lambda_1(M, [g]) - \bar{\lambda}_1(M, [g], \mu) \geq C \| \lambda_1(\mu) \mu - \lambda_1(\mu_0) \mu_0 \|^2_{W^{-1,2}(g)}$$
General quantitative stability

Proposed formulation (KNPS): Assume $M \neq S^2$ and $[g]$ be a conformal class on M. There exist $\delta, C > 0$ such that for any admissible μ satisfying $\Lambda_1(M, [g]) - \tilde{\lambda}_1(M, [g], \mu) < \delta$ there exists a maximal measure μ_0 such that

$$\Lambda_1(M, [g]) - \tilde{\lambda}_1(M, [g], \mu) \geq C \| \lambda_1(\mu) \mu - \lambda_1(\mu_0) \mu_0 \|_{W^{-1,2}(g)}^2$$

- Similar statement for $\Lambda_1(M)$;
General quantitative stability

Proposed formulation (KNPS): Assume $M \neq S^2$ and $[g]$ be a conformal class on M. There exist $\delta, C > 0$ such that for any admissible μ satisfying $\Lambda_1(M, [g]) - \bar{\lambda}_1(M, [g], \mu) < \delta$ there exists a maximal measure μ_0 such that

$$\Lambda_1(M, [g]) - \bar{\lambda}_1(M, [g], \mu) \geq C \| \lambda_1(\mu) \mu - \lambda_1(\mu_0) \mu_0 \|^2_{W^{-1,2}(g)}$$

- Similar statement for $\Lambda_1(M)$;
- Out of reach in full generality. Missing a priori knowledge on the structure of the set of maximal measures.
Particular examples

- Hersch (1970): $\Lambda_1(S^2) = 8\pi$ and the maximum is achieved on the standard metric on S^2. Stable.

- Li–Yau (1982): $\Lambda_1(RP^2) = 12\pi$ and the maximum is achieved on the standard metric on RP^2. Stable.
Particular examples

- Hersch (1970): $\Lambda_1(S^2) = 8\pi$ and the maximum is achieved on the standard metric on S^2. Stable.
Particular examples

- Hersch (1970): $\Lambda_1(\mathbb{S}^2) = 8\pi$ and the maximum is achieved on the standard metric on \mathbb{S}^2. Stable.

- Li–Yau (1982): $\Lambda_1(\mathbb{RP}^2) = 12\pi$ and the maximum is achieved on the standard metric on \mathbb{RP}^2.
Particular examples

• Hersch (1970): $\Lambda_1(S^2) = 8\pi$ and the maximum is achieved on the standard metric on S^2. Stable.

• Li–Yau (1982): $\Lambda_1(\mathbb{RP}^2) = 12\pi$ and the maximum is achieved on the standard metric on \mathbb{RP}^2. Stable.
Particular examples

- Hersch (1970): $\Lambda_1(S^2) = 8\pi$ and the maximum is achieved on the *standard metric* on S^2. **Stable.**

- Li–Yau (1982): $\Lambda_1(\mathbb{RP}^2) = 12\pi$ and the maximum is achieved on the *standard metric* on \mathbb{RP}^2. **Stable.**

- Nadirashvili (1996): $\Lambda_1(T^2) = \frac{8\pi^2}{\sqrt{3}}$ and the maximum is achieved on the *flat equilateral torus.*
Particular examples

- Hersch (1970): $\Lambda_1(\mathbb{S}^2) = 8\pi$ and the maximum is achieved on the *standard metric* on \mathbb{S}^2. Stable.

- Li–Yau (1982): $\Lambda_1(\mathbb{R}P^2) = 12\pi$ and the maximum is achieved on the *standard metric* on $\mathbb{R}P^2$. Stable.

- Nadirashvili (1996): $\Lambda_1(\mathbb{T}^2) = \frac{8\pi^2}{\sqrt{3}}$ and the maximum is achieved on the *flat equilateral torus*. Stable.
Examples: continued

 \[\lambda_1(K) = \overline{\lambda}_1(K, g_{\text{max}}), \]
 where \(g_{\text{max}} \) is the unique maximal metric. It is rotationally symmetric, but not flat.

 \[\lambda_1(\Sigma_2) = 16\pi. \]
 Bolza surface \(w^2 = z^{18}/27 \).
Examples: continued

 \[\Lambda_1(K) = \bar{\lambda}_1(K, g_{\text{max}}), \]
Examples: continued

\[\Lambda_1(\mathbb{K}) = \bar{\lambda}_1(\mathbb{K}, g_{max}), \text{ where } g_{max} \text{ is the unique maximal metric. It is rotationally symmetric, but not flat.} \]
Examples: continued

 \[\Lambda_1(\mathbb{K}) = \bar{\lambda}_1(\mathbb{K}, g_{\text{max}}), \text{ where } g_{\text{max}} \text{ is the unique maximal metric. It is rotationally symmetric, but not flat.} \textbf{Stable.} \]
Examples: continued

\[\Lambda_1(\mathbb{K}) = \bar{\lambda}_1(\mathbb{K}, g_{\text{max}}), \text{ where } g_{\text{max}} \text{ is the unique maximal metric. It is rotationally symmetric, but not flat. Stable.} \]

\[\Lambda_1(\Sigma_2) = 16\pi. \]

Bolza surface \(w^2 = z^5 - z \)
Examples: continued

\[\Lambda_1(\mathbb{K}) = \bar{\lambda}_1(\mathbb{K}, g_{max}) \], where \(g_{max} \) is the unique maximal metric. It is rotationally symmetric, but not flat. Stable.

\[\Lambda_1(\Sigma_2) = 16\pi. \]

Bolza surface \(w^2 = z^5 - z \)
Unknown.
Examples: continued

- El Soufi–Ilias–Ros (1996): Let $g_{a,b}$ be a flat metric on \mathbb{T}^2 induced by $\mathbb{R}^2/\mathbb{Z}(1,0) \oplus \mathbb{Z}(a, b)$.
Examples: continued

- El Soufi–Ilias–Ros (1996): Let $g_{a,b}$ be a flat metric on \mathbb{T}^2 induced by $\mathbb{R}^2/\mathbb{Z}(1,0) \oplus \mathbb{Z}(a,b)$.

 If $a^2 + b^2 = 1$, then $\Lambda_1(\mathbb{T}^2, [g_{a,b}]) = \bar{\lambda}_1(\mathbb{T}^2, g_{a,b})$.
Examples: continued

- El Soufi–Ilias–Ros (1996): Let $g_{a,b}$ be a flat metric on \mathbb{T}^2 induced by $\mathbb{R}^2/\mathbb{Z}(1,0) \oplus \mathbb{Z}(a, b)$.

 If $a^2 + b^2 = 1$, then $\Lambda_1(\mathbb{T}^2, [g_{a,b}]) = \bar{\lambda}_1(\mathbb{T}^2, g_{a,b})$.

 Stable.
Thank you for your attention!
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that \((M, g)\) is extremal for the functional \(\bar{\lambda}_k(M, g)\) in the conformal class \([g]\).

Let \(E_k\) be the corresponding eigenspace. Then there exists a collection \(\Phi = (u_1, \ldots, u_{n+1})\), \(u_i \in E_k\) such that \(\Phi: M \rightarrow \mathbb{R}^{n+1}\) is a map to the unit sphere \(S^n \subset \mathbb{R}^{n+1}\).

The converse holds provided \(\lambda_k - 1(M, g) < \lambda_k(M, g)\).
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that \((M, g)\) is extremal for the functional \(\bar{\lambda}_k(M, g)\) in the conformal class \([g]\).
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that (M, g) is extremal for the functional $\bar{\lambda}_k(M, g)$ in the conformal class $[g]$.
Let E_k be the corresponding eigenspace.
Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that (M, g) is extremal for the functional $\bar{\lambda}_k(M, g)$ in the conformal class $[g]$.

Let E_k be the corresponding eigenspace.

Then there exists a collection $\Phi = (u_1, \ldots, u_{n+1})$, $u_i \in E_k$ such that
Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that \((M, g)\) is extremal for the functional \(\bar{\lambda}_k(M, g)\) in the conformal class \([g]\).

Let \(E_k\) be the corresponding eigenspace.

Then there exists a collection \(\Phi = (u_1, \ldots, u_{n+1}), u_i \in E_k\) such that

\[
\Phi : M \rightarrow \mathbb{R}^{n+1} \text{ is a map to the unit sphere } \mathbb{S}^n \subset \mathbb{R}^{n+1}
\]
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that \((M, g)\) is extremal for the functional \(\bar{\lambda}_k(M, g)\) in the conformal class \([g]\).
Let \(E_k\) be the corresponding eigenspace.
Then there exists a collection \(\Phi = (u_1, \ldots, u_{n+1}), u_i \in E_k\) such that

\[\Phi : M \to \mathbb{R}^{n+1} \text{ is a map to the unit sphere } S^n \subset \mathbb{R}^{n+1}\]

The converse holds provided \(\lambda_{k-1}(M, g) < \lambda_k(M, g)\).
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that (M, g) is extremal for the functional $\bar{\lambda}_k(M, g)$ in the space of all metrics and $\lambda_k(M, g) = 2$.

Let E_k be the corresponding eigenspace. Then there exists a collection $\Phi = (u_1, \ldots, u_{n+1})$, $u_i \in E_k$ such that $\Phi: M \to S^n$ is an isometric (branched) immersion to the unit sphere.

The converse holds provided $\lambda_k(M, g) - 1 < \lambda_k(M, g)$.
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)
Suppose that (M, g) is extremal for the functional $\bar{\lambda}_k(M, g)$ in the space of all metrics and $\lambda_k(M, g) = 2$.
Let E_k be the corresponding eigenspace.
Then there exists a collection $\Phi = (u_1, \ldots, u_{n+1})$, $u_i \in E_k$ such that

$\Phi: M \to \mathbb{S}^n$ is an isometric (branched) immersion to the unit sphere.
Extremality conditions

Theorem (Nadirashvili 1996; El Soufi, Ilias 2008)

Suppose that \((M, g)\) is extremal for the functional \(\bar{\lambda}_k(M, g)\) in the space of all metrics and \(\lambda_k(M, g) = 2\).

Let \(E_k\) be the corresponding eigenspace.

Then there exists a collection \(\Phi = (u_1, \ldots, u_{n+1}), u_i \in E_k\) such that

\[\Phi : M \to S^n \text{ is an isometric (branched) immersion to the unit sphere.} \]

The converse holds provided \(\lambda_{k-1}(M, g) < \lambda_k(M, g)\).
Let (M, g) and (N, h) be Riemannian manifolds and h be a Riemannian metric on N. An immersion $\Phi: M \hookrightarrow N$ is called minimal isometric if it is extremal for the volume functional $V(\Phi) = \int_{M} dv_{\Phi^{\ast}h}$ and $\Phi^{\ast}h = g$.

A smooth map $\Phi: M \rightarrow N$ is called harmonic if Φ is extremal for the energy functional $E_g(\Phi) = \frac{1}{2} \int_{M} |df(x)|^2 dv_g$.

Harmonic and minimal maps
Harmonic and minimal maps

Let \((M, g)\) and \((N, h)\) be Riemannian manifolds and \(h\) be a Riemannian metric on \(N\).

An immersion \(\Phi: M \hookrightarrow N\) is called \textit{minimal isometric} if it is extremal for the volume functional

\[
V(\Phi) = \int_M dV_{\Phi^*h}
\]

and \(\Phi^*h = g\).
Harmonic and minimal maps

Let (M, g) and (N, h) be Riemannian manifolds and h be a Riemannian metric on N.
An immersion $\Phi: M \hookrightarrow N$ is called \textit{minimal isometric} if it is extremal for the volume functional

\[V(\Phi) = \int_M dV_{\Phi^*h} \]

and $\Phi^*h = g$.

A smooth map $\Phi: M \rightarrow N$ is called \textit{harmonic} if f is extremal for the energy functional

\[E_g(\Phi) = \frac{1}{2} \int_M |df(x)|^2 \ dv_g. \]
Harmonic and minimal maps to S^n

- If $N = S^n$ with the standard metric and $\Delta \Phi = \lambda \Phi$, then:
 - Φ is harmonic;
 - If Φ is isometric then it is minimal and $\lambda = \dim M$.

Therefore:
- Extremal metrics in conformal class correspond to harmonic maps to S^n.
- Extremal metrics in the space of all metrics correspond to (branched) minimal immersions to S^n.
Harmonic and minimal maps to S^n

If $N = S^n$ with the standard metric and
Harmonic and minimal maps to S^n

If $N = S^n$ with the standard metric and $\Delta \Phi = \lambda \Phi$, then
Harmonic and minimal maps to \mathbb{S}^n

If $N = \mathbb{S}^n$ with the standard metric and $\Delta \Phi = \lambda \Phi$, then

- Φ is harmonic;
If $N = S^n$ with the standard metric and $\Delta \Phi = \lambda \Phi$, then

- Φ is harmonic;
- If Φ is isometric then it is minimal and $\lambda = \dim M$.
Harmonic and minimal maps to S^n

If $N = S^n$ with the standard metric and $\Delta \Phi = \lambda \Phi$, then

- Φ is harmonic;
- If Φ is isometric then it is minimal and $\lambda = \dim M$.

Therefore,

- extremal metrics in conformal class correspond to **harmonic maps to S^n**
- extremal metrics in the space of all metrics correspond to **(branched) minimal immersions to S^n**
Maximal metrics for λ_1: first examples

• Hersch (1970): $\Lambda_1(S^2) = 8\pi$ and the maximum is achieved on the standard metric on S^2.

• Li–Yau (1982): $\Lambda_1(\mathbb{R}P^2) = 12\pi$ and the maximum is achieved on the standard metric on $\mathbb{R}P^2$.

• Nadirashvili (1996): $\Lambda_1(T^2) = \frac{8\pi^2}{\sqrt{3}}$ and the maximum is achieved on the flat equilateral torus.
Maximal metrics: S^2 and \mathbb{RP}^2 revisited

- The eigenfunctions of $S^2 \subset \mathbb{R}^3$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^3.
 - Eigenvalue is $\text{deg} p (\text{deg} p + 1)$
 - Degree 1: x, y, z
 - Degree 2: $xy, yz, xz, x^2 - y^2, x^2 - z^2$

- S^2: the identity map $S^2 \rightarrow S^2$ is an isometric minimal immersion.

- \mathbb{RP}^2: Veronese immersion $v: \mathbb{RP}^2 \rightarrow S^4$
 $$v(x, y, z) = (xy, xz, yz, \sqrt{3} (x^2 - y^2), \frac{1}{2} (x^2 + y^2) - z^2)$$
Maximal metrics: S^2 and \mathbb{RP}^2 revisited

- The eigenfunctions of $S^2 \subset \mathbb{R}^3$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^3.
Maximal metrics: S^2 and \mathbb{RP}^2 revisited

- The eigenfunctions of $S^2 \subset \mathbb{R}^3$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^3. Eigenvalue is $\deg p (\deg p + 1)$
Maximal metrics: S^2 and \mathbb{RP}^2 revisited

- The eigenfunctions of $S^2 \subset \mathbb{R}^3$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^3. Eigenvalue is $\deg p (\deg p + 1)$

 - degree 1: x, y, z
 - degree 2: $xy, yz, xz, x^2 - y^2, x^2 - z^2$
Maximal metrics: S^2 and \mathbb{RP}^2 revisited

- The eigenfunctions of $S^2 \subset \mathbb{R}^3$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^3. Eigenvalue is $\deg p(\deg p + 1)$
 - degree 1: x, y, z
 - degree 2: $xy, yz, xz, x^2 - y^2, x^2 - z^2$
- S^2: the identity map $S^2 \rightarrow S^2$ is an isometric minimal immersion.
Maximal metrics: S^2 and \mathbb{RP}^2 revisited

- The eigenfunctions of $S^2 \subset \mathbb{R}^3$ are the restrictions of homogeneous harmonic polynomials p on \mathbb{R}^3. Eigenvalue is $\deg p(\deg p + 1)$
 - degree 1: x, y, z
 - degree 2: $xy, yz, xz, x^2 - y^2, x^2 - z^2$

- S^2: the identity map $S^2 \rightarrow S^2$ is an isometric minimal immersion.

- \mathbb{RP}^2: Veronese immersion $v : \mathbb{RP}^2 \rightarrow S^4$

$$v(x, y, z) = \left(xy, xz, yz, \frac{\sqrt{3}}{2} (x^2 - y^2), \frac{1}{2} (x^2 + y^2) - z^2 \right)$$
General quantitative stability estimate

Theorem (KNPS)

Assume that \((M, [g])\) is such that for any harmonic map to \(S^n\) corresponding to a maximal measure there are no non-trivial Jacobi fields. Then the quantitative stability holds.
Theorem
(KNPS)
Assume that $(M, [g])$ is such that for any harmonic map to \mathbb{S}^n corresponding to a maximal measure there are no non-trivial Jacobi fields. Then the quantitative stability holds.