Chapter 1: Small Doubling

Adam Sheffer

March 31, 2016

A large portion of this chapter and a couple of smaller excerpts from following chapters are inspired by Lovett’s survey [3].

1 Introduction

Let G be an abelian group with operation $+$, and let $A, B \subseteq G$ be finite subsets. The sum set of A and B is defined as

$$A + B = \{a + b : a \in A \text{ and } b \in B\}.$$

Similarly, the difference set of A and B is defined as

$$A - B = \{a - b : a \in A \text{ and } b \in B\}.$$

To get some intuition, we begin with the group of real numbers \mathbb{R} under addition. A trivial upper bound for the size of a sum set is $|A + A| \leq \frac{|A|^2 + |A|}{2}$ (equality is obtained when every pair of elements of A have a distinct sum). If we build A by taking elements of \mathbb{R} at random, then we expect $|A + A|$ to be very close to this upper bound, since the probability of $a_1 + a_2 = a_3 + a_4$ is very small (where $a_1, a_2, a_3, a_4 \in A$). On the other hand, if $A = \{1, 2, \ldots, n\}$ then $|A + A| = |\{2, 3, 4, \ldots, 2n\}| = 2|A| - 1$. The same bound holds whenever A is an arithmetic progression. One of the main problems of additive combinatorics is characterizing the finite sets A (in either \mathbb{R} or some other group) for which $|A + A|$ is small with respect to $|A|$. As a warmup, we begin with the following easy claim.

Claim 1.1. For every finite set $A \subseteq \mathbb{R}$ we have $|A + A| \geq 2|A| - 1$.

Proof. Denote the elements of A as $a_1 < a_2 < \cdots < a_{|A|}$. Then $A + A$ contains the following $2|A| - 1$ distinct elements:

$$a_1 + a_1 < a_1 + a_2 < a_1 + a_3 < \cdots < a_1 + a_{|A|} < a_2 + a_{|A|} < a_3 + a_{|A|} < \cdots < a_{|A|} + a_{|A|}.$$

The claim establishes that, in \mathbb{R}, arithmetic progressions have minimum-sized sum sets. The following set is not an arithmetic progression, although it is defined in a similar way.

$$A = \{3k_1 + 100k_2 : k_1 \in \{1, 2, 3\} \text{ and } k_2 \in \{1, 2, 3, \ldots, n\}\}. \quad (1)$$

Notice that $|A| = 3n$ and $|A + A| = 5(2n - 1) = 10n - 5 < \frac{10}{3}|A|$. Although $\frac{10}{3}|A|$ may seem rather large compared to $2|A| - 1$, it is still relatively small with respect to most finite sets $A \subset \mathbb{R}$ (recall that a random set is expected to satisfy $|A + A| \approx |A|^2$). In general, we are interested in sets A that satisfy $|A + A| \leq k|A|$ for some constant k (as $|A|$ grows asymptotically). We say that such sets have small doubling. Note that property of a set A having small doubling does not depend on the size $|A + A|$ but rather on the ratio between $|A + A|$ and $|A|$.

A generalized arithmetic progression of dimension d is defined as

$$\left\{a + \sum_{j=1}^{d} k_j b_j : a, b_1, \ldots, b_d \in \mathbb{R} \text{ and with integer } 0 \leq k_j \leq n_j - 1 \text{ for every } 1 \leq j \leq d\right\}.$$

An arithmetic progression is a generalized arithmetic progression of dimension 1, and the set in (1) is a generalized arithmetic progression of dimension 2. The size of a generalized arithmetic progression of dimension d is at most $n = n_1 n_2 \cdots n_d$, and it is not difficult to verify that it has a sumset of size smaller than $2^d n$. The following result characterizes the finite sets $A \subset \mathbb{R}$ that have a small doubling (e.g., see [6]).

Theorem 1.2 (Freiman’s theorem over the reals). Let $A \subset \mathbb{R}$ be a finite set with $|A + A| \leq k|A|$ for some constant k. Then A is contained in a generalized arithmetic progression of size at most cn and dimension at most d; both c and d depend on k but not on $|A|$.

If we replace \mathbb{R} with a finite group G, smaller sum sets can be obtained. When $A = G$ we obviously have $|A + A| = |A|$. More generally, we have $|A + A| = |A|$ when A is a subgroup or a coset of G. For example, when working in \mathbb{F}_9, the set $A = \{1, 4, 7\}$ satisfies $|A + A| = |A|$.

The following argument is taken from [2].
Lemma 1.3. Consider a set $A \subset G$ such that $|A - A| < 3|A|/2$. Then $A - A$ is a subgroup of G.

Proof. Let $x = a - a'$ for some $a, a' \in A$ (that is, $x \in A - A$). We have
\[
|A \cap (A + x)| = |(A - a) \cap (A - a')|,
\]
since subtracting a from both A and $A + x$ does not change the size of their intersection. Notice that $|A - a| = |A - a'| = |A|$ and that every element of $A - a$ or $A - a'$ is in $A - A$. Thus, we obtain
\[
|(A - a) \cap (A - a')| = |A - a| + |A - a'| - |(A - a) \cup (A - a')| \\
\]

The above implies that for every $x \in A - A$, we have $|A \cap (A + x)| > |A|/2$. This implies that for any $x, y \in A - A$, the intersection $(A + x) \cap (A + y)$ is non-empty. That is, there exist $a, a' \in A$ such that $a + x = a' + y$, or equivalently $x - y = a' - a \in A - A$. Since this holds for any $x, y \in A - A$, we get that $A - A$ is closed under subtraction. It is not difficult to verify that this closure property implies that $A - A$ is a subgroup of G (for example, see the preliminaries chapter). \qed

To see that Lemma 1.3 is tight, consider the set $A = \{0, 1\}$ in \mathbb{Z}. In this case $|A - A| = 3|A|/2$ although $A - A$ is not a subgroup.

Our final example is about sets in \mathbb{R}^n. The following result is by Freiman [1], one of the founding fathers of the field.

Lemma 1.4. Consider a finite set $A \subset \mathbb{R}^n$ with $|A + A| \leq k|A|$, for some constant k. Then A is fully contained in a subspace of dimension $2k$.

Proof. Let $M(A)$ be the set of midpoints of pairs of points of A:
\[
M(A) = \left\{ p \in \mathbb{R}^n : p = \frac{a + b}{2} \text{ for } a, b \in A \right\}.
\]

In this definition of $M(A)$ we allow $a = b$, which implies that $A \subseteq M(A)$. Since $M(A)$ is obtained by dividing every element of $A + A$ by 2, we have $|M(A)| = |A + A| \leq k|A|$. We denote by $C(A)$ the convex hull of A, and let d denote the dimension of $C(A)$. We prove by induction on $|A| + d$ that
\[
|M(A)| \geq (d + 1)|A| - \binom{d + 1}{2}.
\]
For the induction basis, the claim is clear when \(|A| \leq 2\) (in this case \(d = |A| - 1\)). For the induction step we consider an arbitrary point \(a \in A\) that is a vertex of \(C(A)\), and set \(A' = A \setminus \{a\}\). If \(C(A')\) is of dimension \(d - 1\), then the set of midpoints \((a + A)/2\) consists of \(|A|\) distinct points. In this case, by the induction hypothesis we have

\[
|M(A)| = |A| + |M(A')| \geq |A| + d|A'| - \left(\frac{d}{2}\right) = |A|(d + 1) - \left(\frac{d + 1}{2}\right).
\]

Next, consider the case where \(C(A')\) is of dimension \(d\). In this case, on the boundary of \(C(A)\) the vertex \(a\) is connected by an edge to at least \(d\) other vertices. Each of these vertices forms a distinct midpoint with \(a\). The induction hypothesis implies

\[
|M(A)| \geq (d+1) + |M(A')| \geq (d+1) + |A'|(d+1) - \left(\frac{d + 1}{2}\right) = |A|(d+1) - \left(\frac{d + 1}{2}\right).
\]

This completes the induction step, and thus the proof of (2). We now return to proving the lemma. If \(C(A)\) is of dimension at least \(2k\) then \(|A| > 2k\). By combining this with (2) we get

\[
|A + A| = |M(A)| \geq |A|(2k + 1) - \left(\frac{2k + 1}{2}\right) > |A|(2k + 1) - |A|\frac{2k + 1}{2} > |A|k.
\]

Since this contradicts the assumption of the lemma, the dimension of \(C(A)\) is at most \(2k - 1\). This in turn implies that \(A\) is contained in a subspace of dimension \(2k\), as asserted.

The above examples seem to hint of a general principle: If \(|A + A| \leq k|A|\) (for some constant \(k\)) then we know a lot about the general structure of \(A\). Below and in the following chapters we will keep studying this principle.

2 Ruzsa Calculus

The following lemma presents a simple useful tool.

Lemma 2.1 (Ruzsa’s triangle inequality). For any abelian group \(\mathcal{G}\) and \(A, B, C \subset \mathcal{G}\), we have

\[
|A||B - C| \leq |A + B||A + C|.
\]
Proof. For every \(x \in B - C \) we arbitrarily fix a representation \(x = b - c \) with \(b \in B \) and \(c \in C \). We define a map \(f : A \times (B - C) \to (A + B) \times (A + C) \) as follows. For any \(a \in A \) and \(x \in B - C \) with fixed representation \(x = b - c \), we set \(f(a, x) = (a + b, a + c) \). If \(f(a, x) = f(a', x') = (m, n) \) then we have \(x = x' = m - n \). Since we fixed a specific representation \(x = b - c \), we know what \(b \) and \(c \) are, and have \(a = a' = m - b \). That is, \(f \) is injective, which in turn implies that the size of the domain of \(f \) is at most the size of the image of \(f \). In other words, \(|A||B - C| \leq |A + B||A + C|\).

We now present a couple of simple applications of Ruzsa’s triangle inequality. The first application considers two distinct sets with a small sum.

Corollary 2.2. Let \(A \) and \(B \) be subsets of an abelian group \(G \) such that \(|A + B| \leq k \sqrt{|A||B|}\). Then \(|A - A| \leq k^2|A|\).

Proof. By Ruzsa’s triangle inequality we have

\[|B||A - A| \leq |A + B||A + B| \leq k^2|A||B|. \]

The assertion of the corollary is obtained by cancelling \(|B|\) from both sides of this inequality.

The second application considers sets that are obtained by summing an arbitrary subset with a subgroup.

Corollary 2.3. Let \(H \) be a subgroup of an abelian group \(G \), let \(A \) be any subset of \(G \), and let \(B = A + H \). Then

\[\frac{|B + B|}{|B|} \leq \frac{|A + A + A|}{|A|}. \]

Proof. First, since \(H \) is a subgroup we have \(H = -H \) and \(B + B = A + H + A + H = A + A + H \). By Ruzsa’s triangle inequality we have

\[|A||B + B| = |A||(A + A) + H| \leq |A + A + A||A - H| = |A + A + A||A + H| = |A + A + A||B|. \]

The assertion of the corollary is obtained by rearranging this inequality.

3 Plünnecke’s inequality

We now consider sums of several elements from a set. For a positive integer \(m \), we set

\[mA = \{a_1 + \cdots + a_m : a \in a_1, \ldots, a_m \in A\}. \]
Similarly, for positive integers m and ℓ, we set

$$mA - \ell A = \{a_1 + \cdots + a_m - a_{m+1} - \cdots - a_{m+\ell} : a_1, \ldots, a_{m+\ell} \in A\}.$$

For intuition, we first consider the case of \mathbb{R}. If A is a random set of real numbers, then we expect $|mA| \approx |A|^m$. Similarly, in this case we expect $|mA - \ell A| \approx |A|^{m+\ell}$. On the other hand, when $A \subset \mathbb{R}$ is an arithmetic progression we have $|mA| = m|A| - m + 1$ and $|mA - \ell A| < (m + \ell)|A|$. A similar situation occurs for other types of sets with small doubling: generalized arithmetic progressions in \mathbb{R}, cosets of any group G, and sets in a small subspace of \mathbb{R}^n. The following theorem shows that this is not a coincidence.

Theorem 3.1 (Plünnecke’s inequality). Let A and B be finite subsets of an abelian group G, such that $|A| = |B|$ and $|A + B| \leq k|A|$. Then for any two positive integers m and ℓ, we have $|mA - \ell A| \leq k^{m+\ell}|A|$.

This result was originally proven by Plünnecke and later rediscovered by Ruzsa. That is why it is sometimes referred to as the Plünnecke-Ruzsa inequality. Here we present a more recent proof from [4].

Proof of Theorem 3.1. Let B' be a non-empty subset of B that minimizes $k' = \frac{|A + B'|}{|B'|}$. That is, B' is the subset of B that has the “best additive behavior” with A. We first prove the following lemma.

Lemma 3.2. For any finite $C \subset G$ we have

$$|A + B' + C| \leq k'|B' + C|.$$

Proof. The proof is by induction on $|C|$. For the induction basis we consider the case of $|C| = 1$. In this case

$$|A + B' + C| = |A + B'| = k'|B'| = k'|B' + C|.$$

For the induction step we assume that $|C| \geq 2$. Consider an arbitrary element $c \in C$. We set $C' = C \setminus \{c\}$ and

$$B'_c = \{b \in B' : A + b + c \subset A + B' + C'\}.$$

Using B'_c, we can define $A + B' + C$ as

$$A + B' + C = (A + B' + C') \cup ((A + B' + c) \setminus (A + B'_c + c)).$$
Since $A + B'_c + c \subseteq A + B' + c$, we have

$$|A + B' + C| \leq |A + B' + C'| + |A + B' + c| - |A + B'_c + c|.$$

By the induction hypothesis, we have $|A + B' + C'| \leq k'|B' + C'|$. By definition, $|A + B' + c| = |A + B'| = k'|B'|$. By the minimality of B', we have $|A + B'_c + c| = |A + B'_c| \geq k'|B'_c|$. Combining all of the above, we obtain

$$|A + B' + C| \leq k'(|B' + C'| + |B'| - |B'_c|). \quad (3)$$

We next define

$$B'' = \{b \in B' : b + c \in B' + C\}.$$

Notice that if $b \in B''$ then $A + b + c \subseteq A + B' + C'$, so $b \in B'_c$. That is, $B'' \subseteq B'_c$. We use B'' to express $B' + C$ as

$$B' + C = (B' + C') \cup ((B' + c) \setminus (B'' + c)).$$

Since this is a disjoint union, we have

$$|B' + C| = |B' + C'| + |B' + c| - |B'' + c| = |B' + C'| + |B'| - |B''|$$

$$\geq |B' + C'| + |B'| - |B'_c|. \quad (4)$$

By combining (3) and (4), we get the assertion of the lemma. \qed

We now use Lemma 3.2 to prove that $|mA + B'| \leq k^m|B'|$. This is done by induction on m. For $m = 1$ we have $|A + B'| = k'|B'| \leq k|B'|$ (by the minimality of k'). For $m \geq 2$, by applying Lemma 3.2 with $C = (m - 1)A$ and then the induction hypothesis, we get

$$|A + B' + (m - 1)A| \leq k'|B' + (m - 1)A| \leq k^m|B'|.$$

This completes the induction step, and we can now complete the proof of the theorem. By Ruzsa’s triangle inequality (Lemma 2.1), we have

$$|B'||mA - \ell A| \leq |mA + B'||\ell A + B'| \leq k^{m+\ell}|B'|^2 \leq k^{m+\ell}|A||B'|.$$

Cancelling $|B'|$ on both sides yields the assertion of the theorem. \qed

One question of the 2012 International Mathematics Competition asked to prove Theorem 3.1 without the $-\ell A$ part. None of the 316 participants managed to receive more than 2 points for this question (out of 10).
4 A variant of Freiman’s theorem

Freiman’s Theorem (Theorem 1.2) characterizes the sets of real numbers that have a small sum set. We conclude this chapter by proving a variant of Freiman’s Theorem for groups with elements of a bounded order.

Theorem 4.1 (Ruzsa [5]). Let G be an abelian group such that every element of G is of order at most r. Consider a subset $A \subset G$ such that $|A + A| \leq k|A|$. Then A is contained in a coset of size at most $k^{2r}k^{4}|A|$.

Proof. We consider an arbitrary $a \in A$ and set $A' = A - a$. We have $|A| = |A'|$ and $|A + A| = |A' + A'|$. The reason for considering A' rather than A is to force 0 to be in our set. We will prove that A' is contained in a subgroup of G, which would imply that A is contained in a coset.

Let B be a maximum sized subset of $2A' - A'$ such that for every $b, b' \in B$ we have $(b - A') \cap (b' - A') = \emptyset$. Since $b - A' \subset 2A' - 2A'$, we have $|B| \leq \frac{|2A' - 2A'|}{|A'|}$. By Plünnecke’s inequality (Theorem 3.1), we get

$$|B| \leq \frac{|2A' - 2A'|}{|A'|} \leq k^4.$$

Consider $x \in 2A' - A'$. By the maximality of B, there exists $b \in B$ such that $(x - A') \cap (b - A') \neq \emptyset$. That is, there exist $a, a' \in A'$ such that $x - a = b - a'$. Since this can rearranged as $x = b + a - a' \in B + A' - A'$, we obtain that $2A' - A' \subset B + A' - A'$.

We now show that for $k \geq 1$, we have

$$kA' - A' \subset (k - 1)B + A' - A'. \quad (5)$$

We prove (5) by induction on k. The case of $k = 1$ is trivial, and the case of $k = 2$ was proved in the previous paragraph. For $k \geq 3$, by the induction hypothesis we get

$$kA' - A' = A' + ((k - 1)A' - A') \subset A' + ((k - 2)B + A' - A').$$

The case of $k = 2$ states that $2A' - A' \subset B + A' - A'$, so

$$kA' - A' \subset A' + ((k - 2)B + A' - A') \subset (k - 1)B + A' - A'.$$

This completes the induction step, and the proof of (5).

We denote by $\text{Span}(A')$ the subgroup of G that is spanned by A'. Equivalently, $\text{Span}(A') = \bigcup_{k \geq 1} kA'$. Since $0 \in A'$ and by (5), we have

$$\text{Span}(A') = \bigcup_{k \geq 1} kA' \subset \bigcup_{k \geq 1} (kA' - A') \subset \bigcup_{k \geq 1} (k - 1)B + A' - A' = \text{Span}(B) + A' - A'.$$
Combining this with Plünnecke’s inequality (Theorem 3.1) implies
\[|\text{Span}(A')| \leq |\text{Span}(B)||A' - A'| \leq |\text{Span}(B)| \cdot k^2|A'|.\]

Finally, since \(|B| \leq k^4\), we have \(|\text{Span}(B)| \leq r k^4\). That is, \(A'\) is contained in the subgroup \(\text{Span}(A')\) of size at most \(r^4 k^2|A'| = r^4 k^2|A|\).

In Theorem 4.1 the dependence in \(k\) is very bad — the bound is super-exponential in \(k\). Other variants of the theorem (such as Theorem 1.2) also have a bad dependence in \(k\). The polynomial Freiman-Ruzsa conjecture suggests that polynomial dependence in \(k\) should be possible under certain restrictions. This is one of the main open problems of additive combinatorics and has a large number of applications (e.g., see [3]). We now present a variant of this conjecture in \(\mathbb{F}_2^n\).

Conjecture 4.2 (Polynomial Freiman-Ruzsa over \(\mathbb{F}_2^n\)). Consider a set \(A \subset \mathbb{F}_2^n\) with \(|A + A| \leq k|A|\). Then there exists a subset \(A' \subset A\) of size \(|A'| \geq k^{-c}|A|\) such that \(|\text{Span}(A')| \leq k^c|A|\) (for some constant \(c > 0\)).

The conjecture states that a set \(A\) with a small doubling contains a large subset that is fully contained in a subspace of size at most \(|A|\). In Chapter 5 of these lecture notes we will study the current best bound for this problem.

References

